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Abstract

Continual learning usually assumes the incoming data

are fully labeled, which might not be applicable in real ap-

plications. In this work, we consider semi-supervised con-

tinual learning (SSCL) that incrementally learns from par-

tially labeled data. Observing that existing continual learn-

ing methods lack the ability to continually exploit the unla-

beled data, we propose deep Online Replay with Discrim-

inator Consistency (ORDisCo) to interdependently learn a

classifier with a conditional generative adversarial network

(GAN), which continually passes the learned data distribu-

tion to the classifier. In particular, ORDisCo replays data

sampled from the conditional generator to the classifier in

an online manner, exploiting unlabeled data in a time- and

storage-efficient way. Further, to explicitly overcome the

catastrophic forgetting of unlabeled data, we selectively

stabilize parameters of the discriminator that are impor-

tant for discriminating the pairs of old unlabeled data and

their pseudo-labels predicted by the classifier. We exten-

sively evaluate ORDisCo on various semi-supervised learn-

ing benchmark datasets for SSCL, and show that ORDisCo

achieves significant performance improvement on SVHN,

CIFAR10 and Tiny-ImageNet, compared to strong base-

lines.

1. Introduction

Current achievements of deep neural networks (DNNs)

heavily rely on large amounts of supervised data, which are

expensive and difficult to acquire simultaneously. There-

fore, the ability of continual learning (CL) on incremental

training samples becomes extremely important. Numerous

efforts have been devoted to CL, which aim to continually

learn new training samples without catastrophic forgetting

of the learned data distribution [29]. Existing CL methods

mainly fall in two categories: weight regularization meth-
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ods [29, 11, 1] and replay-based methods [29, 32, 35], and

have achieved promising results in purely supervised set-

tings.

In many real-world applications, nevertheless, the incre-

mental data are often partially labeled. For example, in face

recognition [33], a device continually obtains user data for

unlocking. These increasing data could be used to update

the model for better user experience. However, true labels

of the incoming data are usually unavailable unless the user

provides the password for verification. Since frequently

asking for labelling would affect user experience, most of

the input data are unlabeled. Similar scenarios occur in

fingerprint identification [46] and video recognition [20].

Though such scenarios are common in our daily life, they

are seldom studied in the CL literature. Therefore, in this

paper, we focus on the challenging and realistic task that

continually learns incremental partially labeled data. For

simplicity, we refer to it as semi-supervised continual learn-

ing (SSCL).

Different from supervised CL, SSCL provides insuffi-

cient supervision and a large amount of unlabeled data. As

is well known, unlabeled data are crucial in semi-supervised

scenarios [48] but are massive to exploit. In fact, we con-

duct preliminary experiments in SSCL and empirically ver-

ify that the representative CL methods including the weight

regularization methods [29, 11, 1] and the replay-based

methods [29, 32, 35] may not effectively exploit the unla-

beled data. Specifically, the joint training of a strong semi-

supervised classifier significantly outperforms the best of

existing CL strategies on the same classifier (see results in

Fig. 1 and Appendix A). We identify this as the catastrophic

forgetting of unlabeled data problem in SSCL.

To this end, we present deep online replay with discrim-

inator consistency (ORDisCo), a framework to continually

learn a semi-supervised classifier and a conditional gener-

ative adversarial networks (GAN) [23] together in SSCL.

Specifically, ORDisCo is formulated as a minimax adver-

sarial game [7], where a generator tries to capture the un-

derlying joint distribution of partially labeled data, and help
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the classifier make accurate predictions. At the same time,

the classifier also predicts pseudo-labels for unlabeled data

to improve the training of the conditional generator. In con-

trast to previous work [35, 43, 28], ORDisCo replays data

sampled from the conditional generator to the classifier in

an online manner, which is time- and storage-efficient to

exploit the large amount of unlabeled data in SSCL. Fur-

ther, to explicitly overcome the catastrophic forgetting of

unlabeled data, we selectively stabilize parameters of the

discriminator that are important for discriminating the pairs

of old unlabeled data and their pseudo-labels predicted by

the classifier.

We follow the New Instance and New Class scenarios of

CL [29] to split commonly used SSL benchmark datasets

[16, 27], including SVHN, CIFAR10 and Tiny-ImageNet,

as the evaluation benchmarks for SSCL. To simulate the

practical scenarios, all methods continually receive a batch

of data with a few labels during training. Extensive evalua-

tions on such benchmarks show that ORDisCo can signifi-

cantly outperform strong baselines in SSCL.

