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Abstract

Camera and LiDAR are two complementary sensors

for 3D object detection in the autonomous driving con-

text. Camera provides rich texture and color cues while

LiDAR specializes in relative distance sensing. The chal-

lenge of 3D object detection lies in effectively fusing 2D

camera images with 3D LiDAR points. In this paper, we

present a novel cross-modal 3D object detection algorithm,

named PointAugmenting. On one hand, PointAugment-

ing decorates point clouds with corresponding point-wise

CNN features extracted by pretrained 2D detection mod-

els, and then performs 3D object detection over the deco-

rated point clouds. In comparison with highly abstract se-

mantic segmentation scores to decorate point clouds, CNN

features from detection networks adapt to object appear-

ance variations, achieving significant improvement. On the

other hand, PointAugmenting benefits from a novel cross-

modal data augmentation algorithm, which consistently

pastes virtual objects into images and point clouds dur-

ing network training. Extensive experiments on the large-

scale nuScenes and Waymo datasets demonstrate the effec-

tiveness and efficiency of our PointAugmenting. Notably,

PointAugmenting outperforms the LiDAR-only baseline de-

tector by +6.5% mAP and achieves the new state-of-the-art

results on the nuScenes leaderboard to date.

1. Introduction

3D object detection plays a crucial role in 3D scene un-

derstanding for autonomous driving. Existing 3D object de-

tection algorithms mainly use LiDAR and cameras to per-

ceive environments. LiDAR grasps depth information in the

form of sparse point clouds, while cameras capture images

in the form of dense intensity array with rich color and tex-

tures. The challenge of 3D object detection lies in the mis-

alignment between images and point clouds. In this work,

we aim to advance 3D object detection by means of effec-

tive cross-modal data fusion and augmentation.
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Figure 1. Performance comparison between using segmentation

scores and CNN features to fuse with LiDAR points for 3D ob-

ject detection. We replace the segmentation scores in PointPaint-

ing [19] with middle CNN features extracted from the same seg-

mentation network [20]. We use the LiDAR-only detector Center-

Point [27] as baseline. The improvement of +4.9% mAP on the

1/8 nuScenes dataset suggests that CNN features from images are

better at fusing with point clouds. Abbreviations stand for con-

struction vehicle (C.V.), motorcycle (Motor.), pedestrian (Ped.),

and traffic cone (T.C.).

Previous arts have explored a variety of cross-modal fu-

sion schemes, which fall into three categories: result-level

fusion, proposal-level fusion, and point-level fusion. The

result-level fusion approaches [13, 21] adopt off-the-shelf

2D object detectors, thus their performances are limited by

the upper bound of 2D detectors. The proposal-level fusion

methods, such as MV3D [3] and AVOD [8], perform fusion

at the region proposal level, resulting in heavy computation

load. Recent approaches [11, 10, 29, 16, 7, 19] attempt to

fetch point-wise image features by projecting point clouds

onto image plane. [11, 10, 29] construct birds-eye-view

(BEV) camera features before fusing with LiDAR BEV fea-

tures to mitigate the viewpoint inconsistency. However, the

cross-view transformation readily causes feature blurring.

Instead, MVX-Net [16], EPNet [7] and PointPainting [19]

directly exploit point-wise correspondence to augment each

LiDAR point with CNN features or segmentation scores

from image segmentation. We note that prior fusion meth-
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Method Car Truck C.V. Bus Trailer Barrier Motor. Bicycle Ped. T.C. mAP NDS

CenterPoint w/o GT-Paste 74.2 30.9 3.7 27.0 12.5 37.2 30.3 1.7 68.2 42.4 32.8 42.3

CenterPoint w/ GT-Paste 78.6 39.2 2.0 33.5 13.5 46.8 32.2 8.6 74.2 47.5 37.6 49.5

Gains of GT-Paste +4.4 +8.3 -1.7 +6.5 +1.0 +9.6 +1.9 +6.9 +6.0 +5.1 +4.8 +7.2

Table 1. Effectiveness of the GT-Paste data augmentation scheme. Applying GT-Paste data augmentation for LiDAR points achieves an

improvement of +4.8% mAP. We use CenterPoint as baseline with 1/8 training data on the nuScenes dataset.

