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Abstract

Recent success in casting Non-rigid Structure from Mo-

tion (NRSfM) as an unsupervised deep learning problem

has raised fundamental questions about what novelty in

NRSfM prior could the deep learning offer. In this pa-

per we advocate for a 3D deep auto-encoder framework to

be used explicitly as the NRSfM prior. The framework is

unique as: (i) it learns the 3D auto-encoder weights solely

from 2D projected measurements, and (ii) it is Procrustean

in that it jointly resolves the unknown rigid pose for each

shape instance. We refer to this architecture as a Pro-

custean Autoencoder for Unsupervised Lifting (PAUL), and

demonstrate state-of-the-art performance across a number

of benchmarks in comparison to recent innovations such as

Deep NRSfM [21] and C3PDO [32].

1. Introduction

Inferring non-rigid 3D structure from multiple unsyn-

chronized 2D imaged observations is an ill-posed problem.

Non-Rigid Structure from Motion (NRSf M) methods ap-

proach the problem by introducing additional priors – of

particular note in this regards are low rank [10, 6, 3] and

union of subspaces [25, 44] methods.

Recently, NRSfM has seen improvement in performance

by recasting the problem as an unsupervised deep learning

problem [32, 8, 33]. These 2D-3D lifting networks have

inherent advantages over classical NRSf M as: (i) they are

more easily scalable to larger datasets, and (ii) they al-

low fast feed-forward prediction once trained. These im-

provement, however, can largely be attributed to the end-

to-end reframing of the learning problem rather than any

fundamental shift in the prior/constraints being enforced

within the NRSfM solution. For example, both Cha et

al. [8] and Park et al. [33] impose a classical low rank con-

straint on the recovered 3D shape. It is also well under-

stood [10, 21, 44, 25] that such low rank priors have poor

performance when applied to more complex 3D shape vari-

ations.

The NRSfM field has started to explore new non-rigid

shape priors inspired by recent advances in deep learning.

Kong & Lucey [21] proposed the use of hierarchical spar-

sity to have a more expressive shape model while ensuring

the inversion problem remains well conditioned. Although

achieving significant progress in several benchmarks, the

approach is limited by the somewhat adhoc approximations

it employs so as to make the entire NRSfM solution real-

izable as a feed-forward lifting network. Such approxima-

tions hamper the interpretability of the method as the final

network is a substantial departure from the actually pro-

posed objective. We further argue that this departure from

the true objective also comes at the cost of the overall effec-

tiveness of the 2D-3D lifting solution.

In this paper we propose a prior that 3D shapes aligned

to a common reference frame are compressible with an un-

dercomplete auto-encoder. This is advantageous over pre-

vious linear methods, because the deeper auto-encoder is

naturally capable of compressing more complicated non-

rigid 3D shapes. What makes learning such an auto-encoder

challenging is: (i) it observes only 2D projected measure-

ments of the non-rigid shape; (ii) it must automatically

resolve the unknown rigid transformation to align each

projected shape instance. We refer to our solution as a

Procustean Autoencoder for Unsupervised Lifting (PAUL).

PAUL is considered unsupervised as it has to handle un-

known depth, shape pose, and occlusions. Unlike Deep

NRSfM [21], the optimization process of PAUL does not

have to be realizable as a feed-forward network – allow-

ing for a solution that stays tightly coupled to the proposed

mathematical objective.

We also explore other alternative deep shape priors such

as: decoder only and decoder + low-rank. A somewhat sim-

ilar approach is recently explored by Sidhu et al. [34] for

dense NRSf M. Our empirical results demonstrate the fun-

damental importance of the auto-encoder architecture for

2D-3D lifting.

Contributions: We make the following contributions:

• We present an optimization objective for joint learning

the 2D-3D lifting network and the Procrustean auto-

encoder solely from 2D projected measurements.
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Figure 1: PAUL learns to reconstruct 3D shapes aligned to a

canonical frame, using 2D keypoint annotations only. Bot-

tom rows show 3D shapes interpolated from the learned la-

tent space of the Procrustean auto-encoder.

• A naive implementation of PAUL through gradient de-

scent would result in poor local minima, so instead we

advocate for a bilevel optimization, whose lower level

problem can be efficiently solved by orthographic-N-

point (OnP) algorithms.

• Our method achieves state-of-the-art performance

across multiple benchmarks, and is empirically shown

to be robust against the choice of hyper-parameters

such as the dimension of the latent code space.

2. Related Work

Non-rigid structure from motion. NRSf M concerns the

problem of recovering 3D shapes from 2D point correspon-

dences from multiple images, without the assumption of the

3D shape being rigid. It is ill-posed by nature, and addi-

tional priors are necessary to guarantee the uniqueness of

the solution. We focus our discussion on the type of priors

imposed on shape/trajectory:

(i) low-rank was advocated by Bregler et al. [6] based

on the insight that rigid 3D structure has a fixed rank of

three [36]. Dai et al. [10] proved that the low-lank as-

sumption is standalone sufficient to solve NRSf M. It is

also applied temporally [12, 3] to constraint 3D trajecto-

ries. Kumar [24] recently revisited Dai’s approach [10] and

showed that by properly utilizing the assumptions that de-

formation is smooth over frames, it is able to obtain com-

petitive accuracy on benchmarks. However, since the rank

is strictly limited by the minimum of the number of points

and frames [10], it becomes infeasible to solve large-scale

problems with complex shape variations when the num-

ber of points is substantially smaller than the number of

frames [21].