In summary, our contributions include: (i) We consider

a realistic yet challenging task called semi-supervised con-

tinue learning (SSCL). We provide a systematical study of

existing CL strategies and show that the catastrophic for-

getting of unlabeled data is the key challenge in SSCL.

(ii) We present ORDisCo to continually learn a classifier

and a conditional GAN in SSCL. The generator replays

data in an online manner with a consistency regularization

on the discriminator to address the catastrophic forgetting

of unlabeled data; (iii) We evaluate ORDisCO on various

benchmarks and demonstrate that ORDisCO significantly

improves both classification and conditional image genera-

tion over strong baselines in SSCL.

2. Related Work

Continual learning (CL) aims to address catastrophic

forgetting in DNNs on a dynamic data distribution [29],

which requires DNNs to learn from incoming tasks or train-

ing samples while retaining previously learned data distri-

bution. Current efforts in CL mainly consider the setting

where large amounts of annotated data are available for

training. Regularization-based methods selectively penal-

ize changes of the parameters to maintain the learned data

distribution, e.g., EWC [11], SI [47] and MAS [1]. While,

replay-based methods store a small memory buffer to re-

play representative training samples [32, 4]. To address

the imbalance between the small memory buffer and large

amounts of training samples, BiC [44] splits an equal num-

ber of samples from both the memory buffer and new train-

ing data as a validation set to train an additional linear layer

for bias correction, while the Unified Classifier [8] regu-

larizes the cosine similarity of features in an unsupervised

fashion to normalize the prediction. [39] maintains a topol-

ogy of learned feature space, but it’s difficult to learn such

a CL-based topology from semi-supervised data. [19] pro-

vides a more effective strategy to select the memory buffer

from large amounts of labeled data, which is unavailable

in SSCL. To better recover the learned data distribution,

generative replay strategies continually learn a generative

model to replay generated data [35, 43, 28]. However, con-

ditional generation for CL heavily relies on large amounts

of labeled data to assign correct labels. Thus, the extension

to large amounts of unlabeled data with only a few labels

is highly nontrivial. Also, the generative models are often

offline saved in CL, which results in additional time and

storage cost.

CL of limited supervised data Few-shot continual or

incremental learning (FSIL) [10, 40, 3] incrementally learns

new classes from a small amount of labeled data, which

generally requires a pretraining step on large amounts of

base tasks and training samples for few-shot generalization.

Unsupervised continual learning (UCL) [31, 36] continu-

ally learns new classes from large amounts of unlabeled

data. However, FSIL and UCL only make use of a small

amount of labeled data or large amounts of unlabeled data,

both of which are easy to acquire in many real-world appli-

cations. Also, both FSIL and UCL mainly consider learning

new classes from a fixed number of training samples, rather

than continually learn new instances of the learned classes.

By contrast, our setting of SSCL aims to continually learn

new instances of the learned classes and new classes from

partially labeled data, which is more realistic in real-world

scenarios. [17] continually learns partially labeled new in-

stances of fixed classes through stacking generators and dis-

criminators that significantly expand the model. While, we

focus on the setting that the model should maintain a rel-

atively constant size, which is a common assumption for

continual learning.

Semi-supervised learning (SSL) provides a powerful

framework to leverage unlabeled data from a small amount

of labels. Pseudo-Labeling (PL) [14] is an early work to as-

sign the prediction of an unlabeled data that is higher than

a threshold as its pseudo-label to augment the labeled data.

Many more recent works of SSL on discriminative model

define a regularization term to learn the distribution of unla-

beled data. Consistency regularization, e.g., PI-model [13],

makes use of the stochastic predictions of a network and

adds a loss term to regularize the consistency of predic-

tions on different passes of the same data. Mean teacher

(MT) [41] enforces the predictions of the classifier closer

to its exponential moving average on the same batch of un-

labeled data. Virtual Adversarial Training (VAT) [24] adds

adversarial perturbations to the unlabeled data and enforces

the predictions to be the same as the original one. Graph

Laplacian regularization [6] penalizes the variation of la-

bels on the graph of manifold structure. SSL on GAN is
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generally built on a two-network architecture, that the dis-

criminator is responsible for both sample quality and label

prediction, including CatGAN [38], Improved-GAN [34],

CGAN [23] and its variants [30, 26]. Triple-GAN [16] ap-

plies a triple-network architecture that includes a classifier

taking the role of label prediction. ISL-GAN [42] dynam-

ically assigns more virtual labels to unlabeled data during

joint training of all the partially labeled data together. How-

ever, existing efforts of SSL on both discriminative model

and GAN only consider a static data distribution rather than

a dynamic one.