Building
Pole

R
oad

C
ar

Vegetation
Sidew

alk

Li
D

A
R

 P
oi

nt
s 

C
am

er
a 

Im
ag

es

LiDAR Only LiDAR + FeatureLiDAR + Seg Score

Incorrect 
Segmentation 

Figure 2. Comparison of different detectors. The far-away pedes-

trian in the scene is missed by the LiDAR-only baseline detector

due to the sparse point clouds. PointPainting also fails as a re-

sult of segmentation failures on small objects. Benefiting from the

abundant semantics provided by image features, our method suc-

cessfully detects the pedestrian.

ods before PointPainting have limited generalization and

performance, as concluded by PointPainting, “despite re-

cent fusion research, the top methods on the popular KITTI

leaderboard are lidar only”. With the help of segmentation

scores, PointPainting has served as a popular baseline of

fusion with large gains over the LiDAR-only detectors on

large-scale datasets.

Despite the impressive improvements, segmentation

scores are sub-optimal to cover color and textures in im-

ages. Intuitively, high dimensional CNN features of images

contain richer appearance cues and larger receptive field

than segmentation scores, therefore are more complemen-

tary to fuse with point clouds. To validate this intuition,

we conduct a preliminary experiment on the basis of Point-

Painting. Specifically, we replace the segmentation scores

with CNN features extracted by the same segmentation net-

work [20]. Figure 1 shows that CNN features help Point-

Painting to achieve a significant gain of +4.9% mAP on the

1/8 nuScenes [2] dataset. This manifests the effectiveness

of CNN features to fuse with point clouds for 3D detectors.

Considering the lack of ground truth segmentation labels

for most 3D detection tasks, we use pretrained 2D object de-

tection networks rather than image segmentation networks

as feature extractor. Our method differs from the prior 3D

detector MVX-Net [16], which utilizes the high-level se-

mantics on the Conv5 layer of VGG-16. High-level se-

mantics often cause blurred image features for neighbor-

ing LiDAR points. We thus take the output activation from

the DLA34 layer of CenterNet [33, 32] as image features,

putting emphasis on fine-grained details to strengthen the

distinction between point clouds. Moreover, considering

the modality gap between LiDAR and cameras, we employ

a late fusion mechanism across modalities. With our fusion

scheme, we achieve remarkable improvements of +10.1%
and +5.2% mAP respectively over the LiDAR-only and

PointPainting methods on the 1/8 nuScenes dataset. The ex-

ample in Figure 2 illustrates the superiority of our method.

When training 3D detectors, one of the bottlenecks lies

in cross-modal data augmentation. Existing LiDAR-only

detectors widely use GT-Paste [22], a data augmentation

scheme to augment point clouds. GT-Paste pastes virtual

objects in the forms of ground-truth boxes and LiDAR

points from other scenes to the training scenes. Table 1

shows that GT-Paste improves the LiDAR-only detector by

+4.8% mAP. However, directly applying GT-Paste to cross-

modal detectors would destruct the consistency between Li-

DAR points and camera images. To address this issue, we

propose a simple yet effective cross-modal augmentation

method to make GT-Paste applicable to both point clouds

and images. Specifically, we first follow an observer’s per-

spective to filter occluded LiDAR points according to the

geometrical unanimity rule. We then take hold of all the ob-

jects in current scene and paste their corresponding patches

onto images in a far-to-near order. With the help of the

cross-modal data augmentation, our proposed 3D detector

achieves competitive results over the state-of-the-art meth-

ods.

In brief, our contributions are summarized as follow.

• We explore effective CNN features from 2D object de-

tection networks as image representation to fuse with

LiDAR points for 3D object detection.

• We propose a simple yet effective cross-modal data

augmentation method for training 3D object detectors,

considering the modality consistency between cameras

and LiDAR.