(ii) union-of-subspaces is inspired by the intuition that com-

plex non-rigid deformations could be clustered into a se-

quence of simple motions [44]. It was extended to spatial-

temporal domain [25] and structure from category [2]. The

main limitation of using union-of-subspaces is how to effec-

tively cluster deforming shapes from 2D measurements, and

how to compute affinity matrix when the number of frames

is huge.

(iii) sparsity [22, 20, 43], is a more generic prior compared

to union-of-subspaces. However, due to the sheer number

of possible subspaces to choose, it is sensitive to noise.

(iv) Procrustean normal distribution [27] assumes that the

3D structure follows a normal distribution if aligned to a

common reference frame. It allows reconstruction with-

out specifying ranks which are typically required by other

methods. It was extended temporally as a Procrustean

Markov process [29]. Limited by assuming normal distri-

bution, it is less favorable to model deformation which is

not Gaussian.

Unsupervised 2D-3D lifting. NRSf M can be recast for un-

supervised learning 2D-3D lifting. Cha et al. [8] use low-

rank loss as a learning objective to constraint the shape out-

put of the 2D-3D lifting network. Park et al. [33] further

modifies Cha’s approach by replacing the camera estima-

tion network with an analytic least square solution which

aligns 3D structures to the mean shape of a sequence. Due

to the inefficiency of low-rank to model complex shape vari-

ations, these methods are restricted to datasets with simpler

shape variations, or requires temporal order so as to avoid

directly handling global shape variations.

Instead of using classical NRSf M priors, recent works

explore the use of deeper constraints. Generative Adver-

sarial Networks (GANs) [14] are used to enforce realism

of 2D reprojections across novel viewpoints [9, 39, 11, 23].

These methods are only applicable for large datasets due to

the requirement of learning GANs. It is also unclear how to

directly learn GANs with training set existing missing data.

Novotny et al. [32] instead enforces self-consistency on

the predicted canonicalization of the randomly perturbed

3D shapes. Kong & Lucey [21] proposed the use of hi-

erarchical sparsity as constraint, and approximate the op-

timization procedure of hierarchical sparse coding as a

feed-forward lifting network. It was recently extended by

Wang et al. [40] to handle missing data and perspective pro-

jection. These approaches use complicated network archi-

tecture to enforce constraints as well as estimating camera

motion, while our method uses simpler constraint formula-

tion, and realized with efficient solution.
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(a) NRSfM / Unsupervised training (b) Test on unseen data

Figure 2: (a) In training, PAUL jointly optimizes the depth value z, camera rotation R together with the network weights. It

is realized through a bilevel optimization strategy, which analytically computes R∗ and z
∗ as the solution to an OnP problem.

The learning objective is formulated as a combination of reconstruction loss for the decoder-only stream (top row) and the

auto-encoder (bottom row) together with regularizer Lreg applied on the code ϕ and decoder’s network weights; (b) in testing,

only 2D-3D encoder h and decoder fd are used. Camera rotation is directly estimated by OnP.

3. Preliminary

Problem setup. We are interested in the atemporal setup

for unsupervised 2D-3D lifting, which is a general setup

that not only works with single deforming objects, but also

multiple objects from the same object category. Specifi-

cally, given a non-sequential dataset consist of N frames

of 2D keypoint locations {W(1), . . . ,W(N)}, where each

W ∈ R
2×P represents 2D location for P keypoints, and

visibility masks represented as diagonal binary matrices

{M(1), . . . ,M(N)}, we want to (i) recover the 3D locations

for every keypoints in the dataset, and (ii) train a 2D-3D lift-

ing network capable of making single frame prediction for

unseen data.

Weak perspective camera model. We assume weak per-

spective projections, i.e. for a 3D structure S defined at a

canonical frame, its 2D projection is approximated as:

W ≈ sRxyS+ txy (1)

where Rxy ∈ R
2×3, txy ∈ R

2 are the x-y component of

a rigid transformation, and s > 0 is the scaling factor in-

versely proportional to the object depth if the true camera

model is pin-hole. If all 2D points are visible and centered,

txy could be omitted by assuming the origin of the canoni-

cal frame is at the center of the object. Due to the bilinear

form of (1), s is ambiguous and becomes up-to-scale re-

coverable only when S is assumed to follow certain prior

statistics. A typical treatment to handle scale is to approxi-

mate with orthogonal projection by normalizing the scale of

W, setting s = 1 and leaving S to be scaled reconstruction.

Regularized auto-encoder (RAE) for S. We assume that

the 3D shapes, if aligned to a canonical frame, are com-

pressible by an undercomplete auto-encoder with a low-

dimensional bottleneck, i.e.

S ≈ fd ◦ fe(S), (2)

where fe is the encoder which maps S to a K-dimensional

latent code ϕ ∈ R
K , fd is the decoder function and ◦ de-

notes function composition. In this work, we choose de-

terministic RAE [13] instead of variational auto-encoder

(VAE) [19] since RAE is easier to train and still leads to an

equally smooth and meaningful latent space. The learning

objective for RAE is a combination of reconstruction loss

and regularizers on the latent codes as well as the decoder’s

weights,

LRAE(x;θd,θe) = ‖fd ◦ fe(x)− x‖F + Lreg. (3)

where θd,θe are network weights for the auto-encode, x

denote data samples, and the regularizer Lreg is picked to

be ‖ϕ‖22 and weight decay, which was shown to give com-

parable performance to VAE when generating images and

structured objects [13].