3. Semi-supervised Continual Learning and Its

Challenges

In this section, we first introduce the problem formu-

lation of continual learning (CL) of incremental semi-

supervised data, i.e. semi-supervised continual learning

(SSCL). Then, we provide a systematic study of existing

representative continual learning methods in SSCL. They

suffer from catastrophic forgetting due to the poor usage of

large amounts of unlabeled data.

3.1. Problem Formulation

Compared with supervised CL, SSCL only provides

a small amount of labeled data and a large amount of

unlabeled data, which is key to achieve good perfor-

mance. Formally, when training on a task t, SSCL

is a special continual learning setting on a partially la-

beled dataset Dt =
S[B]

b=0 D
t
b with B batches, where

Dt
b = {(xi, yi)}i2bl

S

{(xj)}j2bul
is a semi-supervised

batch consisting of a labeled sub-batch bl and an unlabeled

sub-batch bul. Dt
b is introduced when training on the cur-

rent batch b and the performance on the task is evaluated

after learning each batch.

The above SSCL setting is similar to continual learning

of New Instance [29], while the dataset Dt for SSCL only

consists of small amounts of labels rather than all the labels.

We consider continual learning of New Class [29] with par-

tially labeled data as a natural extension, where a collection

of T semi-supervised datasets D =
S[T ]

t=0 D
t is sequentially

learned. Dt is provided during training on the task t, which

includes several classes. After learning each task, all of the

classes ever seen are evaluated without access to the task

labels, i.e. the single-head evaluation [5].

3.2. A Systematic Study of Existing CL Methods

We adapt the representative continual learning strategies,

including weight regularization methods [29] and memory

replay ones [29], to SSCL by considering unlabeled data

and provides a systematical analysis.

In particular, we conduct extensive SSCL experiments

on the SVHN dataset, where we equally split the training set

Figure 1. Baselines that combine CL strategies to address SSCL.

JT: Joint training of all the training samples ever seen. ST: Se-

quential training on the incremental data; SMB: ST with replaying

the supervised data ever seen. SMB+UMB: SMB with an unsu-

pervised memory buffer of 10000 images to replay unlabeled data.

Weight regularization methods (EWC, MAS and SI) are imple-

mented on only the supervised loss (-sl) and both the supervised

loss and the unsupervised loss (-sl+ul). The gap between JT and

SMB is around 9.70% in average, which is caused by the catas-

trophic forgetting of unlabeled data.

into 30 batches with 3 labels per class in each batch. No-

tably, we learn various strong semi-supervised classifiers,

including MT [41], VAT [24], PL [14] and PI [13] models

in SSCL. We consider four learning strategies for all clas-

sifiers to verify the existence of catastrophic forgetting and

analyze the underling reason, as follows:

• Joint Training (JT): The classifier is jointly trained

on all the partially labeled data ever seen.

• Sequential Training (ST): The classifier is sequen-

tially trained on the incremental partially labeled data.

• Weight Regularization: Representative approaches

of weight regularization, including SI [47], MAS [1]

and EWC [11], are implemented to the classifier to se-

lectively stabilize parameters.

• Memory Replay: A memory buffer is implemented

to replay old training data. Classical methods [32, 4]

in CL use mean-of-feature to select samples, while

in SSCL we do not have sufficient labels to perform

selection. Therefore, we select data through uniform

sampling, which is indeed competitive to existing se-

lection methods as analyzed in [5] (See empirical re-

sults in Appendix A).

We extensively search the hyperparameters of all base-

lines and summarize the best results. For details like the

5385



(a) UMB (b) ORDisCo

Figure 2. Data coverage of an unsupervised memory buffer, i.e.

UMB (a), and the samples generated from ORDisCo (b). OR-

DisCo has a less storage cost but achieves a better result.

search space, we refer the readers to Appendix B. We com-

pare the performance of different learning strategies based

on the MT classifier in Fig. 1. The results of other classifiers

are similar and detailed in Appendix A.

In Fig. 1, it can be seen that ST on the incremental par-

tially labeled data significantly underperforms JT, suggest-

ing the existence of catastrophic forgetting. Besides, sim-

ply adopting weight regularization methods [29, 11, 1, 47]

on a semi-supervised classifier cannot address the issue in

SSCL. We hypothesize that the regularization of parameter

changes in such methods limits the learning of incremental

data, see more experiments and detailed discussion in Ap-

pendix B. A potential future work can be designing proper

regularization terms in SSCL.

