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Abstract

A novel 3D point cloud learning model for deep LiDAR

odometry, named PWCLO-Net, using hierarchical embed-

ding mask optimization is proposed in this paper. In this

model, the Pyramid, Warping, and Cost volume (PWC) struc-

ture for the LiDAR odometry task is built to refine the esti-

mated pose in a coarse-to-fine approach hierarchically. An

attentive cost volume is built to associate two point clouds

and obtain embedding motion patterns. Then, a novel train-

able embedding mask is proposed to weigh the local mo-

tion patterns of all points to regress the overall pose and

filter outlier points. The estimated current pose is used

to warp the first point cloud to bridge the distance to the

second point cloud, and then the cost volume of the resid-

ual motion is built. At the same time, the embedding mask

is optimized hierarchically from coarse to fine to obtain

more accurate filtering information for pose refinement. The

trainable pose warp-refinement process is iteratively used

to make the pose estimation more robust for outliers. The

superior performance and effectiveness of our LiDAR odom-

etry model are demonstrated on KITTI odometry dataset.

Our method outperforms all recent learning-based meth-

ods and outperforms the geometry-based approach, LOAM

with mapping optimization, on most sequences of KITTI

odometry dataset. Our source codes will be released on

https://github.com/IRMVLab/PWCLONet.

1. Introduction

The visual/LiDAR odometry is one of the key technolo-

gies in autonomous driving. This task uses two consec-

utive images or point clouds to obtain the relative pose

transformation between two frames, and acts as the base

of the subsequential planning and decision making of mobile

robots [13]. Recently, learning-based odometry methods

have shown impressive accuracy on datasets compared with

conventional methods based on hand-crafted features. It
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Figure 1. The Point Feature Pyramid, Pose Warping, and Attentive

Cost Volume (PWC) structure in our proposed PWCLO-Net. The

pose is refined layer by layer through iterative pose warp-refinement.

The whole process is realized end-to-end by making all modules

differentiable. In the LiDAR point clouds, the small red points

are the whole point cloud. The big black points are the sampled

points in PC1. Distinctive colors of big points in embedding mask

measure the contribution of sampled points to the pose estimation.

is found that learning-based methods can deal with sparse

features and dynamic environments [9, 14], which are usu-

ally difficult for conventional methods. To our knowledge,

most learning-based methods are on the 2D visual odometry

[26, 33, 15, 29, 23, 25] or utilize 2D projection of LiDAR

[16, 22, 27, 10, 11] and the LiDAR odometry in 3D point

clouds is underexplored. This paper aims to estimate the

LiDAR odometry directly through raw 3D point clouds.

For the LiDAR odometry in 3D point clouds, there are

three challenges: 1) As the discrete LiDAR point data are ob-

tained in two consecutive frames separately, it is hard to find
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an precisely corresponding point pair between two frames;

2) Some points belonging to an object in a frame may not

be seen in the other view if they are occluded by other ob-

jects or are not captured because of the limitation of LiDAR

resolution; 3) Some points belonging to dynamic objects are

not suitable to be used for the pose estimation because these

points have uncertainty motions of the dynamic objects.

For the first challenge, Zheng et al. [32] use matched

keypoint pairs judged in 2D depth images. However, the

correspondence is rough because of the discrete perception

of LiDAR. The cost volume for 3D point cloud [28, 24] is

adopted in this paper to obtain a weighted soft correspon-

dence between two consecutive frames. For the second

and third challenges, the mismatched points or dynamic ob-

jects, which do not conform to the overall pose, need to

be filtered. LO-Net [10] trains an extra mask estimation

network [33, 30] by weighting the consistency error of the

normal of 3D points. In our network, an internal trainable

embedding mask is proposed to weigh local motion patterns

from the cost volume to regress the overall pose. In this

way, the mask can be optimized for more accurate pose esti-

mation rather than depending on geometry correspondence.

In addition, the PWC structure is built to capture the large

motion in the layer of sparse points and refine the estimated

pose in dense layers. As shown in Fig. 1, the embedding

mask is also optimized hierarchically to obtain more accurate

filtering information to refine pose estimation.

Overall, our contributions are as follows:

• The Point Feature Pyramid, Pose Warping, and Cost

Volume (PWC) structure for the 3D LiDAR odometry

task is built to capture the large motion between two

frames and accomplish the trainable iterative 3D feature

matching and pose regression.

• In this structure, the hierarchical embedding mask is

proposed to filter mismatched points and convert the

cost volume embedded in points to the overall ego-

motion in each refinement level. Meanwhile, the em-

bedding mask is optimized and refined hierarchically

to obtain more accurate filtering information for pose

refinement following the density of points.

