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Abstract

Recent works have shown that convolutional networks

have substantially improved the performance of multiple

object tracking by simultaneously learning detection and

appearance features. However, due to the local perception

of the convolutional network structure itself, the long-range

dependencies in both the spatial and temporal cannot be

obtained efficiently. To incorporate the spatial layout, we

propose to exploit the local correlation module to model

the topological relationship between targets and their sur-

rounding environment, which can enhance the discrimina-

tive power of our model in crowded scenes. Specifically,

we establish dense correspondences of each spatial loca-

tion and its context, and explicitly constrain the correla-

tion volumes through self-supervised learning. To exploit

the temporal context, existing approaches generally utilize

two or more adjacent frames to construct an enhanced fea-

ture representation, but the dynamic motion scene is inher-

ently difficult to depict via CNNs. Instead, our paper pro-

poses a learnable correlation operator to establish frame-

to-frame matches over convolutional feature maps in the

different layers to align and propagate temporal context.

With extensive experimental results on the MOT datasets,

our approach demonstrates the effectiveness of correlation

learning with the superior performance and obtains state-

of-the-art MOTA of 76.5% and IDF1 of 73.6% on MOT17.

1. Introduction

Multi-Object Tracking (MOT) is an essential compo-

nent for computer vision with many applications, such

as video surveillance [31] and modern autonomous driv-

ing [19, 41]. It aims to continuously locate trajectories of

multiple targets in video frames. Decades of research efforts

have led to impressive performance on challenging bench-

marks [24, 30, 8].

MOT has traditionally adopted the tracking-by-detection

paradigm [3, 5, 1, 58], which capitalizes on the natural di-

vision of detection and data association tasks for the prob-

lem. These algorithms extract appearance features within
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Figure 1. Visualization of the matching confidences (a)-(b) com-

puted between the indicated target (white cross) in the reference

image and all locations of the query image. The appearance fea-

ture based tracker [58] (a) generates undistinctive and inaccurate

confidences due to the existing of similar distractors. In contrast,

our Correlation Tracker (b) predicts a distinct high-confidence

value at the correct location, with correlation learning (c).

each detection patches and record object location informa-

tion for subsequent data association [51, 5]. This track-

ing paradigm makes researchers mainly focus on optimiz-

ing detection [56, 16], feature representation [27, 15], or

data association [3, 5, 17]. With the rapid progress of detec-

tion algorithms [13, 14, 36, 35], the detection based track-

ing has achieved great performance improvement [56, 16].

Although tremendous strides have been made in MOT,

there still exists tough challenges in determining distractors

and frequent occlusions, especially in complex interactive

scenes [8]. Additionally, the above cascaded structure is in-

efficient and prevents the joint optimization between stages.

One promising approach is to extend the end-to-end

trainable detection framework [36, 35, 64] to jointly learn

detection and appearance feature, which has largely ad-

vanced the state-of-the-art in MOT [44, 50, 29, 58]. How-

ever as illustrated in Fig. 1, in the case of existing similar

distractors, the appearance feature generates undistinctive

and inaccurate matching confidences (Fig. 1a), severely af-

fecting the performance of association. These methods are

limited in local descriptors, and it is difficult to distinguish
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similar objects. While as shown in Fig. 1c, the context rela-

tion map can help to easily distinguish different targets.

Based on those observations, we propose a correlation

network to learn the topological information of the ob-

ject and context. Specifically, we use a spatial correlation

layer to record the relationship between targets and rela-

tive spatial positions. While constructing a full correlation

(e.g., non-local [48]) for all locations is computationally

prohibitive for real-time MOT, this work constructs a local

correlation volume by limiting the search range at each fea-

ture pyramid. Besides, our correlation learning is not lim-

ited for targets of interest category [53, 49]. Background

contexts, such as vehicles, are also modeled to help tar-

get recognition and relational reasoning (Fig. 1c). We es-

tablish dense correspondences of each spatial location and

its context, and explicitly constrain the correlation volumes

through self-supervised learning.