In comparison, using a supervised memory buffer

(SMB), whose maximum size is of 900 images, to replay

labeled data [29, 5] can effectively reduce the gap from JT

but still has a large space to improve. Further, we evaluate

a strategy with an additional unsupervised memory buffer

(SMB+UMB), whose maximum size is of 10,000 images,

to replay unlabeled data. Indeed, the extra buffer is about

twice the size of a typical generator used in our method.

Given an extra large memory buffer for unlabeled data,

however, we observed that the performance of the mem-

ory replay approach cannot be further improved, implying

that the unlabeled data are not fully exploited. In fact, we

visualize the coverage of the UMB on the distribution of all

the training data using t-SNE [22] embedding (see details

in Appendix A). As shown in Fig. 2 (a), although the UMB

has already stored around 10% data of the entire dataset, it

still cannot cover the distribution of training data very well.

Therefore, a common issue of existing CL strategies in

the semi-supervised scenarios is that they cannot effectively

capture and exploit the distribution of unlabeled data. We

identify this as the catastrophic forgetting of unlabeled data

problem, which is challenging because the incremental un-

labeled data are massive and lack annotations. This moti-

vates us to propose two new strategies to continually learn

a generative model that can successfully capture the data

distribution (see Fig. 2, b) given partially labeled data.

Figure 3. Deep online replay with discriminator consistency (OR-

DisCo). The partially labeled data are incrementally learned in the

interplay of C, G, and D. To mitigate catastrophic forgetting and

better exploit the unlabeled data, we implement ¨ online semi-

supervised generative replay in C and ≠ stabilization of discrimi-

nation consistency in D. z and y0 are the noise and the labels for

conditional sampling, where the generated samples are applied as

both labeled and unlabeled data for replay. Here, sl and ul stand

for supervised and unsupervised losses, respectively.

4. Method

Based on the empirical analysis above, in this section, we

first describe our framework that interdependently trains a

classifier, a discriminator and a generator on the incremen-

tal semi-supervised data in Sec.4.1. Then, in Sec.4.2, we

present two new strategies to mitigate catastrophic forget-

ting of the unlabeled data.

4.1. Conditional Generation on Incremental Semi-
supervised Data

Different from existing generative replay methods [35,

43, 28], we consider a SSCL setting where partially la-

beled data are given. Inspired by the state-of-the-art semi-

supervised learning (SSL) GAN [16, 15], we build up a

triple-network structure that continually learns a classifier

together with a conditional generative adversarial network

(GAN) to better exploit the unlabeled distribution from a

few labeled data in SSCL. Both the classifier and the con-

ditional generator produce “fake” data-label pairs and the

discriminator focuses on discriminating if a data-label pair

is real or fake. Compared to other SSL GANs [38, 34, 23],

our framework is theoretically optimal under a nonparamet-

ric assumption and ensures that the GAN to capture the data

distribution and the classifier to make predictions actually

help each other [16, 15].

Formally, the entire model includes a classifier C, a gen-

erator G and a discriminator D. Correspondingly, the opti-

mization problem is to learn three groups of parameters as
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{✓C , ✓G, ✓D}. In such a triple-network architecture, C tries

to improve its ability of classification and generate pseudo-

labels for the conditional generation in D and G. While, D
and G continually learn and recover the data distributions

seen in the incremental semi-supervised data. The general

framework is shown in Fig. 3 and we will describe the ob-

jective function for each component below.

To learn a classifier C from partially labeled data, the

loss functions can be generally defined as a supervised loss

Lsl(✓C) and an unsupervised loss Lul(✓C). Since our mo-

tivation is to continually capture and exploit the unlabeled

data, we build up our method with a supervised memory

buffer smb to replay a few labeled data. We define Lsl(✓C)
and Lul(✓C) as a cross entropy term and a consistency reg-

ularization term [41]:

LC,pl(✓C) = Lsl(✓C) + Lul(✓C), (1)

Lsl(✓C) = Ex, y⇠bl[smb [�y log C(x)], (2)

Lul(✓C) = Ex⇠bul,✏,✏0 [k C(x, ✏)� C 0(x, ✏0) k2], (3)

where C 0 is the exponential moving average of C [41], k
· k2 is the square of the l2-norm, and ✏ and ✏0 denote two

different random noises, e.g. dropout masks. We mention

that there are other options of unlabeled losses for SSL such

as [24, 13, 37]. We leave a systematical study of this for

future work.