• Based on the characteristic of the pose transformation,

the pose warping and pose refinement are proposed

to refine the estimated pose layer by layer iteratively.

A totally end-to-end framework, named PWCLO-Net,

is established, in which all modules are fully differen-

tiable so that each process is no longer independent and

combinedly optimized.

• Finally, our method is demonstrated on KITTI odom-

etry dataset [8, 7]. The evaluation experiments and

ablation studies show the superiority of the proposed

method and the effectiveness of each design. To the best

of our knowledge, our method outperforms all recent

learning-based LiDAR odometry and even outperforms

the geometry-based LOAM with mapping optimization

[31] on most sequences.

2. Related Work

2.1. Deep LiDAR Odometry

Deep learning has gained impressive progress in visual

odometry [15, 29]. However, the 3D LiDAR odometry with

deep learning is still a challenging problem. In the begin-

ning, Nicolai et al. [16] project two consecutive LiDAR

point clouds to the 2D plane to obtain two 2D depth images,

and then use the 2D convolution and fully connected (FC)

layers to realize learning-based LiDAR odometry. Their

work verified that the learning-based method is serviceable

for the LiDAR odometry although their experiment results

are not superior. Velas et al. [22] also project LiDAR points

to the 2D plane but use three channels to encode the infor-

mation, including height, range, and intensity. Then the

convolution and FC layers are used for the pose regression.

The performance is superb when only estimating the trans-

lation but is poor when estimating the 6-DOF pose. Wang

et al. [27] project point clouds to panoramic depth images

and stack two frames together as input. Then the translation

sub-network and FlowNet [5] orientation sub-network are

used to estimate the translation and orientation respectively.

[10] also preprocess 3D LiDAR points to 2D information

but use the cylindrical projection [2]. Then, the normal of

each 3D point is estimated to build consistency constraint

between frames, and an uncertainty mask is estimated to

mask dynamic regions. Zheng et al. [32] extract matched

keypoint pairs by classic detecting and matching algorithm

in 2D spherical depth images projected from 3D LiDAR

point clouds. Then the PointNet [17] based structure is used

to regress the pose from the matched keypoint pairs. [11]

proposes a learning-based network to generate matching

pairs with high confidence, then applies Singular Value De-

composition (SVD) to get the 6-DoF pose. [3] introduces an

unsupervised learning method on LiDAR odometry.

2.2. Deep Point Correlation

The above studies all use the 2D projection information

for the LiDAR odometry learning, which converts the Li-

DAR odometry to the 2D learning problem. Wang et al. [27]

compared the 3D point input and 2D projection information

input based on the same 2D convolution model. It is found

that the 3D input based method has a poor performance. As

the development of 3D deep learning [17, 18], FlowNet3D

[12] proposes an embedding layer to learn the correlation

between the points in two consecutive frames. After that,

Wu et al. [28] propose the cost volume method on point

clouds, and Wang et al. [24] develop the attentive cost vol-

ume method. The point cost volume involves the motion

patterns of each point. It becomes a new direction and chal-

lenge to regress pose from the cost volume, and meanwhile,

not all point motions are for the overall pose motion. We
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Figure 2. The details of proposed PWCLO-Net architecture. The network is composed of four set conv layers in point feature pyramid, one

attentive cost volume, one initial embedding mask and pose generation module, and three pose warp-refinement modules. The network

outputs the predicted poses from four levels for supervised training.

exploit to estimate the pose directly from raw 3D point cloud

data and deal with the new challenges encountered.

What is more, we are inspired by the Pyramid, Warping,

and Cost volume (PWC) structure in the flow network pro-

posed by Su et al. [20]. The work uses the three modules

(Pyramid, Warping, and Cost volume) to refine the optical

flow through a coarse-to-fine approach. The works [28, 24]

on 3D scene flow also use the PWC structure to refine the

estimated 3D scene flow in point clouds. In this paper, the

idea is applied to the pose estimation refinement, and a PWC

structure for LiDAR odometry is built for the first time.

3. PWCLO-Net

Our method learns the LiDAR odometry from raw 3D

point clouds in an end-to-end approach with no need to

pre-project the point cloud into 2D data, which is signifi-

cantly different from the deep LiDAR odometry methods

introduced in the related work section.

The Fig. 2 illustrates the overall structure of our PWCLO-

Net. The inputs to the network are two point clouds PC1 =
{xi|xi ∈ R

3}Ni=1 and PC2 = {yj |yj ∈ R
3}Nj=1 respectively

sampled from two adjacent frames. These two point clouds

are firstly encoded by the siamese feature pyramid consisting

of several set conv layers as introduced in Sec. 3.1. Then

the attentive cost volume is used to generate embedding

features, which will be described in Sec. 3.2. To regress pose

transformation from the embedding features, hierarchical

embedding mask optimization is proposed in Sec. 3.3. Next,

the pose warp-refinement method is proposed in Sec. 3.4

to refine the pose estimation in a coarse-to-fine approach.

