
PatchmatchNet: Learned Multi-View Patchmatch Stereo

Fangjinhua Wang1 Silvano Galliani2 Christoph Vogel2 Pablo Speciale2 Marc Pollefeys1,2

1Department of Computer Science, ETH Zurich
2Microsoft Mixed Reality & AI Zurich Lab

Abstract

We present PatchmatchNet, a novel and learnable cas-

cade formulation of Patchmatch for high-resolution multi-

view stereo. With high computation speed and low memory

requirement, PatchmatchNet can process higher resolution

imagery and is more suited to run on resource limited de-

vices than competitors that employ 3D cost volume regular-

ization. For the first time we introduce an iterative multi-

scale Patchmatch in an end-to-end trainable architecture

and improve the Patchmatch core algorithm with a novel

and learned adaptive propagation and evaluation scheme

for each iteration. Extensive experiments show a very com-

petitive performance and generalization for our method on

DTU, Tanks & Temples and ETH3D, but at a significantly

higher efficiency than all existing top-performing models:

at least two and a half times faster than state-of-the-art

methods with twice less memory usage. Code is avail-

able at https://github.com/FangjinhuaWang/

PatchmatchNet.

1. Introduction

Given a collection of images with known camera param-

eters, multi-view stereo (MVS) describes the task of recon-

structing the dense geometry of the observed scene. De-

spite being a fundamental problem of geometric computer

vision that has been studied for several decades, MVS is

still a challenge. This is due to a variety of de-facto un-

solved problems occurring in practice such as occlusion, il-

lumination changes, untextured areas and non-Lambertian

surfaces [1, 22, 30].

The success of Convolutional Neural Networks (CNN)

in almost any field of computer vision ignites the hope that

data driven models can solve some of these issues that clas-

sical MVS models struggle with. Indeed, many learning-

based methods [6, 26, 36, 39, 40] appear to fulfill such

promise and outperform some traditional methods [15, 29]

on MVS benchmarks [1, 22]. While being successful at the

benchmark level, most of them do only pay limited atten-

tion to scalability, memory and run-time. Currently, most

2 4 6 8 10
GPU Mem. (GB)

0.35

0.40

0.45

0.50

0.55

Ov
er

al
l E

rro
r (

m
m

)

DTU's evaluation set

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Run-time (s)

0.35

0.40

0.45

0.50

0.55

DTU's evaluation set
CasMVSNet
UCS-Net
CVP-MVSNet
Fast-MVSNet
R-MVSNet
MVSNet
Ours

Figure 1: Comparison with state-of-the-art learning-based

multi-view stereo methods [7,16,38,39,40,41] on DTU [1].

Relationship between error, GPU memory and run-time

with image size 1152×864.

learning-based MVS methods [6, 26, 36, 39] construct a 3D

cost volume, regularize it with a 3D CNN and regress the

depth. As 3D CNNs are usually time and memory consum-

ing, some methods [36, 39] down-sample the input during

feature extraction and compute both, the cost volume and

the depth map at low-resolution. Yet, according to Fig. 1,

delivering depth maps at low resolution can harm accuracy.

Methods that do not scale up well to realistic image sizes of

several mega-pixel cannot exploit the full resolution due to

memory limitations. Evidently, low memory and time con-

sumption are key to enable processing on memory and com-

putational restricted devices such as phones or mixed reality

headsets, as well as in time critical applications. Recently,

researchers tried to alleviate these limitations. For example,

R-MVSNet [40] decouples the memory requirements from

the depth range and sequentially processes the cost volume

at the cost of an additional runtime penalty. [7, 16, 38] in-

clude cascade 3D cost volumes to predict high-resolution

depth map from coarse to fine with high efficiency in time

and memory.

Several traditional MVS methods [15, 29, 35, 42] aban-

don the idea of holding a structured cost volume completely

and instead are based on the seminal Patchmatch [2] algo-

rithm. Patchmatch adopts a randomized, iterative algorithm

for approximate nearest neighbor field computation [2]. In

particular, the inherent spatial coherence of depth maps is

exploited to quickly find a good solution without the need to

look through all possibilities. Low memory requirements –

14194



independent of the disparity range – and an implicit smooth-

ing effect make this method very attractive for our deep

learning based MVS setup.

In this work, we propose PatchmatchNet, a novel cas-

cade formulation of learning-based Patchmatch, which aims

at decreasing memory consumption and run-time for high-

resolution multi-view stereo. It inherits the advantages in

efficiency from classical Patchmatch, but also aims to im-

prove the performance with the power of deep learning.

Contributions: (i) We introduce the Patchmatch idea into

an end-to-end trainable deep learning based MVS frame-

work. Going one step further, we embed the model into

a coarse-to-fine framework to speed up computation. (ii)

We augment the traditional propagation and cost evaluation

steps of Patchmatch with learnable, adaptive modules that

improve accuracy and base both steps on deep features. We

estimate visibility information during cost aggregation for

the source views. Moreover, we propose a robust train-

ing strategy to introduce randomness into training for im-

proved robustness in visibility estimation and generaliza-

tion. (iii) We verify the effectiveness of our method on var-

ious MVS datasets, e.g. DTU [1], Tanks & Temples [22]

and ETH3D [30]. The results demonstrate that our Patch-

matchNet achieves competitive performance, while reduc-

ing memory consumption and run-time compared to most

learning-based methods.