Further, the detector in MOT usually uses independent

frames as input and therefore does not make full use of tem-

poral information. This detection method makes the algo-

rithm suffer from missing detection in crowded scenes, and

further increases the difficulty of subsequent data associ-

ation. Recently, adjacent frames [64, 34] or three frames

[32] are adopted to enhance the temporal consistence. The

performance of the algorithm in occlusion scenes has been

improved to a certain extent, but these methods are still lim-

ited with fewer frames. CenterTrack [64] attempt to use

an aggressive data augmentation to increase the ability of

target alignment, but convolution networks itself are inher-

ently limited in local receptive fields. To solve the above

problem, we extend the spatial correlation module to the

temporal dimension and incorporate the historical informa-

tion to reduce ambiguities in object detections.

To summarize, we make the following contributions:

• We propose CorrTracker, a unified correlation tracker

to intensively model associations between objects and

transmit information through associations.

• We propose a local structure-aware network and en-

hance the discriminability of similar objects with self-

supervised learning.

• We extend the local correlation network to model tem-

poral information efficiently.

• CorrTracker shows significant improvements over ex-

isting state-of-the-art results in four MOT benchmarks.

In particular, we achieve 76.5% MOTA and IDF1 of

73.6% on MOT17.

2. Related Work

Real-time Tracking. As MOT has strong practical merit,

the tracking speed attracts much attention. The researchers

start from the simplest IOUTracker [4], which only uses

the intersection-over-union of bounding boxes for tracking,

to add the motion model of Kalman Filter [3] to predict

the position of the rectangular boxes for matching. Al-

though they have achieved amazing speed, stable track-

ing cannot be achieved under challenges such as target

interleaving. Researchers [27, 51] introduce Person Re-

Identification (ReID) features as an appearance model to

increase the discriminative power of the tracker. However,

the individual calculation for patches makes the object clas-

sification and ReID feature extraction as a computational

bottleneck. MOTDT [27] achieves real-time tracking by us-

ing RoI-pooling [14] on a shared feature map. In order to

further decrease the computational cost of ReID feature ex-

traction, JDE [50] adds a ReID branch in a single-stage de-

tector YOLOv3 [35] to achieve efficient ReID feature calcu-

lation. FairMOT [58] explores the importance of detection

and recognition tasks and uses anchor-free method [65] to

reduce the ambiguity of anchors. We are mainly based on

FairMOT, which achieves the state-of-the-art performance

with a more balanced ReID and detection.

Other researchers [1, 64, 34, 32] explore new tracking

paradigms to remove ReID recognition. Tracktor [1] uses

the the bounding boxes in the previous frame to directly

regress the current locations. CenterTrack [64], Chained-

Tracker [34], and TubeTK [32] use multiple frames to

simultaneously predict the bounding boxes for adjacent

frames to achieve short association, thereby merging to

long-term tracks. However, these methods usually have

many identity switches because they cannot model long-

term dependencies.

Tracking with Graph Model. MOT has traditionally

been approached as a hand-crafted graph optimization prob-

lem [61, 17], where the cropped targets are treated as nodes.

Recently, graph neural network based methods [53, 49, 5]

have been shown as a promising alternative to traditional

optimization methods. State-of-the-art approach [53] uti-

lizes graph convolutional network to propagate features in

the spatial-temporal space. MPN [5] introduces the mes-

sage passing network to dissect the information and asso-

ciate detections through the edge classification. Different

from these methods, feature propagation is carried out at

the frame feature level, which can absorb the information

of both the foreground and background and reduce the loss

of contextual information.

Tracking with Optical Flow. FlowTrack [60] introduces

optical flow to predict the target location. But explicitly us-

ing optical flow is not only time-consuming, but also only

encodes the pixel-level motion. CenterTrack [64] borrows

the method of optical flow to directly predict the movement

of the target center between two frames, which is called in-

stance flow. However, directly predicting the offset on the

concatenated feature map needs to provide training samples

with all displacement, which requires excessive data aug-

mentation. Our correlation method predicts a dense set of
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Figure 2. Overview. We enhance the appearance features with correlation layer, which densely encoding pairwise relation of object and

their spatial-temporal neighbourhoods. The local correlation volumes are optimized in a self-supervised manner.

matching confidence for each target, which is intrinsically

invariant to translation of the paired frames. Our correla-

tion operation is similar to the correlation volume in optical

flow [10, 40, 42] and correlation filter [7]. We both predict

dense local correlation, and regard it as a part of the feature

description. However, optical flow does not calculate the in-

ternal correlation of the image, nor does it have propagated

the feature from multiple frames. D&T [12] also utilizes

correlation layer to predict candidate motion between pair

of consecutive frames. Compared with it, our anchor-free

framework is more compact and efficient.