Finally, the network outputs the quaternion q ∈ R
4 and

translation vector t ∈ R
3.

3.1. Siamese Point Feature Pyramid

The input point clouds are usually disorganized and sparse

in a large 3D space. A siamese feature pyramid consisting

of several set conv layers is built to encode and extract the

hierarchical features of each point cloud. Farthest Point

Sampling (FPS) [18] and shared Multi-Layer Perceptron

(MLP) are used. The formula of set conv is:

fi = MAX
k=1,2,...K

(MLP ((xk
i − xi)⊕ fk

i ⊕ f c
i )), (1)

where xi is the obtained i-th sampled point by FPS. And

K points xk
i (k = 1, 2, ...,K) are selected by K Nearest

Neighbors (KNN) around xi. f
c
i and fk

i are the local features

of xi and xk
i (they are null for the first layer in the pyramid).

fi is the output feature located at the central point xi. ⊕
denotes the concatenation of two vectors, and MAX

k=1,2,...K
()

indicates the max pooling operation. The hierarchical feature

pyramid is constructed as shown in Fig. 2. The siamese

pyramid [4] means that the learning parameters of the built

pyramid are shared for these two point clouds.

3.2. Attentive Cost Volume

Next, the point cost volume with attention in [24] is

adopted here to associate two point clouds. The cost volume

generates point embedding features by associating two point

clouds after the feature pyramid.

The embedding features contain the point correlation

information between two point clouds. As shown in Fig. 3,

F1 = {fi|fi ∈ R
c}ni=1 is the features of point cloud PC1 =

{xi|xi ∈ R
3}ni=1 and F2 = {gj |gj ∈ R

c}nj=1 is the features

of point cloud PC2 = {yj |yi ∈ R
3}ni=1. The embedding

features between two point clouds are calculated as follows:

wk
1,i = softmax(u(xi, y

k
j , fi, g

k
j ))

K1

k=1
, (2)
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Figure 3. Attention Cost-volume. This module takes two frames of

point clouds with their local features as input and associates the two

point clouds. Finally, the module outputs the embedding features

located in PC1.

pei =

k1
∑

k=1

wk
1,i ⊙ v(xi, y

k
j , fi, g

k
j ), (3)

wk
2,i = softmax(u(xi, x

k
i , pei, pe

k
i ))

K2

k=1
, (4)

ei =

k2
∑

k=1

wk
2,i ⊙ v(xi, x

k
i , pei, pe

k
i ), (5)

where ykj and gkj represent the coordinates and local features

of the selected K1 points in PC2 respectively. ⊙ represents

dot product. u(·) and v(·) represent the attention encoding

and feature encoding functions referring to [24]. u(·) en-

codes the 3D Euclidean space information and point features

to generate attention weights, and v(·) represents the further

feature encoding on spacial information and features of two

frames of point cloud. The output E = {ei|ei ∈ R
c}ni=1 is

the embeding features in PC1.

3.3. Hierarchical Embedding Mask Optimization

It is a new problem to convert the embedding features E to

a global consistent pose transformation between two frames.

In this subsection, a novel embedding mask is proposed to

generate pose transformation from embedding features.

It should be noted that some points may belong to dy-

namic objects or be occluded in the other frame. It is neces-

sary to filter out these points and keep the points that are of

value to the LiDAR odometry task. To deal with this, the em-

bedding features E = {ei|ei ∈ R
c}ni=1 and the features F1

of PC1 are input to a shared MLP followed by the softmax

operation along the point dimension to obtain the embedding

mask (as the initial embedding mask in Fig. 2):

M = softmax(sharedMLP (E ⊕ F1)), (6)

where M = {mi|mi ∈ R
c}ni=1 represents trainable masks

for prioritizing embedding features of n points in PC1. Each

point has a characteristic weight ranging from 0 to 1. The

smaller the weight of a point is, the more likely the point

needs to be filtered out, and vice versa. Then, the quaternion

q ∈ R
4 and translation vector t ∈ R

3 can be generated by

weighting embedding features and FC layers separately, and

q is normalized to accord with the characteristic of rotation.

q =

FC(
n
∑

i=1

ei ⊙mi)

∣

∣

∣

∣

FC(
n
∑

i=1

ei ⊙mi)

∣

∣

∣

∣

, (7)

t = FC(
n
∑

i=1

ei ⊙mi). (8)

The trainable mask M is also part of the hierarchical

refinement. As shown in Fig. 2, the embedding mask is prop-

agated to denser layers of the point cloud just like embedding

features E and pose. The embedding mask is also optimized

in a coarse-to-fine approach during the warp-refinement pro-

cess, making the final mask estimation and the calculation

of pose transformation accurate and reliable. We call this

process the hierarchical embedding mask optimization.