2. Related Work

Traditional MVS. Traditional MVS methods can be di-

vided into four categories: voxel-based [31, 33], surface

evolution based [13,23], patch-based [14,25] and depth map

based [15,29,35]. Comparatively, depth map based methods

are more concise and flexible. Here, we discuss Patchmatch

Stereo methods [15, 29, 35] in this category. Galliani et

al. [15] present Gipuma, a massively parallel multi-view ex-

tension of Patchmatch stereo. It uses a red-black checker-

board pattern to parallelize message-passing during propa-

gation. Schönberger et al. [29] present COLMAP, which

jointly estimates pixel-wise view selection, depth map and

surface normal. ACMM [35] adopts adaptive checkerboard

sampling, multi-hypothesis joint view selection and multi-

scale geometric consistency guidance. Based on the idea

of Patchmatch, we propose our learning-based Patchmatch,

which inherits the efficiency from classical Patchmatch, but

also improves the performance leveraging deep learning.

Learning-based stereo. GCNet [20] introduces 3D cost

volume regularization for stereo estimation and regresses

the final disparity map with a soft argmin operation. PSM-

Net [5] adds spatial pyramid pooling (SPP) and applies a 3D

hour-glass network for regularization. DeepPruner [11] de-

velops a differentiable Patchmatch module, without learn-

able parameters, to discard most disparities and then builds

a lightweight cost volume, which is regularized by a 3D

CNN. In contrast, we do not apply any cost volume regu-

larization but extend the original Patchmatch idea into the

deep learning era. Xu et al. [34] propose a sparse point

based intra-scale cost aggregation method with deformable

convolution [10]. Likewise, we propose a strategy to adap-

tively sample points for spatial cost aggregation.

Learning-based MVS. Voxel-based methods [18, 19] are

restricted to small-scale reconstructions, due to the draw-

backs of a volumetric representation. In contrast, based on

plane-sweep stereo [9], many recent works [6,26,36,39] use

depth maps to reconstruct the scene. They build cost vol-

umes with warped features from multiple views, regularize

them with 3D CNNs and regress the depth. As 3D CNNs

are time and memory consuming, they usually use down-

sampled cost volumes. To reduce memory, R-MVSNet [40]

sequentially regularizes 2D cost maps with GRU [8] but

sacrifices run-time. Current research targets to improve ef-

ficiency and also estimate high-resolution depth maps. Cas-

MVSNet [16] proposes cascade cost volumes based on a

feature pyramid and estimates the depth map in a coarse-to-

fine manner. UCS-Net [7] proposes cascade adaptive thin

volumes, which use variance-based uncertainty estimates

for an adaptive construction. CVP-MVSNet [38] forms an

image pyramid and also constructs a cost volume pyramid.

To accelerate propagation in Patchmatch, we likewise em-

ploy a cascade formulation. In addition to cascade cost

volumes, PVSNet [37] learns to predict visibility for each

source image. An anti-noise training strategy is used to in-

troduce disturbing views. We also learn a strategy to adap-

tively combine the information of multiple views based on

visibility information. Moreover, we propose a robust train-

ing strategy to include randomness into the training to im-

prove robustness in visibility estimation and generalization.

Fast-MVSNet [41] constructs a sparse cost volume to learn

a sparse depth map and then use high-resolution RGB im-

age and 2D CNN to densify it. We build a refinement mod-

ule and use the RGB image to guide the up-sampling of the

depth map based on MSG-Net [17].

3. Method

In this section, we introduce the structure of Patchmatch-

Net, illustrated in Fig. 2. It consists of multi-scale fea-

ture extraction, learning-based Patchmatch included itera-

tively in a coarse-to-fine framework, and a spatial refine-

ment module.

3.1. Multi­scale Feature Extraction

Given N input images of size W ×H , we use I0 and

{Ii}
N−1

i=1
to denote reference and source images respec-

tively. Before we apply our learning-based Patchmatch al-

gorithm, we extract pixel-wise features from our inputs,

14195



Figure 2: Structure of PatchmatchNet: multi-scale fea-

ture extractor, learning-based Patchmatch and refinement.

Patchmatch is applied for multiple iterations on several

stages to predict the depth map in a coarse-to-fine manner.

Refinement uses the input to guide upsampling of the final

depth map. On stage k, the resolution of the depth maps is
W
2k

× H
2k

, with input images of size W×H .

similar to Feature Pyramid Network (FPN) [24]. Features

are extracted hierarchically at multiple resolutions, which

allows us to advance our depth map estimation in a coarse-

to-fine manner.

3.2. Learning­based Patchmatch

Following traditional Patchmatch [2] and subsequent

adaptations to depth map estimation [3, 15], our learnable

Patchmatch consists of the following three main steps:

1. Initialization: generate random hypotheses;

2. Propagation: propagate hypotheses to neighbors;

3. Evaluation: compute the matching costs for all the hy-

potheses and choose best solutions.

After initialization, the approach iterates between prop-

agation and evaluation until convergence. Leveraging deep

learning, we propose an adaptive version of the propagation

(Sec. 3.2.2) and evaluation (Sec. 3.2.3) module and also ad-

just the initialization (Sec. 3.2.1). The detailed structure of

our Patchmatch pipeline is illustrated in Fig. 3. In a nutshell,

the propagation module adaptively samples the points for

propagation based on the extracted deep features. Our adap-

tive evaluation learns to estimate visibility information for

cost computation and adaptively samples the spatial neigh-

bors to aggregate the costs again based on deep features.