Attention Mechanism. Our modeling of local correla-

tion is similar to the self-attention mechanism and Trans-

former. Transformer has been a huge success in the NLP

field [43] and has also been adapted to the computer vi-

sion [48, 18, 28] to capture long-range dependencies. In or-

der to reduce the quadratic complexity of the non-local op-

eration, the researchers propose to shrink the attention span

with local region [33], or only along individual axes [47].

Different from these methods, we mainly encode the con-

text identity through local correlation weighting, and use

this cues to increase the model robustness.

3. Methodology

Figure 2 shows the overall pipeline of the proposed Cor-

rTracker. Our method can be distilled down to three stages:

(1) general feature extraction, (2) simultaneous learning

correlation from spatial-temporal dependencies and predict-

ing the detection, and (3) performing data association to

assign detections into their most likely trajectories, where

stage (1) and stage (2) are differentiable and composed into

an end-to-end trainable architecture. We adopt a compact

association technique that is similar to the one used by

DeepSORT [51] to control the initialization and the termi-

nation of tracks. The main contribution is the highly effi-

cient modeling for the correlation between dense location

and their context on feature maps, which helps suppressing

distractors in complex scenes.

3.1. Motivation

For each input video frame It ∈ R
H×W×3, an object

detector is applied to find all candidate detections Dt =
{di

t}
N
i=1

,di
t = (xi

t, y
i
t, w

i
t, h

i
t) appearing in this frame and

we have existing trajectories Tt−1 = {Tj
t−1

}Mj=1
,T

j
t−1

=

{dj
1
, ...,d

j
t−2

,d
j
t−1

}. Then the affinity matrix A ∈ R
N×M

is estimated by pair-wise comparisons of cropped patches

and existing trajectories. The metric jointly considers both

the appearance features f(·) ∈ R
d and geometric represen-

tations.

Aij = dist(f(di
t), f̂(T

j
t−1

)) + αIoU(di
t, d̂

j
t ), (1)

The discriminative feature f̂(Tj
t−1

) of a trajectory is usually

updated with a constant-weighting strategy to follow the ap-

pearance changes. Each confidence value for appearance

feature is obtained in a distance metric, e.g., the inner prod-

uct space. However, the sole reliance on person-to-person

feature comparisons are often insufficient to disambiguate

multiple similar regions in an image. As illustrated in Fig. 1,

in the case of similar distractors, the feature extractor usu-

ally generates inaccurate and uninformative matching confi-

dences (Fig. 1a), severely affecting the performance of data

association. This is the key limitation of appearance feature

matching, since co-occurring similar objects are all perva-

sive in MOT.

Patch based feature extraction is applied as a prevalent

scheme in MOT owing to its intuition. However the cor-

relation information between the cropped image patches is

lost directly, and the adjacency spatial relationship is only

retained in coordinates di
t. Although the subsequent data

association will be globally optimized, directly using ReID

features without considering the context tends to introduce

more identity switches, lagging the tracking robustness. To

deal with this problem, we model the local structure of ob-

jects to distinguish it from distractors.

Inspired by correlation volume from optical flow [10],

we observe that a confidence value in the correlation vol-
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ume models the geometric structure of each target. We de-

sign a novel dense correlation module, aiming to explore

the context information for MOT. The relative position is

encoded in the correlation volumes, which can be used as

an auxiliary discriminant information.

3.2. Spatial Local Correlation Layers

In this work, we use Spatial Local Correlation Layers to

model the relational structure for associating a target with

its neighbour. In our local correlation layer, the feature sim-

ilarity is only evaluated in the neighbourhood of the target

image coordinate. Formally, we let l denote the level in

the feature pyramid and the correlation volume Cl between

the query feature Fl
q ∈ R

Hl×Wl×dl and reference feature

Fl
r ∈ R

Hl×Wl×dl is defined as,

Cl(Fq,Fr,x,d) = Fl
q(x)

TFl
r(x+ d), ‖d‖∞ ≤ R, (2)

where x ∈ Z
2 is a coordinate in the query feature map and

d ∈ Z
2 is the displacement from this location. The dis-

placement is constrained to ‖d‖∞ ≤ R , i.e. the maximum

motion in any direction is R. While most naturally thought

of as a 4-dimensional tensor, the two displacement dimen-

sions are usually vectorized into one to simplify further pro-

cessing in the CNN. The resulting 3-d correlation volume

Cl thus is of size H l ×W l × (2R+1)2. We also introduce

the dilation tricks [55], which can increase the receptive

field without additional cost. We use element-wise addition

to incorporate the correlation feature into a unified appear-

ance representation. This context correlation features are

encoded by a feed-forward Multilayer Perceptron (MLP) to

match the number of channels dl in appearance features Fl
t.