Next, we design a semi-supervised discriminator, which

aims to distinguish if a data-label pair is from the labeled

dataset or is a fake one:

LD,pl(✓D) = Ex, y⇠bl[smb [log(D(x, y))]

+ ↵Ey0⇠py0 ,z⇠pz
[log(1�D(G(z, y0), y0))]

+ (1� ↵)Ex⇠bu [log(1�D(x,C(x)))],

(4)

where the sampling distribution of label y0 is uniform py0 =
U{1, 2, ..., k} among all the k classes ever seen and the

noise z is Gaussian pz = N(0, 1). The first two terms are

the regular loss functions for conditional GAN, computed

on the labeled training data and the generated data, respec-

tively. While the third term is computed on the unlabeled

sub-batch bul with the pseudo-labels predicted by C. We

assign ↵ and 1 � ↵ as the coefficients of the last two terms

to keep balance with the first term.

Finally, the generator applies a regular loss function for

conditional generation as follows:

LG(✓G) = Ey0⇠py0 ,z⇠pz
[log(1�D(G(z, y0), y0))]. (5)

4.2. Improving Continual Learning of Unlabeled
Data

In such a framework, after training on a semi-supervised

batch bi, C learns the distribution of bi,ul from bi,l for clas-

sification while G and D learns that for conditional gen-

eration. When accommodating for the next batch bi+1,

Figure 4. Conditional samples in SSCL on SVHN (after learning 5

batches of partially labeled data). (a) Training data in SVHN. (b)

Conditional samples from a conditional GAN baseline with replay

of supervised data (SMB). (c) Conditional samples from ORDisCo

with the same SMB. Each row has a fixed label. Our method out-

performs the baseline in terms of label consistency because of the

two strategies proposed.

Table 1. Time and storage complexity of different generative re-

play strategies. B is the total number of batches to learn.

Strategy (1) [28] Strategy (2) [35, 43] ORDisCo

Algorithm offline offline online

Time O(B) O(B2) O(B)

Storage O(B) O(1) O(1)

all of the three networks adjust the learned parameters of

the previous batch and suffer from catastrophic forgetting,

especially on unlabeled data. Because unlabeled data are

key to solve semi-supervised tasks, without effective strate-

gies to continually learn the unlabeled data from limited la-

bels, the generative model would fail to assign correct labels

to the conditional samples during the incremental learning

(see Fig. 4 for empirical evidence). To this end, we pro-

pose two strategies: online semi-supervised generative re-

play and stabilization of discrimination consistency.

First, we propose a time- and storage-efficient strategy

of online semi-supervised generative replay to improve CL

of unlabeled data in C. Existing generative replay meth-

ods [35, 43, 28, 45, 18] often offline sample generated data

or embedding, or save the old generators, which results in

additional time and storage cost. Let’s consider two main

strategies for offline generative replay: (1) All old genera-

tors learned on each task or batch are saved, and replay con-

ditional samples to a classifier [28]; and (2) After learning

each task or batch, the generator is saved. In the next task

or batch, the generator replays conditional samples with the

new training samples to update the generator and the clas-

sifier [35, 43, 45, 18]. In contrast, we online generate con-

ditional samples from G and replay them to C rather than

offline save a model for replay. As shown in Table 1, our

online strategy is more time- and storage-efficient to exploit

the large amounts of unlabeled data in SSCL (See detailed

calculation in Appendix E). The conditional samples are

used as both labeled data and unlabeled data to fully exploit

the learned data distribution:

LC(✓C) = LC,pl(✓C) + LG!C(✓C), (6)

5387



where the first term is defined in Eqn. 1 and the second term

exploits the data sampled from the generator in an online

manner, as follows:

LG!C(✓C) = Ey0⇠py0 ,z⇠pz
[�y0 log C(G(z, y0))]

+ Ey0⇠py0 ,z⇠pz,✏,✏0 [k C(G(z, y0), ✏)� C 0(G(z, y0), ✏0) k2],

(7)

which is in analogy to the losses of labeled and unlabeled

training data in Eqn. 2, 3.