3.4. Pose Warp­Refinement Module

To achieve the coarse-to-fine refinement process in an

end-to-end fashion, we propose the differentiable warp-

refinement module based on pose transformation as shown

in Fig. 4. This module contains several key parts: set up-

conv layer, pose warping, embedding feature and embedding

mask refinement, and pose refinement.

Set Upconv Layer: To refine the pose estimation in a coarse-

to-fine approach, the set upconv layer [12] is adopted here to

enable features of point cloud to propagate from sparse level

to dense level. Embedding features El+1 and embedding

masks M l+1 of l+1 layer are propagated through set upconv

layer to obtain coarse embedding features CEl = {celi|ce
l
i ∈

R
cl}n

l

i=1 and coarse embedding masks CM l = {cml
i|cm

l
i ∈

R
cl}n

l

i=1 that need to be optimized at the l-th level.

Pose Warping: The process of pose warping means that the

quaternion ql+1 and translation vector tl+1 from the (l + 1)-

th level are applied to warp PCl
1 = {xl

i|x
l
i ∈ R

cl}n
l

i=1 to

generate PCl
1,warped = {xl

i,warped|x
l
i,warped ∈ R

cl}n
l

i=1.

The warped PCl
1,warped is closer to PCl

2 than original PCl
1,

which makes the residual motion estimation easier at the l-th

level. The equation of warping transformation is as follows:

[0, xl
i,warped] = ql+1[0, xl

i](q
l+1)−1 + [0, tl+1]. (9)

Then, the attentive cost volume between PCl
1,warped and

PCl
2 is re-calculated to estimate the residual motion. Fol-

lowing the approach introduced in Sec. 3.2, re-embedding

features between PCl
1,warped and PCl

2 are calculated and

denoted as REl = {reli|re
l
i ∈ R

cl}n
l

i=1.
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Embedding Feature and Embedding Mask Refinement:

The generated coarse embedding feature celi, the re-

embedding feature reli, and the features f l
i of PCl

1 are con-

catenated and input to a shared MLP to obtain embedding

features El = {eli|e
l
i ∈ R

cl}n
l

i=1 at the l-th level:

eli = MLP (celi ⊕ reli ⊕ f l
i ). (10)

The output of this MLP is the optimized embedding features

of l-th level, which will not only participate in the following

pose generation operation but also be output as the input to

the next level warp-refinement module.

Like the refinement of the embedding feature, the newly

generated embedding feature eli, the generated coarse em-

bedding mask cml
i, and the local feature f l

i of PCl
1 are

concatenated and input to a shared MLP and softmax op-

eration along the point dimension to obtain the embedding

mask M l = {ml
i|m

l
i ∈ R

cl}n
l

i=1 at the l-th level:

M l = softmax(sharedMLP (El ⊕ CM l ⊕ F l)). (11)

Pose Refinement: The residual ∆ql and ∆tl can be ob-

tained from the refined embedding features and mask follow-

ing the formulas (7) and (8) in Sec. 3.3. Lastly, the refined

quaternion ql and translation vector tl of the l-th level can

be calculated by:
ql = ∆qlql+1, (12)

[0, tl] = ∆ql[0, tl+1](∆ql)−1 + [0,∆tl]. (13)

3.5. Training Loss

The network outputs quaternion ql and translation vector

tl from four different levels of point clouds. The outputs of

each level will enter into a designed loss function and be

used to calculate the supervised loss ℓl. Due to the difference

in scale and units between translation vector t and quater-

nion q, two learnable parameters sx and sq are introduced

like previous deep odometry work [10]. The training loss

function at the l-th level is:

ℓl =
∥

∥tgt − tl
∥

∥exp(−sx) + sx

+

∥

∥

∥

∥

qgt −
ql

‖ql‖

∥

∥

∥

∥

2

exp(−sq) + sq,
(14)

where ‖·‖ and ‖·‖
2

denotes the ℓ1-norm and the ℓ2-norm re-

spectively. tgt and qgt are the ground-truth translation vector

and quaternion respectively generated by the ground-truth

pose transformation matrix. Then, a multi-scale supervised

approach is adopted. The total training loss ℓ is:

ℓ =
∑L

l=1
αlℓl, (15)

where L is the total number of warp-refinement levels and

αl denotes the weight of the l-th level.