Fl
C = Fl

t +MLPl
(

Cl
(

Fl
t,F

l
t)). (3)

The non-local [48] module is to explicitly model all pair-

wise interactions between elements in a feature maps

Fl
t ∈ R

Hl×W l×dl

. The resulting four-dimensional corre-

lation volume NL(Fl
t) ∈ R

Hl×W l×Hl×W l

captures dense

matching confidences between every pair of image loca-

tions. They build a full connection volume at a single scale,

which is both computationally expensive and memory in-

tensive. By contrast, our work shows that constructing a lo-

cal correlation volume leads to both effective and efficient

models. In comparison with the global correlation method,

our local correlation model adds less overhead to the latency

(see Table 1).

3.3. Correlation at Multiple Pyramid Levels

In order to achieve long-range correlation, we propose

to learn correlation at feature pyramids, as shown in Fig-

ure 3. On the one hand, we hope that our correlation module

can obtain long-distance dependencies as much as possible,

but as the local region size R increases, both calculation

Figure 3. Correlation at Multiple Pyramid Levels. For a feature

tensor in F
l, we take the inner product with local region (R =

1, D = 2) to generate a 3-d correlation volume W l×Hl× (2R+
1)2, D is the dilation rate.

and storage increase significantly, which hinders the appli-

cation. On the other hand, MOT naturally needs to deal with

multi-scale targets. The two-stage detection [36] uses RoI

pooling [14] to eliminate the difference in target scales, but

this type of method usually suffers from high processing la-

tency. In order to solve the above problems, we utilize the

general pyramid structure in the convolutional network and

learn correlation on the feature pyramids. Our multi-scale

pyramid correlation can also be regarded as a comparison

of multi-granularity features, covering the spatial context in

the range of [0, R×D × 2l], where D refers to the dilation

rate. And, we pass this correlation from the top layer to the

bottom layer,

F̂l−1

C
= Conv(Upsample(Fl

C)) + Fl−1

C
, (4)

In this way, we can obtain an approximate correlation be-

tween the target and the entire global context, while keep

the compactness and efficiency. Our pyramid correlation

leverages the natural spatial-temporal coherence in videos.

Multi-object tracking can be decomposed into multiple in-

dependent single-object tracking. Our method can be equiv-

alent to a dense siamese network tracking [2] on the feature

pyramid. On the other hand, from the perspective of set

matching, global characteristics need to be considered. Our

multi-scale correlation takes into account both aspects of

information transmission.

3.4. Temporal Correlation Learning

The correlation between different frames are usually ig-

nored by the MOT field, and trackers usually overcome oc-

clusion through data association. Single frame detector is

difficult to ensure a good temporal consistency [59]. This

makes the algorithm’s performance drop significantly in

occlusion, motion blur and small target scenes, which be-

comes the bottleneck for MOT. We extend the spatial local

correlation from Section 3.2 to the temporal dimension, and

establish correlation for the targets in different frames. The

correlation between two frames can be viewed as the estab-

lishment of motion information learning. We also use this

correlation to enhance the feature representation, which can

increase the detection accuracy.
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Specifically, we establish multi-scale correlation be-

tween different frames, and use reference images as mem-

ory to enhance image features. This method helps tracker

overcome target occlusion and motion blur, and increases

the consistency of detection and identity features.

F̂q(x) =
∑

∀‖d‖
∞

<R

Cl(Fq,Fr,x,d)

(2R+ 1)2
Fr(x+ d) (5)

Cl(Fq,Fr,x,d) = Fl
q(x)

TFl
r(x+ d), ‖d‖∞ ≤ R (6)

Similar to the multi-head attention [43], we adopt the

embedded features and dot-product similarity. In our case,

we set the normalization factor as (2R + 1)2 and locally

aggregate features. This shrinked region design also comes

from the motion prior of the MOT scene. For the mini-

mal memory consumption and fastest run-time, we can only

save the previous features Ft−1 in the memory. For the

maximum accuracy, our long-term model saves the latest 5

frame image features by default.