2D-3D lifting network. A 2D-3D lifting network is de-

signed to take input from 2D keypoints and visiblity mask,

and outputs 3D keypoint locations. We assume the network

architecture is decomposed into two parts (i) a 2D-3D en-

coder h which maps 2D observations to latent code ϕ, and

(ii) a decoder fd (reused from the auto-encoder) to generate

3D shapes from ϕ. Thus this type of 2D-3D lifting network

can be expressed as fd ◦h(W,M), which is a general form

for network architectures used in literature [21, 30, 32].

4. Learning Procrustean auto-encoder from 2D

For clarity, in this section we simplify the problem by as-

suming all points are visible, which allows removing trans-
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lational component in (1). Description of handling occlu-

sions are given in Sec. 4.3. Fig. 2 illustrates the proposed

approach.

4.1. Learning objective

Procrustean auto-encoder. Directly compressing 3D

shapes Scam at camera frame is inefficient due to the inclu-

sion of the degrees of freedom from camera motion. There-

fore, we choose to impose compressibility on S at canon-

ical frame as shown in (2). However, learning such auto-

encoder from 2D observations requires overcoming sev-

eral obstacles: (i) due to the objects being non-rigid, the

definition of canonical frame is statistical and implicitly

represented by the unknown rigid transformations to align

Scam’s; (ii) choosing canonical frame requires knowing the

statistics of Scam which we do not have complete informa-

tion, since only the first two rows of Scam are given as W

representing the x-y coordinates, while the 3rd row z repre-

senting depth values are unknown; (iii) reconstructing Scam

in turn requires the estimation of the rigid transformation

as well as the statistical model of the shape. To overcome

these, we propose a joint optimization scheme:

min
θe,θd,

{z(i)},{R(i)∈SO(3)}

N
∑

i=1

LRAE(R
(i)⊤

[

W
(i)

z
(i)⊤

]

; θe,θd), (4)

where θe, θd are network weights for the auto-encoder,

R
⊤

[

W

z
⊤

]

computes S at the canonical frame.

However, (4) is still steps away from being applicable

to unsupervised 2D-3D lifting, since it misses the 2D-3D

lifting network module in the objective function, and is dif-

ficult to optimize due to the inclusion of unknown rotation

matrices in the input of the auto-encoder. In the following,

we address these by reparameterizing the learning objective

and propose an efficient optimization scheme.

Reparameterization for learning 2D-3D lifting. First we

introduce an auxiliary variable as the latent code ϕ, which

satisfies

fd(ϕ) = R
⊤
[

W
⊤

z
]⊤

. (5)

This leads to transforming (4) to a constrained optimization

objective with (5) as the constraint and the input to fd ◦ fe

replaced by fd(ϕ),

min
θe,θd,

{R(i)∈SO(3)}

{z(i), ϕ
(i)}

N∑

i=1

‖ fd ◦ fe ◦ fd(ϕ
(i))−R

(i)⊤

[

W
(i)

z
(i)⊤

]

︸ ︷︷ ︸

Lrecon. AE(ϕ,R,z;θe,θd)

‖F + Lreg,

s.t. fd(ϕ) = R
⊤ [

W
⊤

z
]⊤

.

(6)

Depending on the type of task, ϕ could be either treated

as free variables to optimize if the task is to reconstruct

the ‘training’ set as a NRSf M problem, or ϕ could be the

network output of the 2D-3D encoder i.e. ϕ = h(W; θh).
We then relax the constrained optimization into an uncon-

strained one, which allows passing gradients to the weights

of the 2D-3D encoder h,

min
θh,θe,θd,

{z(i)},{R(i)∈SO(3)}

N∑

i=1

Lrecon. AE(h(W
(i)),R(i)

, z
(i))

+ ‖fd ◦ h(W
(i))−R

(i)⊤

[

W
(i)

z
(i)⊤

]

‖F + Lreg.

(7)

This loss function could be understood as the combination

of the reconstruction losses for both an auto-encoder and an

auto-decoder together with the regularizer from RAE, i.e.

Lrecon. AE + Lrecon. AD + Lreg.

Relation to learning with auto-decoder. We note that an

alternative auto-decoder approach with learning objective

Lrecon. AD + Lreg is applicable, the additional Lrecon. AE in

our approach is to enforce the existence of a continuous in-

verse mapping from 3D shape to latent code. This encour-

ages shapes with small variation to stay close in the latent

space, which is helpful to learn a meaningful and smoother

latent space. We investigate both approaches in Fig. 5 and

compare the learnt latent space visually in Fig. 3.

4.2. Efficient bilevel optimization

Directly optimizing (7) with gradient descent is ineffi-

cient due to (i) the objective is non-convex and it is prone to

poor local minima especially with respect to R. One could

use an off-the-shelf NRSf M method to provide initializa-

tion for R [34]. However this would make the solution

sensitive to the accuracy of the chosen NRSf M algorithm.