Further, to explicitly mitigate catastrophic forgetting of

unlabeled data in D, we add a regularization term to se-

lectively penalize changes of the parameters ✓D from the

old parameters ✓⇤D learned from the previous batches 1 : b,
depending on their contributions to the consistency of dis-

criminating data-label pairs:

LD(✓D) = LD,pl(✓D) + �
X

i

⇠1:b,i(✓D,i � ✓⇤D,i)
2, (8)

where the first term is defined in Eqn. 4 and ⇠1:b,i is the

strength of penalty on the changes of parameter i. It is com-

puted as

⇠1:b,i = ((b� 1)⇥ ⇠1:b�1,i + ⇠b,i)/b, (9)

where

⇠b,i = Ex⇠bu



k
@ k (D(x,C(x)) k2

@✓D,i

k

�

. (10)

After training on each batch b, we measure ⇠b,i through

the expected norm of gradients on each parameters to the

squared l2-norm of discriminating the pairs of unlabeled

data and their pseudo-labels predicted by C. Then we up-

date ⇠1:b,i by its average. Therefore, the changes of pa-

rameters will be penalized if they change the predictions of

data-label pairs on the old unlabeled batches and the learned

pseudo-labels. Note that, since the regularization is in a re-

weighted weight decay form, which is non-negative and is

zero in expectation given an optimal discriminator, the regu-

larization won’t hurt the consistency and convergence given

different initialization and data sequences.

5. Experiment

In this section, we first introduce the benchmark dataset

and experiment settings of SSCL. Then we show the results

of our method and the baselines on SSCL.

5.1. Experiment Setup

Dataset: SVHN [25] is a dataset of colored digits, in-

cluding 73,257 training samples and 26,032 testing samples

of size 32 ⇥ 32. CIFAR10 [12] is a dataset of 10-class col-

ored images with 50,000 training samples and 10,000 test-

ing samples of size 32 ⇥ 32. Tiny-ImageNet is a dataset

of 200-class natural images with 500, 50, 50 samples per

class for training, validating and testing, respectively. We

randomly choose 10 or 20 classes of images from Tiny-

ImageNet, resized to 32 ⇥ 32 or 64 ⇥ 64. For the exper-

iment of New Instance, we randomly split the training im-

ages of SVHN, CIFAR10 and Tiny-ImageNet into 30, 30

and 10 batches. Then we allocate a small amount of labels

to each batch as the benchmark of SSCL. To simplify the

notation, the benchmarks are denoted as “dataset-(number

of labels / class / batch)”, including SVHN-1, SVHN-3,

CIFAR10-5, CIFAR10-13 and Tiny-ImageNet-5. A model

incrementally learns the semi-supervised batch and is eval-

uated on the test set after training on each batch. For the

experiment of New Class, we use the same semi-supervised

splits as New Instance, but construct the sequence as 5 bi-

nary classification tasks, where the partially labeled data of

two new classes are provided in each task. We follow the

single-head evaluation [5] that all of the classes ever seen

are evaluated without access to the task labels.

Architecture: In our preliminary experiments (Fig. 1,

Appendix A), the classifiers use a Wide ResNet architec-

ture (WRN-28-2), which is widely applied in SSL [27].

To accelerate training, ORDisCo applies a much simpli-

fied classifier similar to [15], including 9 convolution lay-

ers without residual connections. The simplified classi-

fier achieves a comparable performance on the incremental

semi-supervised data as WRN-28-2 (Fig. 1, Appendix A).

Our generator and discriminator use a similar architecture

as [15], with spectral norm to stabilize training. We keep

ORDisCo and all the baselines that directly compare with

ORDisCo using the same architecture for fair comparison.

Please see Appendix G for hyperparameters of ORDisCo.

Baselines: All the SSL methods in our preliminary ex-

periment (Fig. 1, Appendix A) follow the same imple-

mentation as [27], validated in Appendix B. Because mean

teacher (MT) [41] can be easily extended to many recent

works [9, 2, 21], we choose it as the base model of SSL

classifier in ORDisCo. We compare ORDisCo with the

strongest baseline in the preliminary experiment, that the

classifier is accessible to the labeled data ever seen through

a supervised memory buffer (SMB). Since our motivation

is to effectively capture and exploit the unlabeled data, we

consider two extensions of SMB: (1) We combine SMB

with an unsupervised memory buffer (UMB) of a similar

size as our generator; and (2) We implement the Unified

Classifier [8], the state-of-the-art method of incremental

learning with memory replay, to better exploit the unsuper-

vised memory buffer (UMB+UC). The Unified Classifier

aims to address the imbalance between the small memory

buffer and large amounts of training samples through regu-

larizing the cosine distance of feature extractors in an unsu-

pervised fashion to unify the prediction.
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Table 2. Averaged accuracy (%) of SSCL on Tiny-ImageNet. We

randomly split training images of Tiny-ImageNet into 10 batches

with equal number of labels (5 labels / class) in each batch. Here

we show the results on the earlier 5 batches.