3.5. Selfsupervised Feature Learning

In Section 3.2 and Section 3.4, we present how we

model the correlation in spatial and temporal dimension.

We can simply use the proposed correlation module as a

plugin module without explicitly adding constraints, sim-

ilar to the non-local module, which has shown significant

improvement. Here we investigate a multi-task learning

approach that imposes a semantic supervision from visual

object tracking [2] and self-supervised training from corre-

spondence flow [45] on correlation volumes.

Our correlation module is interpretable, measuring the

similarity between different objects. Actually, our method

intensively performs M×N siamese tracking operations [2]

to increases the discrimination. In this view, we can explic-

itly impose a tracking supervision. Specifically, we set up

the ground-truth label as

C̃l(Fq,Fr,x,d) =







1 if yq(x) = yr(x+ d)
0 if yq(x)! = yr(x+ d),

−1 if yq(x) < 0
(7)

where y is the identity label of the corresponding position

in feature maps. We ignore the position without objects

yq(x) < 0 and use a class-balanced cross-entropy loss [2].

Inspired by the recent advances of self-supervised track-

ing [45], we use colorization as a proxy task for training our

local correlation.

Îq(x) =
∑

∀‖d‖
∞

<R

Cl(Fq,Fr,x,d)

(2R+ 1)2
Ir(x+ d), (8)

we use the cross-entropy categorical loss after quantizing

the color-space into discrete categories [45].

3.6. Tracking Framework

We modify the FairMOT [58] backbone by adding cor-

relation module before the iterative deep aggregation mod-

ule [57]. Our model retains the detection and ReID

branches, and adding correlation loss in Sec. 3.5 for multi-

task learning. For the tracking inference, our tracker first

calculates the similarity between the detections of the cur-

rent frame and the previous trajectories according to Eq. (2),

and use the Hungarian algorithm [23] for finding the opti-

mal matching. The unmatched detections are used to ini-

tialize new trajectories. In order to reduce false positives,

we mark these new trajectories as “inactive” until the next

frame is matched again and confirmed as “active”. The un-

matched trajectories are set to the “lost” state. When the

continuous lost time tloss of a trajectory exceeds the thresh-

old τloss, we put it in the remove set. If there is a success

matching before removing, we restore the trajectory to the

active state. We use Kalman Filter [20] to model the pedes-

trian motion and keep the same settings in FairMOT [58].

4. Experiments

To demonstrate the advantages of the proposed cor-

relation tracker, we first compare the correlation module

with other relational reasoning methods [48, 46] and eval-

uate different settings to justify our design choices in Sec-

tion 4.2. Then we show that our correlation tracker out-

performs the state-of-the-art methods on four MOT bench-

marks [24, 30, 8] in Section 4.3. Finally, we visualize the

tracking trajectories in Section 4.4 and compare with other

motion prediction based trackers [64, 34, 32].

4.1. Implementation Details

Network Setup. The implementation and hyper-

parameters mostly follow [58], we adopt CenterNet [65]

detector with a variant of Deep Layer Aggregation (DLA-

34) [57] as backbone and utilize the iterative deep aggrega-

tion module (IDA) to recover a high-resolution feature map

with stride 4. We also add a 3 × 3 deformable convolu-

tion layer [66] before every upsampling stage. The back-

bone network is initialized with the parameters pre-trained

on COCO [26] and then pre-trained on CrowdHuman [39]

with self-supervised learning as FairMOT [58]. The pro-

posed correlation module is augmented before IDA module

to fuse multi-scale correlation. For the correlation module,

we set local region size R = 5 and dilation rate D = 2.

Training and Validation Datasets. For a fair com-

parison, we also use the default training datasets as Fair-

MOT [58]. There are six training datasets including

the ETH [11], CityPerson [62], CalTech [9], CUHK-

SYSU [52], PRW [63] and MOT17 [30]. ETH and CityPer-

son only provide box annotations, so we ignore the ReID

losses from these datasets. CalTech, CUHK-SYSU, PRW
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Table 1. Evaluation of correlation architecture on the MOT17 [30]

validation set.