4. Implementation

4.1. KITTI Odometry Dataset

KITTI odometry dataset [8, 7] is composed of 22 inde-

pendent sequences. The Velodyne LiDAR point clouds in

the dataset are used in our experiments. All scans of point

clouds have XYZ coordinates and the reflectance informa-

tion. Sequences 00-10 (23201 scans) contain ground truth

pose (trajectory), while there is no ground truth publicly

available for the remaining sequences 11-21 (20351 scans).

By driving under different road environments, such as high-

ways, residential roads, and campus roads, the sampling

vehicle captures point clouds for the LiDAR odometry task

from different environments.

Data Preprocessing: Only coordinates of LiDAR points

are used in our method. Because the ground truth poses are

denoted in the left camera coordinate system, all the training

and evaluation processes of this network are carried out in

the left camera coordinate system. Thus, the captured point

clouds from the Velodyne LiDAR are firstly transformed to

the left camera coordinate system by:

Pcam = TrPvel, (16)

where Pcam and Pvel are the point cloud coordinates in

the left camera coordinate system and LiDAR coordinate

system respectively, and Tr is the calibration matrix of each

sequence. Moreover, the point cloud collected by the LiDAR

sensor often contains outliers at the edge of the point cloud in

each frame. This is often because objects are far away from

the LiDAR sensor, thus forming incomplete point clouds in

the edge. To filter out these outlier points, the points out of

the 30×30m2 square area around the vehicle are filtered out

for each point cloud Pcam. To speed up the data reading and

training, the ground less than 0.55m in height is removed.

For our model, the performances of removing and reserving

the ground are similar. The detailed comparison is shown in

the supplementary material.
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00∗ 01∗ 02∗ 03∗ 04∗ 05∗ 06∗ 07 08 09 10 Mean on 07-10
Method

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

Full LOAM [31] 1.10 0.53 2.79 0.55 1.54 0.55 1.13 0.65 1.45 0.50 0.75 0.38 0.72 0.39 0.69 0.50 1.18 0.44 1.20 0.48 1.51 0.57 1.145 0.498

ICP-po2po 6.88 2.99 11.21 2.58 8.21 3.39 11.07 5.05 6.64 4.02 3.97 1.93 1.95 1.59 5.17 3.35 10.04 4.93 6.93 2.89 8.91 4.74 7.763 3.978

ICP-po2pl 3.80 1.73 13.53 2.58 9.00 2.74 2.72 1.63 2.96 2.58 2.29 1.08 1.77 1.00 1.55 1.42 4.42 2.14 3.95 1.71 6.13 2.60 4.013 1.968

GICP [19] 1.29 0.64 4.39 0.91 2.53 0.77 1.68 1.08 3.76 1.07 1.02 0.54 0.92 0.46 0.64 0.45 1.58 0.75 1.97 0.77 1.31 0.62 1.375 0.648

CLS [21] 2.11 0.95 4.22 1.05 2.29 0.86 1.63 1.09 1.59 0.71 1.98 0.92 0.92 0.46 1.04 0.73 2.14 1.05 1.95 0.92 3.46 1.28 2.148 0.995

Velas et al. [22] 3.02 NA 4.44 NA 3.42 NA 4.94 NA 1.77 NA 2.35 NA 1.88 NA 1.77 NA 2.89 NA 4.94 NA 3.27 NA 3.218 NA

LO-Net [10] 1.47 0.72 1.36 0.47 1.52 0.71 1.03 0.66 0.51 0.65 1.04 0.69 0.71 0.50 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93 1.748 0.793

DMLO [11] NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.73 0.48 1.08 0.42 1.10 0.61 1.12 0.64 1.008 0.538

LOAM w/o mapping 15.99 6.25 3.43 0.93 9.40 3.68 18.18 9.91 9.59 4.57 9.16 4.10 8.91 4.63 10.87 6.76 12.72 5.77 8.10 4.30 12.67 8.79 11.090 6.405

Ours 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

Table 1. The LiDAR odometry experiment results on KITTI odometry dataset [7]. trel and rrel mean the average translational RMSE

(%) and rotational RMSE (◦/100m) respectively on all possible subsequences in the length of 100, 200, ..., 800m. ‘∗’ means the training

sequence. LOAM is a complete SLAM system, including back-end optimization and others only include odometry. The data other than the

last three lines are from [10]. The results of LOAM w/o mapping are obtained by running their published codes. The best results are bold.