Unlike [3, 15, 35], we refrain from parameterizing the per-

pixel hypothesis as a slanted plane, due to heavy memory

penalties. Instead, we rely on our learned adaptive evalua-

tion to organize the spatial pattern within the window over

which matching costs are computed.

3.2.1 Initialization and Local Perturbation

In the very first iteration of Patchmatch, the initialization

is performed in a random manner to promote diversifica-

tion. Based on a pre-defined depth range [dmin, dmax], we

sample per pixel Df depth hypotheses in the inverse depth

range, corresponding to uniform sampling in image space.

This helps our model be applicable to complex and large-

scale scenes [36, 40]. To ensure we cover the depth range

evenly, we divide the (inverse) range into Df intervals and

ensure that each interval is covered by one hypothesis.

For subsequent iterations on stage k, we perform local

perturbation by generating per pixel Nk hypotheses uni-

formly in the normalized inverse depth range Rk and grad-

ually decrease Rk for finer stages. To define the center of

Rk, we utilize the estimation from previous iteration, possi-

bly up-sampled from a coarser stage. This delivers a more

diverse set of hypotheses than just using propagation. Sam-

pling around the previous estimation can refine the result

locally and correct wrong estimates (see supplementary).

3.2.2 Adaptive Propagation

Spatial coherence of depth values does in general only ex-

ist for pixel from the same physical surface. Hence, instead

of propagating depth hypotheses naively from a static set of

neighbors as done for Gipuma [15] and DeepPruner [11],

we want to perform the propagation in an adaptive man-

ner, which gathers hypotheses from the same surface. This

helps Patchmatch converge faster and deliver more accurate

depth maps. Fig. 4 illustrates the idea and functionality of

our strategy. Our adaptive scheme tends to gather hypothe-

ses from pixels of the same surface – for both the textured

object and the textureless region – enabling us to effectively

collect more promising depth hypotheses compared to using

just a static pattern.

We base our implementation of the adaptive propaga-

tion on Deformable Convolution Networks [10]. As the

approach is identical for each resolution stage, we omit

subindices denoting the stage. To gather Kp depth hypothe-

ses for pixel p in the reference image, our model learns ad-

ditional 2D offsets {∆oi(p)}
Kp

i=1
that are applied on top of

fixed 2D offsets {oi}
Kp

i=1
, organized as a grid. We apply a

2D CNN on the reference feature map F0 to learn additional

2D offsets for each pixel p and get the depth hypotheses

Dp(p) via bilinear interpolation as follows:

Dp(p) = {D(p+ oi +∆oi(p))}
Kp

i=1
, (1)

where D is the depth map from previous iteration, possibly

up-sampled from a coarser stage.

3.2.3 Adaptive Evaluation

The adaptive evaluation module performs the following

steps: differentiable warping, matching cost computation,

14196



Figure 3: Detailed structure of learned Patchmatch. At the initial iteration of coarsest stage 3 only random depth hypotheses

in initialization are used. Afterwards, hypotheses are obtained from adaptive propagation and local perturbation, the latter

providing depth samples around the previous estimate. The learned pixel-wise view weight is estimated in the first iteration

of Patchmatch and kept fixed in the matching cost computation.

Figure 4: Sampled locations with adaptive propagation.

Pixels located at the object boundary (yellow) and a tex-

tureless region (red) receive depth hypotheses from sampled

neighbors (green and orange). (a) Reference image. (b)

Fixed sampling locations of classic propagation. (c) Adap-

tive sampling locations with adaptive propagation. The

grayscale image in (b) and (c) is the ground truth depth map.

adaptive spatial cost aggregation and depth regression. As

the approach is identical at each resolution stage, we omit

subindices to ease notation.

Differentiable Warping. Following plane sweep stereo [9],

most learning-based MVS methods [7, 16, 26, 39, 40] es-

tablish front-to-parallel planes at sampled depth hypothe-

ses and warp the feature maps of source images into

them. Equipped with intrinsic matrices {Ki}
K

i=0
and rel-

ative transformations {[R0,i|t0,i]}
K

i=1
of reference view 0

and source view i, we compute the corresponding pixel

pi,j := pi(dj) in the source for a pixel p in the reference,

given in homogeneous coordinates, and depth hypothesis

dj := dj(p) as follows:

pi,j = Ki · (R0,i · (K
−1

0
· p · dj) + t0,i). (2)

We obtain the warped source feature maps of view i and the

j-th set of (per pixel different) depth hypotheses, Fi(pi,j),
via differentiable bilinear interpolation.

Matching Cost Computation. For multi-view stereo, this

step has to integrate information from an arbitrary number

of source views into a single cost per pixel p and depth

hypothesis dj . To that end, we compute the cost per hy-

pothesis via group-wise correlation [36] and aggregate over

the views with a pixel-wise view weight [29, 35, 37]. In

that manner we can employ visibility information during

cost aggregation and gain robustness. Finally, the per group

costs are projected into a single number, per reference pixel

and hypothesis, by a small network.

Let F0(p), Fi(pi,j) ∈ R
C be the features in the refer-

ence and source feature maps respectively. After dividing

their feature channels evenly into G groups, F0(p)
g and

Fi(pi,j)
g , the g-th group similarity Si(p, j)

g ∈ R is com-

puted as:

Si(p, j)
g =

G

C
〈F0(p)

g,Fi(pi,j)
g〉 , (3)

where 〈·, ·〉 is the inner product. We use Si(p, j) ∈ R
G

to denote the respective group similarity vector. Agglom-

eration over hypotheses and pixels delivers the tensor Si ∈
R

W×H×D×G.