(ii) when using SGD for large datasets, it is problematic to

properly update R(i) and z
(i) if they are left as independent

variables. Alternatively, one could introduce additional net-

works to output R or z conditioned on 2D inputs [39, 21].

We find this unnecessary because it introduces extra com-

plexity to solve the problem but is still subject to the ineffi-

ciency of gradient descent.

For a more efficient optimization strategy, we propose to

first rearrange (7) to an equivalent bilevel objective:

min
θh,θd,θe

N
∑

i=1

min
R(i)∈SO(3), z(i)

L
(i)
recon. AE+L

(i)
recon. AD+L(i)

reg, (8)

The benifit of this rearrangement is that the lower level

problem, i.e. minimizing the reconstruction losses with re-

spect to R and z can be viewed as an extension of the

orthographic-N-point (OnP) problem [35], which allows the

use of efficient solvers [16, 5, 31]. In addition, if an OnP

solver refined by geometric loss is able to converge to lo-

cal minima, it is not required to be differentiable due to the

fact that both lower-level and upper-level problems share
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Figure 3: Visualization of 2D latent space for ADL &

PAUL. Each point represents the 2D latent code recovered

for each frame of a sequence. The color of points (from dark

blue to bright yellow) indicates the temporal order of points.

Ideally, the points should form trajectories in the temporal

order. PAUL gives clearer trajectory-like structures in its

latent space, while ADL’s recovered codes are either more

spread-out or form broken trajectories.

the same objective function, thus the gradient is zero at lo-

cal minima [15]. This would lift the restrictions for the type

of solvers we could use for the lower-level problem.

Differentiable fast solver for the lower-level problem.

On the other hand, we opt to use an algebraic solution

which is computationally more light-weight compared to

OnP solvers iteratively minimizing the geometric error. The

compromise of using an approximate (e.g. algebraic) so-

lution is that, since it does not not necessarily reach local

minima, it is required to be implemented as a differentiable

operator, which could be easily accomplished via modern

autograd packages. The solution we picked is:

1. Find the closed-form least square solution R̃
∗ for min-

imizing the reprojection error:

min
R̃

‖R̃(fd ◦ fe ◦ fd)(ϕ)−W‖22 + ‖R̃fd(ϕ)−W‖22. (9)

2. Project R̃∗ to become a rotation matrix R
∗ ∈ SO(3)

using SVD.
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Figure 4: 3D reconstruction error with different bottleneck

dimensions. For each configuration, PAUL is run 10 times

and visualize with average accuracy (solid lines) together

with standard deviation (colored area).

3. z
∗ = 1

2 ((fd ◦ fe ◦ fd)
⊤(ϕ)r∗z + fd(ϕ)

⊤
r
∗
z), which is

the closed-form least square solution for minimizing:

min
z

‖(fd ◦ fe ◦ fd)
⊤(ϕ)r∗z − z‖22 + ‖fd(ϕ)

⊤
r
∗
z − z‖22,

(10)

where r
∗
z
⊤ denotes the 3rd row of R∗.

End-to-end training. Finally, with the approximate solu-

tion R
∗, z∗ for the lower-level problem, the learning ob-

jective once again becomes a single level one, which is

identical to (7) except that R, z instead of being free vari-

ables, they are now replaced by R
∗, z

∗ which are dif-

ferentiable functions conditioned on the network weights

θh, θe, θd. This allows learning these weights end-to-end via

gradient descent.

Prediction on unseen data. To make 3D prediction of a

single frame from unseen data, we first use the learned 2D-

3D encoder h and the decoder fd to compute S at the canon-

ical frame, and then run OnP algorithm [35] to align it to the

camera frame.

4.3. Handling missing data

If there exists 2D keypoints missing from the observation

due to occlusions or out of image, the translational compo-

nent in (1) is no longer removable simply by centering the

visible 2D points. To avoid reintroducing t which would

complicate derivations, we choose to follow the object cen-

tric trick to absorb translation through adaptively normaliz-

ing S according to the visibility mask M [40]. The normal-

ized S̃ is computed as:

S̃ = S+ S(IP −M)1P1
⊤
P . (11)

with this, the projection equation remains bilinear, i.e. W̃ =
RxyS̃, where W̃ denotes the centered W by the average of

visible 2D points. This allows to adapt PAUL to handle

missing data with minimal changes. The detailed descrip-

tion is provided in the supp. material.
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Figure 5: Comparison with auto-decoder baseline (i.e.

ADL), and low rank constraint (ADL + low-rank) on CMU

motion capture dataset. PAUL gives significantly more ac-

curate reconstruction compared to ADL and low-rank. Red

line visualizes the difference between reconstructed and

groundtruth points.

5. Experiments

5.1. Implementation details

Network architecture. Throughout our experiment, we

use the same auto-encoder architecture across datasets

except the bottleneck dimension. The number of neu-

ral units in each layer is decreased exponentially, i.e.

{256, 128, 64, 32, 16}. Ideally, if validation set with 3D

groundtruth is provided, we could select optimal architec-

ture based on cross validation. However, due to the unsu-

pervised setting, we rather set the hyperparameters heuris-

tically. We pick a smaller bottleneck dimension, i.e. 4

for smaller datasets (e.g. synthetic NRSfM benchmarks)

or datasets with mostly rigid objects (e.g. Pascal3D+), and

pick a larger dimension, i.e. 8 for articulated objects such as

human skeleton (H3.6M, CMU motion capture dataset) and

meshes (UP3D). The robustness of our method against vari-

ations in hyperparameter settings is investigated in Sec. 5.3.