00∗ 01∗ 02∗ 03∗ 04∗ 05∗ 06∗ 07 08 09∗ 10∗ Mean on 07-08
Method

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

LodoNet [32] 1.43 0.69 0.96 0.28 1.46 0.57 2.12 0.98 0.65 0.45 1.07 0.59 0.62 0.34 1.86 1.64 2.04 0.97 0.63 0.35 1.18 0.45 1.950 1.305

Ours 0.75 0.36 0.57 0.21 0.83 0.37 0.90 0.38 0.45 0.39 0.53 0.31 0.37 0.22 0.61 0.43 1.29 0.57 0.55 0.24 0.61 0.39 0.950 0.500

Table 2. The LiDAR odometry experiment results on KITTI odometry dataset [7] compared with [32]. As [32] is trained on sequences

00-06, 09-10 and tested on sequences 07-08, we train and test our model like this to make comparisons with [32].

04 10 Mean
Method

trel rrel trel rrel trel rrel

DeepPCO [27] 2.63 3.05 2.47 6.59 2.550 4.820

Ours 0.73 0.43 1.57 0.57 1.150 0.500

Table 3. The LiDAR odometry results on sequences 04 and 10 of

KITTI odometry dataset [7]. As [27] is trained on sequences 00-03,

05-09 and only reports testing results on sequences 04 and 10, we

train and test our model like this to make comparisons with it.

09 10 Mean
Method

trel rrel trel rrel trel rrel

Cho et al. [3] 4.87 1.95 5.02 1.83 4.945 1.890

Ours 0.73 0.40 1.16 0.78 0.945 0.295

Table 4. The LiDAR odometry results on sequences 09 and 10 of

KITTI odometry dataset [7]. As [3] applies unsupervised training

on sequences 00-08, and reports testing results on sequences 09 and

10, we train and test our model like this to make fair comparisons.

Data Augmentation: We augment the training dataset by

the augmentation matrix Taug, generated by the rotation

matrix Raug and translation vector taug. Varied values of

yaw-pitch-roll Euler angles are generated by Gaussian distri-

bution around 0◦. Then the Raug can be obtained from these

random Euler angles. Similarly, the taug is generated by the

same process. The composed Taug is then used to augment

the PC1 to obtain new point clouds PC1,aug by:

PC1,aug = TaugPC1. (17)

Correspondingly, the ground truth transformation matrix

is also modified as:

Ttrans = TaugTp, (18)

where Tp denotes the original ground truth pose transfor-

mation matrix from PC1 to PC2. Ttrans is then used to

generate qgt and tgt to supervise the training of the network.

4.2. Network Details

In the training and evaluation process, the input N points

are randomly sampled from the point clouds of two frames

separately. It is unnecessary that the original input two

point clouds have the same number of points. And N is set

to be 8192 in the proposed network. Each layer in MLP

contains the ReLU activation function, except for the FC

layer. For shared MLP, 1 × 1 convolution with 1 stride

is the implement manner. The detailed layer parameters

including each linear layer width in MLP are described in

the supplementary material. All training and evaluation

experiments are conducted on a single NVIDIA RTX 2080Ti

GPU with TensorFlow 1.9.0. The Adam optimizer is adopted

with β1 = 0.9, β2 = 0.999. The initial learning rate is

0.001 and exponentially decays every 200000 steps until

0.00001. The initial values of the trainable parameters sx
and sq are set as 0.0 and -2.5 respectively in formula (14).

For formula (15), α1 = 1.6, α2 = 0.8, α3 = 0.4, and L = 4.

The batch size is 8.

5. Experimental Results

In this section, the quantitative and qualitative results

of the network performance on the LiDAR odometry task

are demonstrated and compared with state-of-the-art meth-

ods. Then, the ablation studies are presented. Finally, the

embedding mask is visualized and discussed.

5.1. Performance Evaluation

As there are several modes to divide the training/testing

sets for published papers [10, 32, 27, 32, 3], in order to fairly

compare with all current methods as we know, we train/test

our model four times.

Using sequences 00-06/07-10 as training/testing sets:

Quantitative results are listed in Table 1. ICP-point2point
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(b) 2D Trajectory Plots of Seq.01(a) 2D Trajectory Plots of Seq.06

Figure 5. Trajectory results of LOAM and ours on KITTI training

sequences with ground truth. Ours is much better than the LOAM

without mapping. And ours also has better performance on the

two sequences than full LOAM, though ours is for odometry and

LOAM has the mapping optimization.