To find pixel-wise view weights, {wi(p)}
N−1

i=1
, we ex-

ploit the diversity of our initial set of depth hypotheses in

the first iteration on stage 3 (Sec. 3.2.1). We intend wi(p) to

represent the visibility information of pixel p in the source

image Ii. The weights are computed once and kept fixed

and up-sampled for finer stages.

A simple pixel-wise view weight network, composed of

3D convolution layers with 1×1×1 kernels and sigmoid non-

linearities, takes the initial set of similarities Si to output a

number between 0 and 1 per pixel and depth hypothesis to

produce Pi∈R
W×H×D. The view weights for pixel p and

source image Ii are given by:

wi(p) = max {Pi(p, j)|j = 0, 1, . . . , D − 1} , (4)

where Pi(p, j) intuitively represents confidence of visibil-

ity for the range covered by the j-th depth hypothesis at p.

The final per group similarities S̄(p, j) for pixel p and

the j-th hypothesis are the weighted sum of Si(p, j) and the

view weight wi(p):

S̄(p, j) =

∑N−1

i=1
wi(p) · Si(p, j)∑N−1

i=1
wi(p)

. (5)

Finally, we compose S̄(p, j) for all pixels and hypothe-

14197



Figure 5: Sampled locations in adaptive spatial cost aggre-

gation. Pixels located at an object boundary (yellow) and a

textureless area (red) aggregate matching costs from sam-

pled neighbors (blue and orange). (a) Reference image for

depth prediction. (b) Fixed sampling locations. (c) Adap-

tive sampling locations of our method. The grayscale image

in (b) and (c) is the ground truth depth map.

ses into S̄ ∈ R
W×H×D×G and apply a small network with

3D convolution and 1×1×1 kernels to obtain a single cost,

C ∈ R
W×H×D, per pixel and depth hypothesis.

Adaptive Spatial Cost Aggregation. Traditional MVS

matching algorithms often aggregate costs over a spatial

window (i.e. in our case a front-to-parallel plane) for in-

creased matching robustness and an implicit smoothing ef-

fect. Arguably, our multi-scale feature extractor already

aggregates neighboring information from a large receptive

field in the spatial domain. Nevertheless, we propose to

look into spatial cost aggregation. To prevent the problem

of aggregating across surface boundaries, we propose an

adaptive spatial aggregation strategy based on Patchmatch

stereo [3] and AANet [34]. For a spatial window of Ke

pixels {pk}
Ke

k=1
are organized as a grid, we learn per pixel

additional offsets {∆pk}
Ke

k=1
. The aggregated spatial cost

C̃(p, j) is defined as:

C̃(p, j) =
1

∑Ke

k=1
wkdk

Ke∑

k=1

wkdkC(p+pk+∆pk, j), (6)

where wk and dk weight the cost C based on feature

and depth similarity (details in supplementary). Similar to

adaptive propagation, the per pixel sets of displacements

{∆pk}
Ke

k=1
are found by applying a 2D CNN on the ref-

erence feature map F0. Fig. 5 exemplifies the learned adap-

tive aggregation window. Sampled locations stay within ob-

ject boundaries, while for the textureless region, the sam-

pling points aggregate over a larger spatial context, which

can potentially reduce the ambiguity of estimation.

Depth Regression. Using softmax we turn the (negative)

cost C̃ to a probability P, which is used for sub-pixel depth

regression and measure estimation confidence [39]. The re-

gressed depth value D(p) at pixel p is found as the expec-

tation w.r.t. P of the hypotheses:

D(p) =
D−1∑

j=0

dj ·P(p, j). (7)

3.3. Depth Map Refinement

Instead of using Patchmatch also on the finest resolution

level (stage 0), we find it sufficient to directly up-sample

(from resolution W
2
× H

2
to W×H) and refine our estima-

tion with the RGB image. Based on MSG-Net [17], we

design a depth residual network. To avoid being biased for

a certain depth scale, we pre-scale the input depth map into

the range [0, 1] and convert it back after refinement. Our re-

finement network learns to output a residual that is added to

the (up-sampled) estimation from Patchmatch, D, to get the

refined depth map Dref . This network independently ex-

tracts feature maps FD and FI from D and I0 and applies

deconvolution on FD to up-sample the feature map to the

image size. Multiple 2D convolution layers are applied on

top of the concatenation of both feature maps – depth map

and image – to deliver the depth residual.

3.4. Loss Function

Loss function Ltotal considers the losses among all the

depth estimation and rendered ground truth with same res-

olution as a sum:

Ltotal =

3∑

k=1

nk∑

i=1

Lk
i + L0

ref . (8)

We adopt the smooth L1 loss for Lk
i , the loss of the i-th

iteration of Patchmatch on stage k (k = 1, 2, 3) and L0

ref ,

the loss for final refined depth map.

4. Experiments

We evaluate our work on multiple datasets, such as

DTU [1], Tanks & Temples [22] and ETH3D [30] and ana-

lyze each new component with an ablation study.

4.1. Datasets

The DTU dataset [1] is an indoor multi-view stereo

dataset with 124 different scenes where all scenes share the

same camera trajectory. We use the training, testing and

validation split introduced in [18]. The Tanks & Temples

dataset [22] is provided as a set of video sequences in real-

istic environments. It is divided into intermediate and ad-

vanced datasets. ETH3D benchmark [30] consists of cali-

brated high-resolution images of scenes with strong view-

point variations. It is divided into training and test datasets.