Method Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

10-class

32⇥ 32

SMB 43.00 46.60 55.40 63.00 59.80

SMB+UMB 43.80 47.60 55.20 62.20 63.40

ORDisCo 45.20 54.40 59.60 65.40 69.20

20-class

32⇥ 32

SMB 24.90 32.50 32.80 38.70 42.30

SMB+UMB 25.20 33.10 33.60 37.70 42.60

ORDisCo 25.20 33.30 36.50 42.00 45.10

10-class

64⇥ 64

SMB 52.00 53.00 58.60 66.00 68.40

SMB+UMB 51.60 57.00 62.80 68.40 68.80

ORDisCo 51.20 60.20 65.20 70.40 72.80

Table 3. Ablation study on SVHN-1 and CIFAR10-5. Both online

semi-supervised generative replay (Replay) and regularization of

discrimination consistency (Reg) substantially improve SSCL.

SVHN-1 CIFAR10-5

Method 15 Batch 30 Batch 15 Batch 30 Batch

SMB 38.08 73.32 59.61 67.18

ORDisCo (+Replay, -Reg) 31.14 84.66 64.38 71.69

ORDisCo (+Replay, +Reg) 55.07 85.52 66.58 73.13

5.2. SSCL of New Instance

We report the performance of ORDisCo and other base-

lines during SSCL of 30 incremental batches in Fig. 5

(SVHN-1 and CIFAR10-5) and Appendix C (SVHN-3

and CIFAR10-13). ORDisCo significantly outperforms

other baselines, particularly when the numbers of la-

bels are smaller, i.e. SVHN-1 and CIFAR10-5. Com-

pared with SMB, an additional unsupervised buffer (UMB)

slightly improves the performance of SSCL on SVHN-

3 and CIFAR10-13, but results in overfitting on SVHN-1

and CIFAR10-5 where the labeled data are extremely lim-

ited (See empirical results and analysis of the overfitting

in Appendix A). The Unified Classifier better exploits the

UMB through balancing the predictions on UMB and large

amounts of unlabeled data, and thus slightly improves its

performance. Also, the performance is only slightly in-

creased by using a much larger UMB (See details in Ap-

pendix C). By contrast, ORDisCo can much better exploit

the unlabeled data and substantially improve SSCL. We

then evaluate ORDisCo on Tiny-ImageNet-5 with larger

number of classes and larger-scale images in Table 2. Com-

pared with SMB and SMB+UMB, ORDisCo achieves a

much better performance on 10-class and 20-class of size

32⇥32 and 10-class of size 64⇥64, through effective usage

of the incremental unlabeled data to improve classification.

Note that the reported performance is the result after

training on each semi-supervised batch till convergence.

Therefore, the outstanding performance of ORDisCo on

limited partially labeled data, i.e. smaller numbers of labels

and semi-supervised batches, indicates that ORDisCo can

quickly learn a usable model rather than waiting for more

data to be collected.

Figure 5. Averaged accuracy (%) of SSCL on SVHN-1 and

CIFAR10-5. ORDisCo (Ours) improves SMB by 12.20% and

5.95% at the final batch on SVHN-1 and CIFAR10-5, respectively.

UMB: An unsupervised memory buffer of a similar size as our

generator; UC: Using the unified classifier to exploit UMB.

5.3. Ablation Study and Analysis

Next, we analyze why ORDisCo improves continual

learning of unlabeled data. ORDisCo enables a generative

model to continually learn conditional generation from in-

cremental semi-supervised data. Thus, the conditional gen-

erator of ORDisCo can much better cover the training data

distribution than an unsupervised memory buffer of a simi-

lar size (Fig. 2). We make the ablation study (SVHN-1 and

CIFAR10-5 in Table 3, SVHN-3 and CIFAR10-13 in Ap-

pendix C) to validate the effects of the proposed strategies

in ORDisCo, that both the online semi-supervised genera-

tive replay (refer to as Replay) and the regularizer to sta-

bilize discrimination consistency (refer to as Reg) can sig-

nificantly improve SSCL. The ablation study shows that the

effects of the regularization on discrimination consistency

are much more significant when the data sources are lim-

ited, i.e. fewer labels and semi-supervised batches.

To verify how the discrimination consistency improves

SSCL, we use a jointly trained classifier on the semi-

supervised dataset, which achieves considerable perfor-

mance of classification (94.38% for SVHN, 87.37% for CI-

FAR10), to evaluate conditional samples. We present the
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Table 4. Averaged accuracy (%) of a jointly trained classifier

to predict conditional samples learned from earlier batches on

SVHN-1 and CIFAR10-5, where regularization of discrimination

consistency (Reg) significantly improves generative replay.