(ICP-po2po), ICP-point2plane (ICP-po2pl), GICP [19] ,

CLS [21] are several classic LiDAR odometry estimation

methods based on Iterative Closest Point (ICP) [1]. LOAM

[31] is based on the matching of extracted line and plane

features, which has a similar idea with our method, and

it is a hand-crafted method. It achieves the best results

among LiDAR-based methods in the KITTI odometry eval-

uation benchmark [7]. Velas et al. [22] is a learning-based

method. It has a good performance when only the transla-

tion is estimated, but the performance will decrease when

estimating the 6-DOF pose. LO-Net [10] and DMLO [11]

are learning-based LiDAR odometry methods that have com-

parable results, but they have no codes publicly available,

so we adopt the same training and testing sequences with

[10, 11]. Compared with [11], our method utilizes soft cor-

respondence rather than exact matching pairs so as to relize

end-to-end pose estimation, and we achieved similar results

on trel and better results on rrel. Compared with [10], our

method does not need an extra mask network and can fil-

ter the outliers with the proposed hierarchical embedding

mask. Moreover, our method does not need to project 3D

point clouds to 2D [10, 11] and obtains the LiDAR odometry

directly from the raw 3D point clouds. We achieved better

results than LO-Net [10], even than LOAM [31] on most

sequences. We believe the pose refinement target makes our

internal trainable mask effective for various outliers other

than only dynamic regions [10] as shown in Fig. 8. More-

over, the trainable iterative refinement makes the estimated

pose refined multiple times in one network inference.

Using other sequences as training/testing sets:

00-06, 09-10/07-08: Quantitative results are listed in Table 2

to compare with a recent method [32].

00-03, 05-09/04, 10: As shown in Table 3, we adopted the

same training/testing sets of the KITTI odometry dataset [7]

and compared with [27].

00-08/09-10: [3] proposes an unsupervised method on Li-

DAR odometry. Table 4 shows the quantitative comparison

of this method with ours.

(b)  3D Trajectory Plots of Seq.07(a)  2D Trajectory Plots of Seq.07

Figure 6. 3D and 2D trajectory results on KITTI validation sequence

07 with ground truth. Our method obtained the most accurate

trajectory.

Figure 7. Average translational and rotational error on KITTI

sequences 00-10 on all possible subsequences in the length of

100, 200, ..., 800m. Our method has the best performance.

The results in Table 2, Table 3, and Table 4 show that

our method outperforms them. [27] is based on 2D convo-

lutional network, which loses the raw 3D information. [32]

finds matched keypoint pairs in 2D depth images to regress

pose. [3] is a method of unsupervised training. The results

demonstrate the superiority of our full 3D learning based

LiDAR odometry.

The qualitative results are shown in Figs. 5, 6, and 7. We

compared our method with LOAM [31] and LOAM without

mapping since [10, 32, 27, 11] do not release their codes.

Full LOAM has a superb performance but degrades signifi-

cantly without mapping. Ours is only for odometry and is

better than the LOAM without mapping. At the same time,

ours is even better than LOAM [31] on average evaluation.

5.2. Ablation Study

In order to analyze the effectiveness of each module, we

remove or change components of our model to do the abla-

tion studies on KITTI odometry dataset. The training/testing

details are the same as described in Sec. 4.

Benefits of Embedding Mask: We first remove the opti-

mization of the mask, which means that the embedding

masks are independently estimated at each level. Then we

entirely remove the mask and apply the average pooling to

embedding features to calculate the pose. The results in

Table 5(a) show that the proposed embedding mask and its

hierarchical optimization both contribute to better results.
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00∗ 01∗ 02∗ 03∗ 04∗ 05∗ 06∗ 07 08 09 10 Mean on 07-10
Method

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

(a) Ours w/o mask 0.99 0.58 0.61 0.25 1.07 0.55 0.84 0.66 0.42 0.58 0.68 0.41 0.33 0.25 0.76 0.58 1.54 0.66 1.30 0.61 2.36 0.86 1.490 0.678

Ours w/o mask optimazation 0.91 0.54 0.59 0.26 1.10 0.49 0.81 0.43 0.41 1.05 0.57 0.39 0.34 0.22 0.67 0.54 1.41 0.59 0.78 0.39 1.32 0.66 1.045 0.545

Ours (full, with mask and mask optimazation) 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

(b) Ours (w/o cost volume) 42.52 19.44 22.73 4.44 37.53 12.55 22.21 13.18 15.38 3.59 31.95 12.88 12.82 3.83 30.78 18.95 67.08 25.72 38.63 16.38 40.55 19.80 44.260 20.213

Ours (with the cost volume in [12]) 1.11 0.51 0.61 0.22 0.97 0.47 0.68 0.61 0.50 0.67 0.51 0.30 0.38 0.17 1.18 0.73 1.40 0.59 1.15 0.46 1.50 0.88 1.308 0.665