4.2. Robust Training Strategy

Many learning-based methods [7,16,26,36,38,39] select

two best source views based on view selection scores [39]

to train models on DTU [1]. However, the selected source

views have a strong visibility correlation with the reference

view, which may affect the training of the pixel-wise view

weight network. Instead, we propose a robust training strat-

egy based on PVSNet [37]. For each reference view, we

14198



Methods Acc.(mm) Comp.(mm) Overall(mm)

Camp [4] 0.835 0.554 0.695

Furu [14] 0.613 0.941 0.777

Tola [32] 0.342 1.190 0.766

Gipuma [15] 0.283 0.873 0.578

SurfaceNet [18] 0.450 1.040 0.745

MVSNet [39] 0.396 0.527 0.462

R-MVSNet [40] 0.383 0.452 0.417

CIDER [36] 0.417 0.437 0.427

P-MVSNet [26] 0.406 0.434 0.420

Point-MVSNet [6] 0.342 0.411 0.376

Fast-MVSNet [41] 0.336 0.403 0.370

CasMVSNet [16] 0.325 0.385 0.355

UCS-Net [7] 0.338 0.349 0.344

CVP-MVSNet [38] 0.296 0.406 0.351

Ours 0.427 0.277 0.352

Table 1: Quantitative results of different methods on DTU’s

evaluation set [1] (lower is better).

randomly choose four from the ten best source views for

training. This strategy increases the diversity at training

time and augments the dataset on the fly, which improves

the generalization performance. In addition, training on

those random source views with weak visibility correlation

generates further robustness for our visibility estimation.

4.3. Implementation Details

We implement the model with PyTorch [28] and train

it on DTU’s training set [1]. We set the image resolu-

tion to 640 × 512 and the number of input images to

N = 5. The selection of source images is based on the

proposed robust training strategy. We set the iteration num-

ber of Patchmatch on stages 3, 2, 1 as 2, 2, 1. For initial-

ization, we set Df = 48. For local perturbation, we set

R3 = 0.38, R2 = 0.09, R1 = 0.04 (see supplementary),

N3 = 16, N2 = 8, N1 = 8. In the adaptive propagation,

we set Kp on stages 3, 2, 1 to 16, 8, 0 (no propagation for

last iteration on stage 1, see supplementary). For the adap-

tive evaluation, we use Ke = 9 on all stages. We train

our model with Adam [21] (β1 = 0.9, β2 = 0.999) for 8

epochs with a learning rate of 0.001. Here, we use a batch

size of 4 and train on 2 Nvidia GTX 1080Ti GPUs. Af-

ter depth estimation, we reconstruct point clouds similar to

MVSNet [39].

4.4. Benchmark Performance

Evaluation on DTU Dataset. We input images at their

original size (1600×1200) and set the number of views N to

5. The depth range for sampling depth hypotheses is fixed

to [425mm, 935mm]. We follow the evaluation metrics

provided by the DTU dataset [1]. As shown in Table 1,

while Gipuma [15] performs best in accuracy, our method

outperforms others in completeness and achieves competi-

tive performance in overall quality. Fig. 6 shows qualitative

results. Our solution reconstructs a denser point cloud with

finer details, which reflects in a high completeness. Further,

Figure 6: Qualitative comparison of scan 9 of DTU [1].

Top: Reconstructed and ground truth point clouds. Our

method preserves the thin structures on the roof better than

CasMVSNet [16] and delivers accurate boundaries. Bot-

tom: Zoom in. Capable of handling a high input resolution,

our result is much denser, with finer details at doors, win-

dows and logos.

our reconstruction at boundaries and thin structures appears

better than of CasMVSNet [16]. Our adaptive propagation

can recover from errors at boundaries, induced at coarser

resolutions, by using the information of neighbors inside

the boundary (c.f . Fig. 4), while solely relying on sampling

around a previous estimation, as CasMVSNet, can fail.

Memory and Run-time Comparison. We compare the

memory consumption and run-time with several state-of-

the-art learning-based methods that achieve competing per-

formance with low memory consumption and run-time:

CasMVSNet [16], UCS-Net [7] and CVP-MVSNet [38].

These methods propose a cascade formulation of 3D cost

volumes and output depth maps at the same resolution as

the input images. As shown in Fig. 7, memory and run-time

of all the methods increase almost linearly w.r.t. the resolu-

tion as the number of depth hypotheses is fixed (notably this

will lead to under-sampling of the enlarged image space for

methods using a naive cost volume approach). Note that at

higher resolutions other methods could not fit into the mem-

ory of the GPU used for evaluation. We further observe that

memory consumption and run-time increase much slower

for PatchmatchNet than for other methods. For example, at

a resolution of 1152×864 (51.8%), memory consumption

and run-time are reduced by 67.1% and 66.9% compared

to CasMVSNet, by 55.8% and 63.9% compared to UCS-

Net and by 68.5% and 83.4% compared to CVP-MVSNet.

Combining the results in Table 1, we conclude that our

method is much more efficient in memory consumption and

run-time than most state-of-the-art learning-based methods,

at a very competitive performance.

Evaluation on Tanks & Temples Dataset. We use the

model trained on DTU [1] without any fine-tuning. For

evaluation, we set the input image size to 1920 × 1056
and the number of views N to 7. The camera parameters

and sparse point cloud are recovered with OpenMVG [27].