SVHN-1 CIFAR10-5

Method 5 Batch 15 Batch 5 Batch 15 Batch

SMB 27.37 51.45 43.37 70.64

ORDisCo (+Replay, -Reg) 16.95 37.89 49.98 68.67

ORDisCo (+Replay, +Reg) 25.46 64.93 64.15 81.13

Table 5. Averaged accuracy (%) of SSCL of New Class. We fol-

low the same semi-supervised splits as New Instance on SVHN-1,

CIFAR10-5, or 10-class Tiny-ImageNet-5 of the size 32× 32, but

construct a sequence of 5 binary classification tasks.

Split Method Task 1 Task 2 Task 3 Task 4 Task 5

SVHN-1

SMB 81.80 50.73 39.77 40.41 35.46

SMB+UMB 83.30 50.53 35.92 33.00 37.35

SMB+UMB+UC 83.04 53.10 36.18 36.83 38.33

ORDisCo 82.72 54.69 60.68 56.18 53.79

CIFAR10-5

SMB 95.78 74.54 61.63 56.85 55.12

SMB+UMB 95.50 76.68 63.22 62.34 60.52

SMB+UMB+UC 95.67 77.94 65.95 63.33 62.43

ORDisCo 95.60 77.23 68.62 66.49 65.91

TinyImageNet-5

SMB 88.50 75.17 67.17 67.58 65.47

SMB+UMB 87.83 80.17 68.33 71.33 67.13

SMB+UMB+UC 88.67 79.08 69.94 71.13 69.87

ORDisCo 88.50 83.17 70.56 73.92 71.07

accuracy of the classifier to predict conditional samples on

the earlier 5 and 15 batches of SVHN-1 and CIFAR10-5,

which include only a few labels per batch. As shown in

Table. 4, the predictions on the conditional samples of OR-

DisCo are significantly better than the one of a sequentially

trained conditional GAN with SMB. Because the quality

of conditional samples is generally poor when the partially

labeled data are limited, replay of such conditional sam-

ples to the classifier in ORDisCo will decrease its perfor-

mance to predict pseudo-labels of unlabeled data, and fur-

ther interfere with conditional generation. While, the regu-

larizer on discrimination consistency largely alleviates this

issue through stabilizing the learned distribution of unla-

beled data in the discriminator, which is critical to SSCL.

5.4. SSCL of New Class

ORDisCo can be naturally extended to incremental

learning of New Class in semi-supervised scenarios. We

consider an incremental dataset consisting of 5 binary clas-

sification tasks, where the partially labeled data of two new

classes are introduced in each task. We keep the total num-

ber of labels the same as the one used in New Instance.

As shown in Table 5, ORDisCo significantly outperforms

SMB, SMB+UMB and SMB+UMB+UC through more ef-

fective usage of the unlabeled data.

5.5. Conditional Generation in SSCL

We present the conditional samples from ORDisCo and

a sequentially trained conditional GAN with SMB during

SSCL in Fig. 6 (See complete conditional samples of OR-

(a) SVHN-3

(b) CIFAR10-13

Figure 6. Conditional generation in SSCL. We show the condi-

tional samples of ‘0’ in SVHN-3 and ‘horse’ in CIFAR10-13. The

column denotes the number of incremental batches learned by the

conditional generator to generate images in each row. Starting

from the sixth batch (the red box), ORDisCo can generate high-

quality conditional samples, significantly better than the SMB

baseline.

DisCo in Appendix D), where conditional generation is im-

proved from incremental learning of partially labeled data.

Due to more effective usage of unlabeled data, ORDisCo

can generate high-quality conditional samples in SSCL, sig-

nificantly better than the SMB baseline.

6. Conclusion

In this work, we provide a systematic analysis of semi-

supervised continual learning, which is a realistic yet chal-

lenging setting without extensive study. Then we propose a

novel method to continually learn a conditional GAN with a

classifier from partially labeled data. Extensive evaluations

on various benchmarks show that our method can effec-

tively capture and exploit the unlabeled data in both classi-

fication tasks and conditional generation. Since our method

can be a plug-and-play approach for semi-supervised con-

tinual learning, a wide range of semi-supervised learning

approaches for classification and conditional generation can

be flexibly implemented into the framework, which is our

further direction. Another further work is to use ORDisCo

on Mindspore1, a new deep learning computing framework.
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