For the 2D-3D encoder, we experiment with both fully

connected residual network [30] and convolutional net-

work [21]. The only modification we make to those archi-

tecture is the dimension of their output so as to match the

picked bottleneck dimension.

Training details. We keep the same weightings for Lreg

across all experiments, i.e.

Lreg = 0.01‖ϕ‖22 + 10−4‖θd‖
2
2. (12)

We use the Adam optimizer [18] for training. The optimiza-

tion parameters are tuned according to specific datasets so

as to guarantee convergence.

Evaluation metric. We follow two commonly used evalu-

ation protocols:

(i) MPJPE evaluates the mean per-joint position error. To

account for the inherent ambiguity from weak perspective

cameras, we flip the depth values of the reconstruction if it

leads to lower error. To account for the ambiguity in the

object distance, we either subtract the average depth values

or subtract the depth value of a root keypoint. The latter is

used only for H3.6M dataset due to the evaluation conven-

tion in literature.

(ii) Normalized error (NE) evalutes the relative error by:

‖Spred − SGT‖F /‖SGT‖F .

5.2. Baselines

Auto-decoder lifting (ADL). As discussed in Sec. 4.1, an

alternative approach for unsupervised lifting is only mini-

mizing the loss Lrecon. AD +Lreg, without the term Lrecon. AE

for the auto-encoder. Hence for this baseline, we are only

training with respect to the decoder, thus regarded as an

auto-decoder approach.

ADL + low rank. In addition, we experiment with adding

the low rank constraint as another baseline. Similar to Cha

et al. [8] and Park et al. [33], we evaluate the nuclear norm

of the output of the shape decoder as the approximate low

rank loss, i.e. ‖S‖∗. We empirically pick the weighting for

the low rank loss as 0.01.

5.3. NRSf M experiments

In the first set of experiments, we evaluate the proposed

method for the NRSf M task, where we report how well

the compared methods are able to reconstruct a dataset.

The goal is to evaluate the robustness of the proposed Pro-

crustean auto-encoder shape prior across different shape

variations, without being convoluted by the inductive bias

from a 2D-3D lifting network, which is not the interest of

this work. To achieve this, on short sequences, instead of

conditioning ϕ with a 2D-3D encoder, we treat ϕ as free

variable to optimize directly; and on long sequences, we

use the same 2D-3D encoder as in Deep NRSf M [21] to

have a fair comparison.

NRSfM datasets. We report performance on two types of

datasets: (i) short sequences with simple object motions,

e.g. drink, pickup, yoga, stretch, dance, shark which are

standard benchmarks used in NRSf M literature [4, 37].

(ii) long sequences with large articulated motions, i.e. CMU

motion capture dataset [1]. We use the processed data from

Kong & Lucey [21] which is intentionally made more chal-

lenging by inserting large random camera motions.

Robustness against bottleneck dimension. As shown in

Fig. 4, we run the methods with varying bottleneck dimen-
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short sequences long sequences (random cam. motion)

drink pickup yoga stretch dance shark S1 S5 S64 S70 S123

#frames 1102 357 307 370 264 240 45025 13773 11621 10788 10788

CNS [28] 3.04 9.18 11.15 7.97 7.59 8.32 37.62 40.02 29.00 26.26 26.46

PND [27] 0.37 3.72 1.40 1.56 14.54 1.35 - - - - -

BMM [10] 2.66 17.31 11.50 10.34 18.64 23.11 16.45 14.07 18.13 18.91 19.32

BMM-v2 [24] 1.19 1.98 1.29 1.44 10.60 5.51 - - - - -

Deep NRSfM [21] 17.38 0.53 12.54 21.63 20.95 21.83 10.74 13.40 4.38 2.17 2.23

PAUL 0.47 2.03 1.71 1.62 10.22 0.37 4.97 4.38 0.39 0.77 0.59

Table 1: Comparison with state-of-the-art NRSf M methods on both short sequences and long sequences, report with normal-

ized error. Long sequences are sampled from CMU motion capture dataset [1] with large random camera motion. Atemporal

methods are highlighted by orange, methods using temporal information are marked by green. Due to the code for PND and

BMM-v2 is unavailable, they are excluded from evaluation on CMU motion capture sequences.

aero. car tv. sofa motor. dining. chair bus bottle boat bicycle train Mean 8 cls.

C3DPO 6.56 8.21 15.03 7.30 7.48 3.77 3.46 20.41 7.48 7.58 3.47 33.70 10.4 7.58

Deep NRSf M++ 7.51 9.22 17.43 9.37 6.18 12.90 3.97 18.02 2.08 9.18 4.03 23.67 10.3 8.90

PAUL 3.99 7.13 9.88 3.99 3.74 5.70 2.19 14.11 1.03 8.08 1.74 38.78 8.4 5.32

Table 2: Per-category normalized error (%) on Pascal3D+ dataset. Follow the protocol of Agudo et al. [2], we further report

the average error of 8 object categories which are annotated with ≥ 8 keypoints.