During evaluation, the GPU memory and run-time for each

depth map are 2887 MB and 0.505 s respectively. As shown

in Table 2, the performance of our method on the interme-

14199



0 20 40 60 80 100

1000

2000

3000

4000

5000

6000

G
P
U

 M
e
m

. 
(M

B
)

0 20 40 60 80 100

Resolution (%)

0.00

0.25

0.50

0.75

1.00

1.25

R
u
n
-t

im
e
 (

s
)

1152×864 (51.8% resolution)

CasMVSNet

UCS-Net

CVP-MVSNet

Ours

Figure 7: Relating GPU memory and run-time to the input

resolution on DTU’s evaluation set [1]. The original image

resolution is 1600×1200 (100%). Note that at higher res-

olutions other methods could not fit into the memory of a

Nvidia RTX 2080 GPU, which is used for evaluation.

Methods Intermediate Advanced

COLMAP [29] 42.14 27.24

MVSNet [39] 43.48 -

R-MVSNet [40] 48.40 24.91

CIDER [36] 46.76 23.12

P-MVSNet [26] 55.62 -

Point-MVSNet [6] 48.27 -

Fast-MVSNet [41] 47.39 -

CasMVSNet [16] 56.42 31.12

UCS-Net [7] 54.83 -

CVP-MVSNet [38] 54.03 -

Ours 53.15 32.31

Table 2: Results of different methods on Tanks & Tem-

ples [22] (F score, higher is better). Note that most meth-

ods refrain to evaluate on the more challenging Advanced

dataset.

diate dataset is comparable to CasMVSNet [16], which has

the highest score. For the more complex advanced dataset,

our method performs best among all the methods. Over-

all, due to its simple, scalable structure, our PatchmatchNet

demonstrates competitive generalization performance, low

memory consumption and low run-time compared to state-

of-the-art learning-based methods that commonly use 3D

cost volume regularization.

Evaluation on ETH3D Benchmark. We use the model

trained on DTU [1] without any fine-tuning. For evalu-

ation, we set the input image size as 2688× 1792. Due

to the strong viewpoint changes in ETH3D, we also use

N =7 views to utilize more multi-view information. Cam-

era parameters and the sparse point cloud are recovered with

COLMAP [29]. During evaluation, the GPU memory con-

sumption and run-time for the estimation of each depth map

are 5529 MB and 1.250 s respectively. As shown in Table 3,

on the training dataset, the performance of our method is

comparable to COLMAP [29] and PVSNet [37]. On the

particularly challenging test dataset, our method performs

Figure 8: Visualization of our pixel-wise view weight on

a scene from ETH3D [30]. Areas marked with boxes in

source images and reference image are co-visible. Right:

The corresponding pixel-wise view weights, bright colors

(large values) indicate co-visibility.

Methods
Training Test

F1 score Time(s) F1 score Time(s)

MVE [12] 20.47 13278.69 30.37 10550.67

Gipuma [15] 36.38 587.77 45.18 689.75

PMVS [14] 46.06 836.66 44.16 957.08

COLMAP [29] 67.66 2690.62 73.01 1658.33

PVSNet [37] 67.48 - 72.08 829.56

Ours 64.21 452.63 73.12 492.52

Table 3: Results of different methods on ETH3D [30] (F1

score, higher is better). Due to strong viewpoint variations,

currently, the only competitive pure learning-based method

submitted on ETH3D is PVSNet [37].

best among all methods. Furthermore, our method is the

fastest one evaluated so far (November 16th, 2020) on the

ETH3D benchmark. Noting that PVSNet is a state-of-the-

art learning-based method, the quantitative results demon-

strate the effectiveness, efficiency and generalization capa-

bilities of our method.

We visualize the pixel-wise view weight in Fig. 8.

Brighter colors indicate co-visible areas, i.e. regions in the

reference image that are also (well) visible in the source

images. Conversely, areas that are not visible in the source

images receive a dark color, corresponding to a low weight.

Also pixel near depth discontinuities appear slightly darker

than surrounding areas. By inspection, we conclude that

our pixel-wise view weight is indeed capable to determine

co-visible areas between the reference and source views.

4.5. Ablation Study

We conduct an ablation study to analyze the compo-

nents. Unless specified, all the following studies are done

on DTU’s evaluation set [1].

Adaptive Propagation (AP) & Adaptive Evaluation

(AE). We compare our base model with versions that em-

ploy fixed 2D offsets, similar to Gipuma [15], for propaga-

tion (w/o AP), and, fixed 2D offsets to sample the neighbors

for spatial cost aggregation in the evaluation step (w/o AE).

As shown in Table 4, our adaptive propagation and adaptive

evaluation modules each improve results w.r.t. accuracy as

14200



Methods Acc.(mm) Comp.(mm) Overall(mm)

w/o AP & AE 0.453 0.339 0.396

w/o AP 0.437 0.285 0.361

w/o AE 0.437 0.324 0.380

Ours 0.427 0.277 0.352

Table 4: Parameter sensitivity on DTU [1] for Adaptive

Propagation (AP) and Adaptive Evaluation (AE).

Iterations Acc.(mm) Comp.(mm) Overall(mm)

1,1,1 0.446 0.278 0.362

2,2,1 0.427 0.277 0.352

3,3,1 0.425 0.277 0.351

4,4,1 0.425 0.277 0.351

5,5,1 0.425 0.277 0.351

Table 5: Ablation study of the number of Patchmatch it-

erations on DTU [1]. Iterations, ‘a,b,c’ means that there

are a, b and c iterations on stage 3, 2 and 1. Thanks to the

coarse-to-fine framework, learned adaptive propagation, di-

verse initialization and local perturbation, our method con-

verges after only 5 iterations combined on all stages.