Ours (with the cost volume in [28]) 0.69 0.35 0.59 0.23 0.87 0.42 0.79 0.55 0.34 0.34 0.49 0.28 0.28 0.17 0.62 0.47 1.47 0.62 0.97 0.48 1.54 0.59 1.150 0.540

Ours (full, with the cost volume in [24]) 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

(c) Ours w/o Pose Warp-Refinement 15.71 8.26 13.92 5.62 13.38 7.07 15.74 16.62 5.00 6.89 14.19 7.87 6.38 5.33 12.52 11.73 15.64 9.11 10.17 7.60 16.09 11.29 13.605 9.933

Ours w/o Pose Warp 3.07 1.40 4.04 1.56 3.27 1.27 2.56 2.01 0.91 1.13 2.28 1.15 2.08 1.18 4.29 2.75 5.00 2.14 4.48 2.19 5.39 3.36 4.790 2.610

Ours (full, with Pose Warp-Refinement) 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

(d) Ours (first embedding on the last level) 0.95 0.46 0.67 0.29 1.03 0.44 0.96 0.77 0.48 0.40 0.74 0.40 0.41 0.26 0.94 0.49 1.41 0.56 1.01 0.47 1.67 0.82 1.258 0.585

Ours (full, first embedding on the penultimate level) 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490

Table 5. The ablation study results of LiDAR odometry on KITTI odometry dataset [7].

The mismatched objects are different in various scenes.

In some scenes, the car is dynamic, while the car is static

in another scene (Fig. 8). Through the learnable embedding

mask, the network learns to filter outlier points from the

overall motion pattern. The network achieves the effect of

RANSAC [6] by only once network inference.

Different Cost Volume: As there are different point feature

embedding methods in point clouds, we compare three recent

methods in our odometry task, including the flow embedding

layer in FlowNet3D [12], point cost volume [28] and the

attentive cost volume [24]. The results in Table 5(b) show

that the model with double attentive cost volume has the best

results in the three. Therefore, robust point association also

contributes to the LiDAR odometry task.

Effect of Pose Warp-Refinement: We first remove the pose

warping and reserve the hierarchical refinement of the em-

bedding feature and the mask. The results show a decline as

in Table 5(c). Then we remove the full pose warp-refinement

module, which means that the embedding features, mask,

and pose are only calculated once. As a result, the perfor-

mance degrades a lot, which demonstrates the importance of

the coarse-to-fine refinement.

Suitable Level for the First Embedding: As fewer points

have less structural information, it is needed to decide which

level is used to firstly correlate the two point clouds and gen-

erate the embedding features. We test the different levels of

the first feature embedding. The results in Table 5(d) demon-

strate that the most suitable level for the first embedding is

the penultimate level in the point feature pyramid, which

shows that the 3D structure is also important for the coarse

pose regression.

5.3. Visualization of Embedding Mask

The proposed network uses embedding features of 2048

points to calculate the pose transformation in the final pose

output layer. We visualize the embedding mask in the 2048

points to show the contribution of each point to the final

pose transformation. As illustrated in Fig. 8, the points

that are sampled from the static and structured rigid objects

such as buildings, steel bars, and the static car have higher

weights. On the contrary, the points from the dynamic and

irregular objects such as the moving car, the cyclist, bushes,

Low High
Weight

Image

LiDAR

Point Clouds

Figure 8. The Visualization of embedding mask. In the LiDAR

point clouds, the small red points are the whole point cloud of

the first frame, and the big points with distinctive colors are the

sampled 2048 points with contributions to the pose transformation.

In the example on the left, the buildings and steel bars around the

highway have high weights, while the bushes and the moving car

have low weights. In the example on the right, the buildings, the

tree trunks, and the static car have high weights, while the weeds

and the cyclist have low weights.

and weeds have lower weights. In LO-Net [10], only the

dynamic regions are masked, while our method also gives

small weight to unreliable weeds and bushes. Therefore,

the embedding mask can effectively reduce the influence of

dynamic objects and other outliers on the estimation of pose

transformation from adjacent frames.

6. Conclusion

Different from the 2D projection-based methods [16, 22,

27, 10], a full 3D learning method based on PWC structure

for LiDAR odometry is proposed in this paper. The pose

warp-refinement module is proposed to realize the hierarchi-

cal refinement of 3D LiDAR odometry in a coarse-to-fine

approach. The hierarchical embedding mask optimization

is proposed to deal with various outlier points. And our

method achieved a new state-of-the-art end-to-end LiDAR

odometry method with no need for an extra mask network

[10]. Since our mask can filter a variety of outlier points

that are not suitable for calculating overall motion, it is a

direction worth exploring to combine our new mask with

mapping optimization in the future.
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