UP3D 79KP Pascal3D+

avg occlusion % 61.89 37.68

EM-Sf M [37] 0.107 131.0

GbNRSf M [12] 0.093 184.6

Deep NRSf M [21] 0.076 51.3

C3DPO [32] 0.067 36.6

Deep NRSf M++ [40] 0.062 34.8

PAUL 0.058 30.9

Table 3: Comparison on datasets with high per-

centage of missing data. Test accuracy is reported

with MPJPE.

GT pts. SH pts. [32]

Pose-GAN [23] 130.9 173.2

C3DPO [32] 95.6 153.0

PRN [33] 86.4 124.5

PAUL 88.3 132.5

Table 4: MPJPE on H3.6M valida-

tion set. orange indicates atemporal

method and green indicates methods

use temporal information.

NE (%)

C3DPO [32] 35.09

PRN [33] 13.77

PAUL (ours) 12.36

PAUL (train set) 4.30

Table 5: Test accuracy

on SURREAL synthetic

sequences. Training er-

ror is also reported for

PAUL (bottom row).

sion from 2 to 12 on different datasets. To account for the

stochastic behavior due to network initialization and gradi-

ent descent on small datasets, we run the methods 10 times

and visualize with average accuracy (solid lines) together

with standard deviation (colored area). PAUL gives stable

results once the bottleneck dimension is sufficiently large.

This indicates that PAUL is practical for unseen datasets by

using an overestimated bottleneck dimension.

Comparison with ADL and low rank. As shown in

Fig. 5, on sequences from CMU motion capture dataset,

ADL achieves lower error in most sequences when com-

paring against Deep NRSf M, indicating it is indeed a strong

baseline. Augmenting ADL with low rank constraint is able

to further decrease error for several sequences, but the im-

provement is not consistent across the whole dataset. In

comparison, PAUL gives significant error reduction for all

the evaluated sequences, which demonstrates the effective-

ness of the proposed Procrustean anto-encoder prior.

Comparison with state-of-the-art NRSfM methods. Ta-

ble 1 collects results from some of the state-of-the-art

NRSf M methods on the synthetic bechmarks, e.g. BMM-

v2 [24], CNS [28] and PND [27]. All the well-performing

methods utilize temporal information while PAUL does not,

but still achieves competitive accuracy on short sequences.

On long sequences from CMU motion capture dataset, the

accuracy of temporal-based methods e.g. CNS deteriorates

significantly due to the data perturbed by large random cam-

era motion. Atemporal methods on the other hand gives sta-

ble results and PAUL outcompetes all the compared meth-

ods by a wide margin.

5.4. 2D3D lifting on unseen data

We compare against recent unsupervised 2D-3D lifting

methods on the processed datasets by Novotny et al. [32]:

Datasets. (i) Synthetic UP-3D is a large synthetic dataset

with dense human keypoints collected from the UP-3D
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dataset [26]. The 2D keypoints are generated by ortho-

graphic projection of the SMPL body shape with the visi-

bility computed from a ray traccer. Similar to C3DPO, we

report result for 79 representative vertices of the SMPL on

the test set;

(ii) Pascal3D+ [41] consists of images from 12 object cat-

egories with sparse keypoint annotations. The 3D keypoint

groundtruth are created by selecting and aligning CAD

models. To ensure consistency between 2D keypoint and

3D groundtruth, the orthographic projections of the aligned

3D CAD models are used as 2D keypoint annotations, and

the visibility mask are taken from the original 2D annota-

tions. For a fair comparison against C3DPO, we use the

same fully-connected residual network as the 2D-3D en-

coder, and train a single model to account for all 12 object

categories.

(iii) Human 3.6 Million dataset (H3.6M) [17] is a large-

scale human pose dataset annotated by motion capture sys-

tems. Following the commonly used evaluation protocol,

the first 5 human subjects (1, 5, 6, 7, 8) are used for train-

ing and 2 subjects (9, 11) for testing. The 2D keypoint an-

notations of H3.6M preserves perspective effect, thus is a

realistic dataset for evaluating the practical usage of 2D-3D

lifting.

Robustness against occlusion. Both synthetic UP3D and

Pascal3D+ dataset simulate realistic occlusions with high

occlusion percentage. We focus our comparison against

C3DPO and Deep NRSf M++ [40] which is a recent up-

date of Deep NRSf M for better handling missing data and

perspective projections. As shown in Table 3, PAUL signif-

icantly outperforms both of them. To account for the dis-

tortion caused by the object scale, we switch the evaluation

metric from MPJPE to normalized error in Table 2 and re-

port per-class error. PAUL leads with even bigger margin.

Robustness against labeling noise. To work with in-the-

wild data, 2D-3D lifting methods are required to be robust

against annotation noise, which could be simulated by us-

ing 2D keypoints detected by a pretrained keypoint detec-

tor. In addition, 2D annotation with perspective effect could

also be regarded as noise since it is not modeled by the as-

sumed weak perspective camera model. We evaluate both

scenarios on H3.6M dataset (see Table 4). PAUL outper-

forms the compared atemporal methods (i.e. C3DPO and

Deep NRSf M++) and is competitive to recently proposed

PRN [33] which requires training data to be sequential.