0.000 0.005 0.010 0.015 0.020 0.025
Normalized Absolute Error in Inverse Depth Range

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Pe
rc

en
ta

ge

stage 3: 1st iter
stage 3: 2nd iter
stage 2: 1st iter
stage 2: 2nd iter
stage 1: 1st iter

Figure 9: Distribution of normalized absolute errors in the

inverse depth range on DTU’s evaluation set [1]. ‘Stage k,

nth iter’ denotes the result of the nth iteration of Patchmatch

on stage k. Already after stage 3 our estimate is close to the

solution while stage 2 and 1 refine it even more.

well as completeness.

Number of Iterations of Patchmatch. Recall that, dur-

ing training (Sec. 4.3), we do not include adaptive propa-

gation for Patchmatch on stage 1. Consequently, we also

keep the number of iterations on stage 1 as 1 for this in-

vestigation. More iterations of Patchmatch generally im-

prove the performance, yet, the improvements stagnate af-

ter ‘2,2,1’ iterations, Table 5. We further visualize the dis-

tribution of normalized absolute error in the inverse depth

range for the setting ‘2,2,1’ in Fig. 9. We observe that the

error converges after only 5 iterations of Patchmatch across

all stages. Compared to Gipuma [15] that employs a large

number of neighbors for propagation, we have embedded

Patchmatch in a coarse-to-fine framework to speed up long

range interactions. Apart from that, our learned adaptive

propagation, diverse initialization and local perturbation all

contribute towards a faster converge.

Pixel-wise View Weight (VW) & Robust Training Strat-

egy (RT). In this experiment, we resign from pixel-wise

Methods DTU
Tanks&Temples

Intermediate

ETH3D

Training

w/o VW & RT 0.351 52.05 60.40

w/o VW 0.353 52.46 61.32

w/o RT 0.348 52.12 62.57

Ours 0.352 53.15 64.21

Table 6: Ablation study concerning the pixel-wise view

weight (VW) and the robust training strategy (RT).

N Acc.(mm) Comp.(mm) Overall(mm)

2 0.439 0.332 0.385

3 0.428 0.284 0.356

5 0.427 0.277 0.352

6 0.429 0.278 0.353

Table 7: Ablation study of the number of input views N on

DTU’s evaluation set [1].

view weighting (w/o VW) and do not follow our strategy

but choose four best source views for training (w/o RT). To

investigate the generalization performance, we further test

on Tanks & Temples [22] and ETH3D [30]. Table 6 shows a

similar performance on DTU [1] for all the models, yet, we

observe a drop in performance on the other datasets without

pixel-wise view weight or the robust training strategy. This

proves that these two modules lead to improved robustness

and a better generalization performance.

Number of Views. Apart form our standard setting of N =
5 views for DTU’s evaluation set [1], we also evaluate the

performance when N = 2, 3, 6. Using more views is known

to improve performance, e.g. by alleviating the occlusion

problem, which coincides with our findings summarized in

Table 7. With more input views, the reconstruction quality

tends to improve in both accuracy and completeness.

5. Conclusion

We present PatchmatchNet, a novel cascade formula-

tion of learning-based Patchmatch, augmented with learned

adaptive propagation and evaluation modules based on deep

features. Inherited from its name-giving ancestor, Patch-

matchNet naturally possesses low memory requirements,

independent of the disparity range and unlike most learning-

based methods, PatchmatchNet does not rely on 3D cost

volume regularization. Embedded into a cascade formula-

tion, PatchmatchNet further shows a high processing speed.

Despite its simple structure, extensive experiments on DTU,

Tanks & Temples and ETH3D demonstrate a remarkably

low computation time, low memory consumption, favor-

able generalization properties and competitive performance

compared to the state-of-the-art. PatchmatchNet makes

learning-based MVS more efficient and more applicable to

memory restricted devices or time critical applications. For

the future, we hope to apply it on movable platforms such as

mobile phones and head mounted displays, where the com-

putation resource is limited.

14201



References

[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for

multiple-view stereopsis. International Journal of Computer

Vision (IJCV), 2016. 1, 2, 5, 6, 7, 8

[2] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and

Dan B Goldman. PatchMatch: A randomized correspon-

dence algorithm for structural image editing. ACM Trans-

actions on Graphics (SIGGRAPH), 2009. 1, 3

[3] Michael Bleyer, Christoph Rhemann, and Carsten Rother.

Patchmatch stereo - stereo matching with slanted support

windows. In British Machine Vision Conference (BMVC),

2011. 3, 5

[4] Neill D. F. Campbell, George Vogiatzis, Carlos Hernández,

and Roberto Cipolla. Using multiple hypotheses to improve

depth-maps for multi-view stereo. In European Conference

on Computer Vision (ECCV), 2008. 6

[5] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 2

[6] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based

multi-view stereo network. In International Conference on

Computer Vision (ICCV), 2019. 1, 2, 6, 7

[7] Shuo Cheng, Zexiang Xu, Shilin Zhu, Zhuwen Li, Li Erran

Li, Ravi Ramamoorthi, and Hao Su. Deep stereo using adap-

tive thin volume representation with uncertainty awareness.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2020. 1, 2, 4, 5, 6, 7

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014. 2

[9] Robert Collins. A space-sweep approach to true multi-image

matching. In Conference on Computer Vision and Pattern

Recognition (CVPR), 1996. 2, 4

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In International Conference on Computer Vision

(ICCV), 2017. 2, 3

[11] Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu,

and Raquel Urtasun. Deeppruner: Learning efficient stereo

matching via differentiable patchmatch. In International

Conference on Computer Vision (ICCV), 2019. 2, 3

[12] Simon Fuhrmann, Fabian Langguth, and Michael Goesele.