Method
Two

frames
MOTA ↑ IDF1↑ ID Sw. ↓ Speed↑

baseline [58] ✘ 69.1% 72.9% 299 25.6

non-local [48] ✘ 67.7% 70.4% 311 16.60

CorrNet [46] ✘ 70.0% 73.3% 303 22.93

SLC (ours) ✘ 70.3% 75.8% 258 20.19

concat-raw [64] ✔ 69.3% 74.1% 336 23.99

concat-feat [34] ✔ 70.4% 74.0% 308 19.77

TLC (ours) ✔ 70.9% 74.7% 326 19.26

STLC (ours) ✔ 71.5% 76.1% 307 16.56

and MOT17 provide both box and identity annotations

which allows us to train both branches. We de-duplicate

the overlaps between ETH datasets and MOT16 for fair

comparison. For all validation experiments, we use the

six datasets mentioned above and the first half frames of

MOT17 as training, and the second half of MOT17 as the

validation set.

We train on an input resolution of 1088 × 608, which

yields an output resolution of 272 × 152. We use random

flip, random scaling (between 0.5 to 1.2), cropping, and

color jittering as data augmentation, and use Adam [22]

to optimize the overall objective. The learning rate is ini-

tialized as 1e−4 and then decayed to 1e−5 in the last 10

epochs. We train with a batch-size of 12 (on 2 GPUs) for

30 epochs. In the training phase, we sample 5 temporally

ordered frames within a random interval of less than 3.

Test Datasets and Evaluation Metrics. We eval-

uate the performance of our correlation tracker on the

2DMOT2015 [24], MOT16 [30], MOT17 [30], and

MOT20 [8]. In particular, 2DMOT2015 [24] contains 11

test videos. MOT16 [30] and MOT17 [30] contain same 7

test videos with part different annotations. The MOT20 [8]

consists of 4 test videos on extremely crowded scenes,

which makes them really challenging.

We adopt the standard metrics of MOT Benchmarks for

evaluation, including Multiple Object Tracking Accuracy

(MOTA) [21], ID F1 Score [37], Mostly tracked targets

(MT), Mostly lost targets (ML), the number of False Pos-

itives (FP), the number of False Negatives (FN), and the

number of Identity Switch (ID Sw.) [25]. The run time is

also provided and evaluated on a NVIDIA Tesla V100 GPU.

4.2. Ablation Studies

To elaborate on the effectiveness of the proposed ap-

proach, we conduct extensive ablation studies. First, we

give detailed correlation analysis with different settings to

justify our design choices, as presented in Table. 1. Next,

the tracking accuracy and runtime for different region sizes

of the correlation module is explored. Different building

blocks are compared to illustrate the effectiveness and effi-

ciency of the full correlation tracker.

Spatial correlation. In order to evaluate the effectiveness

Table 2. Ablation studies on MOT17 validation set. “LT” and

“Self” denote using the proposed long-term memory and self-

supervised loss, respectively.

Method MOTA ↑ IDF1↑ ID Sw. ↓ Speed↑

STLC 71.5% 76.1% 307 16.56

STLC+LT 72.1% 75.6% 311 15.62

STLC+LT+Track Loss 72.1% 76.1% 299 15.62

STLC+LT+Self Loss 72.4% 77.6% 301 15.62

of our spatial local correlation module (SLC), we compared

our baseline model [58] and two relation methods, the non-

local module [48] and CorrNet [46]. Directly use of non-

local brings performance degradation on MOT since non-

local module does not record the relative positional rela-

tionship between the targets and usually brings performance

drops on small object [54]. In addition, non-local method

has a huge overhead in memory and computation. In video

recognition, a learnable correlation filter network [46] is

proposed, and the grouped convolution is used to reduce

the amount of calculation. Our method has achieved simi-

lar MOTA compared to CorrNet, but has a large improve-

ment on IDF1, which comes from our multi-scale correla-

tion design. Compared with the baseline, our IDF1 has in-

creased by 2.9%, and identity switches have been reduced

by 15%, demonstrating the discrimination of our spatial cor-

relation. The Re-ID embeddings cannot easily distinguish

similar distractor, our correlation feature models geometric

information and is better suited for MOT.