5.5. Dense reconstruction

We follow the comparison in Park et al. [33] on the syn-

thetic SURREAL dataset [38], which consists of 5k frames

with 6890 points for training, and 2,401 frames for test-

ing. Unlike PRN [33] which subsamples a subset of points

when evaluating the low rank shape prior due to the intense

computational cost of evaluating nuclear norm, our auto-

groundtruth C3DPO PAUL (ours)DeepNRSfM ++

Figure 6: Qualitative comparison on Pascal3D+ dataset.

Red lines visualize the difference between groundtruth

points and predicted points. PAUL shows more accurate

prediction in the compared samples.

encoder shape prior is computationally cheaper when deal-

ing with dense inputs, thus we made no modification when

applying PAUL to SURREAL. As shown in Table 5, PAUL

achieves lower test error compared to PRN, even though we

use no temporal information in training. It is worth to point

out that the current bottleneck in achieving better test accu-

racy is at the generalization ability of the 2D-3D encoder

network, not at the proposed unsupervised training frame-

work. As shown in the last row of Table 5, the reconstruc-

tion error on the training set is already much lower than the

test error (i.e. 4.30% vs 12.36%).

6. Conclusion

We propose learning a Procrustean auto-encoder for

unsupervised 2D-3D lifting capable of learning from no-

sequential 2D observations with large shape variations. We

demonstrate that having an auto-encoder performs favor-

ably compared to an alternative auto-decoder approach. The

proposed method achieves state-of-the-art accuracy across

NRSf M and 2D-3D lifting tasks. For future work, theo-

retical analysis of the characterization of the solution (e.g.

uniqueness) may help inspire further development. Inter-

preting the approach as learning manifold may also help

provide guidance such as setting hyperparameters [7]. Fi-

nally, it is straightforward to extend the method to model

perspective projection using similar extensions outlined

in [40, 42].

Acknowledgement This work was partially supported by

the National Science Foundation under Grant No.1925281.

441



References

[1] CMU Motion Capture Dataset. available at http://

mocap.cs.cmu.edu/. 6, 7

[2] Antonio Agudo, Melcior Pijoan, and Francesc Moreno-

Noguer. Image collection pop-up: 3d reconstruction and

clustering of rigid and non-rigid categories. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 2, 7

[3] Ijaz Akhter, Yaser Sheikh, and Sohaib Khan. In defense of

orthonormality constraints for nonrigid structure from mo-

tion. In 2009 IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 1534–1541. IEEE, 2009. 1, 2

[4] Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade.

Nonrigid structure from motion in trajectory space. In Ad-

vances in neural information processing systems, pages 41–

48, 2009. 6

[5] Adam W Bojanczyk and Adam Lutoborski. The procrustes

problem for orthogonal stiefel matrices. SIAM Journal on

Scientific Computing, 21(4):1291–1304, 1999. 4

[6] Christoph Bregler. Recovering non-rigid 3d shape from im-

age streams. Citeseer. 1, 2

[7] Francesco Camastra and Antonino Staiano. Intrinsic dimen-

sion estimation: Advances and open problems. Information

Sciences, 328:26–41, 2016. 8

[8] Geonho Cha, Minsik Lee, and Songhwai Oh. Unsupervised

3d reconstruction networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3849–

3858, 2019. 1, 2, 6

[9] Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dy-

lan Drover, Rohith MV, Stefan Stojanov, and James M.

Rehg. Unsupervised 3d pose estimation with geometric self-

supervision. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2019. 2

[10] Yuchao Dai, Hongdong Li, and Mingyi He. A simple prior-

free method for non-rigid structure-from-motion factoriza-

tion. International Journal of Computer Vision, 107(2):101–

122, 2014. 1, 2, 7

[11] Dylan Drover, Rohith MV, Ching-Hang Chen, Amit

Agrawal, Ambrish Tyagi, and Cong Phuoc Huynh. Can 3d

pose be learned from 2d projections alone? In The Euro-

pean Conference on Computer Vision (ECCV) Workshops,

September 2018. 2

[12] Katerina Fragkiadaki, Marta Salas, Pablo Arbelaez, and Ji-

tendra Malik. Grouping-based low-rank trajectory comple-

tion and 3d reconstruction. In Advances in Neural Informa-

tion Processing Systems, pages 55–63, 2014. 2, 7

[13] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. J. Black, and B.

Schölkopf. From variational to deterministic autoencoders.

In 8th International Conference on Learning Representa-

tions (ICLR), Apr. 2020. 3

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 2

[15] Stephen Gould, Richard Hartley, and Dylan Campbell.

Deep declarative networks: A new hope. arXiv preprint

arXiv:1909.04866, 2019. 5

[16] John C Gower, Garmt B Dijksterhuis, et al. Procrustes prob-

lems, volume 30. Oxford University Press on Demand, 2004.

4

[17] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3. 6m: Large scale datasets and pre-

dictive methods for 3d human sensing in natural environ-

ments. IEEE transactions on pattern analysis and machine

intelligence, 36(7):1325–1339, 2013. 8

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[19] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. stat, 1050:1, 2014. 3

[20] Chen Kong and Simon Lucey. Prior-less compressible struc-

ture from motion. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4123–

4131, 2016. 2

[21] Chen Kong and Simon Lucey. Deep non-rigid structure from

motion. In The IEEE International Conference on Computer

Vision (ICCV), October 2019. 1, 2, 3, 4, 6, 7

[22] Chen Kong, Rui Zhu, Hamed Kiani, and Simon Lucey.