Mve-a multi-view reconstruction environment. In GCH,

2014. 7

[13] Yasutaka Furukawa and Jean Ponce. Carved visual hulls for

image-based modeling. In European Conference on Com-

puter Vision (ECCV), 2006. 2

[14] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and

robust multiview stereopsis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2010. 2, 6, 7

[15] Silvano Galliani, Katrin Lasinger, and Konrad Schindler.

Massively parallel multiview stereopsis by surface normal

diffusion. In International Conference on Computer Vision

(ICCV), 2015. 1, 2, 3, 6, 7, 8

[16] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong

Tan, and Ping Tan. Cascade cost volume for high-resolution

multi-view stereo and stereo matching. In Conference on

Computer Vision and Pattern Recognition (CVPR), 2020. 1,

2, 4, 5, 6, 7

[17] Tak-Wai Hui, Chen Change Loy, and Xiaoou Tang. Depth

map super-resolution by deep multi-scale guidance. In Eu-

ropean Conference on Computer Vision (ECCV), 2016. 2,

5

[18] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu

Fang. Surfacenet: An end-to-end 3D neural network for mul-

tiview stereopsis. In International Conference on Computer

Vision (ICCV), 2017. 2, 5, 6

[19] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning

a multi-view stereo machine. In Advances in neural infor-

mation processing systems, 2017. 2

[20] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In International Conference on Computer Vision

(ICCV), 2017. 2

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, 2015. 6

[22] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen

Koltun. Tanks and temples: Benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics, 2017. 1, 2,

5, 7, 8

[23] Zhaoxin Li, Kuanquan Wang, Wangmeng Zuo, Deyu Meng,

and Lei Zhang. Detail-preserving and content-aware varia-

tional multi-view stereo reconstruction. Transactions on Im-

age Processing (TIP), 2016. 2

[24] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,

Bharath Hariharan, and Serge J. Belongie. Feature pyramid

networks for object detection. Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2017. 3

[25] Alex Locher, Michal Perdoch, and Luc Van Gool. Progres-

sive prioritized multi-view stereo. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 2

[26] Keyang Luo, Tao Guan, Lili Ju, Haipeng Huang, and Yawei

Luo. P-MVSNet: Learning patch-wise matching confidence

aggregation for multi-view stereo. In International Confer-

ence on Computer Vision (ICCV), 2019. 1, 2, 4, 5, 6, 7

[27] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Re-

naud Marlet. Openmvg: Open multiple view geometry. In

International Workshop on Reproducible Research in Pattern

Recognition, 2016. 6

[28] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, J. Brad-

bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L.

Antiga, Alban Desmaison, Andreas Köpf, E. Yang, Zach De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

B. Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-

torch: An imperative style, high-performance deep learning

library. ArXiv, 2019. 6

[29] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-Motion Revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 1, 2, 4,

7

14202



[30] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,

Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-

dreas Geiger. A multi-view stereo benchmark with high-

resolution images and multi-camera videos. In Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

1, 2, 5, 7, 8

[31] Sudipta N. Sinha, Philippos Mordohai, and Marc Pollefeys.

Multi-view stereo via graph cuts on the dual of an adaptive

tetrahedral mesh. In International Conference on Computer

Vision (ICCV), 2007. 2

[32] Engin Tola, Christoph Strecha, and Pascal Fua. Efficient

large-scale multi-view stereo for ultra high-resolution image

sets. Machine Vision and Applications, 2012. 6

[33] Ali Osman Ulusoy, Michael J. Black, and Andreas Geiger.

Semantic multi-view stereo: Jointly estimating objects and

voxels. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 2

[34] Haofei Xu and Juyong Zhang. AANet: Adaptive aggrega-

tion network for efficient stereo matching. In Conference on

Computer Vision and Pattern Recognition (CVPR), 2020. 2,

5

[35] Qingshan Xu and Wenbing Tao. Multi-scale geometric con-

sistency guided multi-view stereo. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019. 1, 2, 3,

4

[36] Qingshan Xu and Wenbing Tao. Learning inverse depth re-

gression for multi-view stereo with correlation cost volume.

In AAAI, 2020. 1, 2, 3, 4, 5, 6, 7

[37] Qingshan Xu and Wenbing Tao. PVSNet: Pixelwise

visibility-aware multi-view stereo network. ArXiv, 2020. 2,

4, 5, 7

[38] Jiayu Yang, Wei Mao, Jose M. Alvarez, and Miaomiao Liu.

Cost volume pyramid based depth inference for multi-view

stereo. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2020. 1, 2, 5, 6, 7

[39] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long

Quan. MVSNet: Depth inference for unstructured multi-

view stereo. In European Conference on Computer Vision

(ECCV), 2018. 1, 2, 4, 5, 6, 7

[40] Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang,

and Long Quan. Recurrent MVSNet for high-resolution

multi-view stereo depth inference. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019. 1, 2, 3,

4, 6, 7

[41] Zehao Yu and Shenghua Gao. Fast-MVSNet: Sparse-to-

dense multi-view stereo with learned propagation and gauss-

newton refinement. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2020. 1, 2, 6, 7

[42] Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-

Michael Frahm. Patchmatch based joint view selection and

depthmap estimation. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2014. 1

14203