Temporal correlation. In the field of video object detec-

tion [38], temporal and global information are commonly

used to improve performance [6]. The research of tem-

poral detection for MOT is still preliminary. Recently,

CenterTrack [64] concatenates the previous frame and the

current frame, and Chained-Tracker [34] concatenates the

high-level image features for two frames to fuse tempo-

ral information. We compare these two methods, dubbed

concat-raw and concat-feat, with our temporal local cor-

relation module (TLC). These two methods brought 0.2%
and 1.3% MOTA improvements over the single frame base-

line. Compared with these two methods, our temporal lo-

cal correlation module achieves consistent improvements in

both MOTA and IDF1. Our temporal correlation module

helps for the temporal feature alignment around frames. At

the same time, our method only adds a small overhead to

feature-level concatenation, which proves the efficiency of

our algorithm. Compared with the baseline FairMOT, em-

ploying both spatial and temporal local correlation (STLC)

yields a IDF1 of 76.1% , which brings 3.2% improvement.

Long-term dependences. We also analyze the perfor-

mance improvement with long-term correlation. Compared

with the method using two frames as the source cues, our

long-term method achieves a large improvement of 0.6%
MOTA, due to the increased capacity for object detections.

The improvement of MOTA also means an increase in the
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Figure 4. Effect of filter size R on speed and MOTA accuracy on

MOT17-val.

upper bound of our tracker.

Self-supervised learning. For correlation learning, ex-

plicit supervision is usually not imposed [48, 46]. We have

proposed two supervision methods in section 3.5. It can be

seen that the siamese tracking supervision imposed to train-

ing has achieved a relatively good improvement in IDF1.

There is no change in the run time of our algorithm, be-

cause the change in training loss does not change the infer-

ence processing. Self-supervised losses have also been ap-

propriately improved on both MOTA and IDF1 due to more

positive samples employed in correlation volume.

Choice of local region. Figure 4 shows the MOTA and

run time of our correlation module for different region size

R ∈ {1, 2, ..., 8}. As expected, a larger local size R can

cover a larger neighborhood while matching pixels, thus

yields a higher accuracy. But the improvements become

marginal beyond R = 5, possibly due to the low resolution

of the feature maps. Note that non-local module usually

doubles the run time of the backbone and the cost of explic-

itly computing optical flow [10] can be very high as well.

This shows that our correlation module is more efficient by

learning motion information from features directly. Region

size R = 5 yields a good trade-off between speed and ac-

curacy. The computation overhead is relatively small, com-

pared to the complexity of the whole detection networks.

4.3. Experiments on MOT Challenges

To extensively evaluate the proposed method, we com-

pare it with 8 state-of-the-art trackers, which cover most

of current representative methods. There are 2 joint detec-

tion and embedding methods (JDE [50] and FairMOT [58]),

2 multi-frame prediction methods (Tube TK [32] and

CTracker [34], 2 graph network based methods (MPN [5]

and JDMOTGNN [49]), 2 offset prediction based methods

(CenterTracker [64] and Tracktor++v2 [1]). The results are

summarized in Table 3.

2DMOT2015 [24]. The evaluation on 2DMOT2015 is

performed by the official toolkit. As shown in Table 3, our

correlation tracker outperforms the top private method of

2DMOT2015, (i.e., FairMOT [58]), by 1.7% in MOTA and

1.0% in IDF1. It is worth noting that the ID Switches are

decreased by 13%, which shows the robustness of our cor-

Table 3. Comparisons of our method with state-of-the-arts on

MOT benchmarks [24, 30, 8]. We set new state-of-the-art results

by a significant margin in terms of MOTA and IDF1. Our correla-

tion tracker is more accurate while running with high speed.

Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Hz ↑

2D MOT 2015 [24]

CorrTracker (ours) 62.3 65.7 49.0 12.9 6909 15728 513 17.9

JDMOTGNN [49] 60.7 64.6 47.0 10.5 7334 16358 477 2.4

FairMOTv2 [58] 60.6 64.7 47.6 11.0 7854 15785 591 30.5

Tube TK POI [32] 58.4 53.1 39.3 18.0 5756 18961 854 5.8

MPN [5] 51.5 58.6 31.2 25.9 7620 21780 375 6.5

Tracktor++v2 [1] 46.6 47.6 18.2 27.9 4624 26896 1290 1.8

MOT16 [30]