Structure from category: A generic and prior-less approach.

In 2016 Fourth International Conference on 3D Vision

(3DV), pages 296–304. IEEE, 2016. 2

[23] Yasunori Kudo, Keisuke Ogaki, Yusuke Matsui, and

Yuri Odagiri. Unsupervised adversarial learning of 3d

human pose from 2d joint locations. arXiv preprint

arXiv:1803.08244, 2018. 2, 7

[24] Suryansh Kumar. Non-rigid structure from motion: Prior-

free factorization method revisited. In Winter Conference on

Applications of Computer Vision (WACV 2020), 2020. 2, 7

[25] Suryansh Kumar, Yuchao Dai, and Hongdong Li. Multi-

body non-rigid structure-from-motion. In 2016 Fourth In-

ternational Conference on 3D Vision (3DV), pages 148–156.

IEEE, 2016. 1, 2

[26] Christoph Lassner, Javier Romero, Martin Kiefel, Federica

Bogo, Michael J. Black, and Peter V. Gehler. Unite the peo-

ple: Closing the loop between 3d and 2d human representa-

tions. In IEEE Conf. on Computer Vision and Pattern Recog-

nition (CVPR), July 2017. 8

[27] Minsik Lee, Jungchan Cho, Chong-Ho Choi, and Songhwai

Oh. Procrustean normal distribution for non-rigid structure

from motion. In Proceedings of the IEEE Conference on

computer vision and pattern recognition, pages 1280–1287,

2013. 2, 7

[28] Minsik Lee, Jungchan Cho, and Songhwai Oh. Consensus of

non-rigid reconstructions. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4670–4678, 2016. 7

[29] Minsik Lee, Chong-Ho Choi, and Songhwai Oh. A pro-

crustean markov process for non-rigid structure recovery. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2014. 2

442



[30] Julieta Martinez, Rayat Hossain, Javier Romero, and James J

Little. A simple yet effective baseline for 3d human pose es-

timation. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 2640–2649, 2017. 3, 6

[31] Ab Mooijaart and Jacques JF Commandeur. A general solu-

tion of the weighted orthonormal procrustes problem. Psy-

chometrika, 55(4):657–663, 1990. 4

[32] David Novotny, Nikhila Ravi, Benjamin Graham, Natalia

Neverova, and Andrea Vedaldi. C3dpo: Canonical 3d pose

networks for non-rigid structure from motion. In The IEEE

International Conference on Computer Vision (ICCV), Octo-

ber 2019. 1, 2, 3, 7

[33] Sungheon Park, Minsik Lee, and Nojun Kwak. Procrustean

regression networks: Learning 3d structure of non-rigid ob-

jects from 2d annotations. In European Conference on Com-

puter Vision, pages 1–18. Springer, 2020. 1, 2, 6, 7, 8

[34] Vikramjit Sidhu, Edgar Tretschk, Vladislav Golyanik, Anto-

nio Agudo, and Christian Theobalt. Neural dense non-rigid

structure from motion with latent space constraints. In Eu-

ropean Conference on Computer Vision (ECCV), 2020. 1,

4

[35] Carsten Steger. Algorithms for the orthographic-n-point

problem. Journal of Mathematical Imaging and Vision,

60(2):246–266, 2018. 4, 5

[36] Carlo Tomasi and Takeo Kanade. Shape and motion from im-

age streams under orthography: a factorization method. In-

ternational journal of computer vision, 9(2):137–154, 1992.

2

[37] Lorenzo Torresani, Aaron Hertzmann, and Chris Bregler.

Nonrigid structure-from-motion: Estimating shape and mo-

tion with hierarchical priors. IEEE transactions on pattern

analysis and machine intelligence, 30(5):878–892, 2008. 6,

7

[38] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-

mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.

Learning from synthetic humans. In CVPR, 2017. 8

[39] Bastian Wandt and Bodo Rosenhahn. Repnet: Weakly su-

pervised training of an adversarial reprojection network for

3d human pose estimation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

7782–7791, 2019. 2, 4

[40] Chaoyang Wang, Chen-Hsuan Lin, and Simon Lucey. Deep

nrsfm++: Towards 3d reconstruction in the wild. arXiv

preprint arXiv:2001.10090, 2020. 2, 5, 7, 8

[41] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond

pascal: A benchmark for 3d object detection in the wild. In

IEEE Winter Conference on Applications of Computer Vi-

sion, pages 75–82. IEEE, 2014. 8

[42] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle As-

trom, and Masatoshi Okutomi. Revisiting the pnp problem:

A fast, general and optimal solution. In Proceedings of the

IEEE International Conference on Computer Vision, pages

2344–2351, 2013. 8

[43] Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, Kon-

stantinos G Derpanis, and Kostas Daniilidis. Sparseness

meets deepness: 3d human pose estimation from monocular

video. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4966–4975, 2016. 2

[44] Yingying Zhu, Dong Huang, Fernando De La Torre, and Si-

mon Lucey. Complex non-rigid motion 3d reconstruction by

union of subspaces. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1542–

1549, 2014. 1, 2

443