CorrTracker (ours) 76.6 74.3 47.8 13.3 10860 30756 979 14.8

FairMOTv2 [58] 74.9 72.8 44.7 15.9 10163 34484 1074 25.4

CTracker [34] 67.6 57.2 32.9 19.0 8934 48305 1897 6.8

Tube TK POI [32] 66.9 62.2 39.0 16.1 11544 47502 1236 1.0

POI [56] 66.1 65.1 34.0 20.8 5061 55914 805 9.9

Tracktor++v2 [1] 56.2 54.9 20.7 35.8 2394 76844 617 1.8

MOT17 [30]

CorrTracker (ours) 76.5 73.6 47.6 12.7 29808 99510 3369 14.8

FairMOTv2 [58] 73.7 72.3 43.2 17.3 27507 117477 3303 25.9

CenterTrack [64] 67.8 64.7 34.6 24.6 18498 160,332 3039 3.8

CTracker [34] 66.6 57.4 32.2 24.2 22284 160491 5529 6.8

Tracktor++v2 [1] 56.3 55.1 21.1 35.3 8866 235449 1987 1.8

MOT20 [8]

CorrTracker (ours) 65.2 69.1 66.4 8.9 79429 95855 5183 8.5

JDMOTGNN [49] 67.1 67.5 53.1 13.2 31913 135409 3131 0.9

FairMOTv2 [58] 61.8 67.3 68.8 7.6 103440 88901 5243 13.2

relation module. Moreover, our tracker is superior to the

recent end-to-end graph trackers JDMOTGNN [49]. Our

feature propagation approach can absorb both foreground

and background information, which improves our tracker

by 1.6% in terms of MOTA.

MOT16 [30] and MOT17 [30]. Table 3 reports the

evaluation results with the comparisons to recent prevailing

trackers on MOT16. The recent proposed FairMOTv2 [58]

achieves the second performance in MOTA and IDF1, while

our method ranks first with 76.6% MOTA, outperform-

ing other private approaches by a significant margin. Our

CorrTracker achieves the best performance on MOT17,

surpassing FairMOTv2 by 2.8% MOTA and 1.3% IDF1.

Moreover, the FN of our CorrTracker surpasses FairMOTv2

by 15%, which means nearly 20,000 new bounding boxes

are added to the association process. In this case, our

algorithm still maintains comparable or even superior ID

Switches, which actually proves that our method signifi-

cantly improves the tracking association. As reported in Ta-

ble 3, our CorrTracker, CenterTrack [64] and CTrack [34]

all use multi-frame cues to predict detections, our FN is

largely decreased by 30%.

MOT20 [8]. To further evaluate the proposed models,

we report the results on MOT20, which is more challenging

than MOT17. The final results is presented in the bottom

block of Table 3. Our CorrTracker achieves MOTA score of

65.2%, substantially outperforming FairMOTv2 [58] with

MOTA of 61.8%. Although our approach is an order of

magnitude faster than JDMOTGNN [49] in speed, our ac-

curacy is slightly worse due to the anchor-free design.
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Figure 6. Qualitative results of our correlation tracker on MOT17 [30] and MOT20 [8]. The color of each bounding box indicates the target

identity. The dotted line under each bounding box denotes the recent tracklet of each target. The proposed tracker predicts trajectories with

substantially robust and temporally consistent.

4.4. Visualization

We visualize the tracking trajectories for prior meth-

ods, i.e., the center offset [64] and multi-frame bounding

boxes [34, 32], in Figure 5. We observe that our corre-

lation map focuses on the entire context, while the reg-

ular appearance feature concentrates on the local region

of the target. Our correlation module improves the reli-

ability of recognition since it provides a global view of

the target. Methods based on offset prediction, e.g., Cen-

terTrack [64] and CTracker [34], can easily generate id

switches when encountered with complex object interac-

tions. Figure 6 shows qualitative results of our Correlation

Tracker on MOT17 and MOT20, the advantage over exist-

ing method is most pronounced on the robust to occlusion

and tiny objects.

5. Conclusion

In this work, we propose a novel correlation tracking

framework based upon the observation that the relational

structure helps to distinguish similar objects. Our corre-

lation module densely matches all targets with their local

context and learn a discriminative embeddings from the cor-

relation volumes. Furthermore, we show how to extend

the correlation module from spatial layout to the adjacent

frames for strengthening the temporal modeling ability. We

explore that self-supervised learning to impose a discrimi-

native constraint on the correlation volume, which explic-

itly predicts a instance flow. Extensive experiments on four

MOT challenges demonstrate that our CorrTracker achieves

state-of-the-art performance and is efficient in inference.
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