• We extensively validate the effectiveness of cross-

modal fusion and data augmentation on large-scale

nuScenes and Waymo datasets. The proposed 3D de-

tector PointAugmenting achieves the new state-of-the-

art results on the nuScenes leaderboard to date.
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Point-wise Feature Fetching

Figure 3. PointAugmenting overview. The architecture consists of two stages. (1) Point-wise feature fetching: LiDAR points are projected

onto image plane and then appended by the fetched point-wise CNN features. (2) 3D detection: we extend CenterPoint with an additional

3D sparse convolution stream for camera features and fuse different modalities via a simple skip and concatenation approach in BEV maps.

2. Related Work

LiDAR-Based 3D Detection. Existing LiDAR-based

methods can be broadly grouped into two categories: i.e.,

grid-based and point-based. The grid-based methods di-

vide point clouds into regular 3D voxels [22, 34, 27, 6] or

BEV maps [9, 24, 23]. In SECOND [22], a sparse convo-

lution operation is proposed to parse the compact represen-

tation. CenterPoint [27] replaces the general anchor-based

detector with a keypoint-based detector. For point-based

approaches, PointRCNN [15] and STD [26] apply Point-

Net [14] to segment foreground points and generate pro-

posals for each point. 3DSSD [25], a single-stage detector,

disposes all upsampling layers and refinement modules for

computational efficiency. Compared to grid-based methods,

point-based approaches require high computation loads, re-

sulting in time-consuming training on large-scale datasets

such as the nuScenes [2] and Waymo [18] datasets.

Fusion-Based 3D Detection. Recently, multi-sensor fusion

has shown great advantages. F-PointNet [13] generates 3D

bounding box based on 2D detection results. AVOD [8]

and MV3D [3] perform fusion on object proposals via ROI

pooling. Researchers [11, 10, 29] have attempted to trans-

form the front-view camera features into BEV maps. Cont-

Fuse [11] introduces a novel continuous fusion layer while

3D-CVF [29] employs auto-calibrated projection to con-

struct a smooth BEV feature map. Despite the promising

results, there exists the problem of feature blurring. Instead,

other methods [7, 16, 19] explore the fusion mechanism

in a point-wise manner. MVX-Net [16] and PointPaint-

ing [19] respectively fetch feature maps and segmentation

scores from camera images and apply simple concatenation

on both points. EPNet [7] designs a LI-Fusion module to

establish a finer point-wise correspondence. In our work,

we explore a better image representation and fusion mech-

anism to facilitate point-wise cross-modal data fusion.

Data Augmentation. Data augmentation of point clouds is

crucial in 3D object detection. The original GT-Paste aug-

mentation pastes virtual objects into current training scenes.

This operation not only accelerates network convergence

but also alleviates the annoying class imbalance problem.

However, it is not adaptive to cross-modal data. For 2D

data augmentation, patch-based methods [17, 31, 28] that

dropout or paste patches in training images encourage a

more robust network learning. Cutmix [31] overlays a re-

gion with a patch cut from another image and [1] adapts

it for 2D detection tasks. Inspired by Cutmix, our intention

for cross-modal 3D augmentation is to simultaneously paste

object points and image patches into scenes while maintain-

ing the consistency between sensors.

3. PointAugmenting

This section presents the proposed method PointAug-

menting for 3D object detection. We adopt CenterPoint as

our LiDAR-only baseline and extend it with a cross-modal

fusion mechanism as well as an effective data augmentation

scheme. Figure 3 illustrates our cross-modal network archi-

tecture, which consists of two stages: (1) Point-wise feature

fetching. LiDAR points are projected onto image plane and

then appended by the fetched point-wise CNN features. (2)

3D detection. We extend CenterPoint with an additional

3D sparse convolution stream for camera features and fuse

features of different modalities in BEV maps. To facilitate

network training, we further employ a novel data augmen-

tation scheme for our cross-modal detector. The details of

PointAugmenting are presented in the following.

3.1. Cross­Modal Fusion

For implementation efficiency, we construct our method

based on CenterPoint [27], which is a one-stage and anchor-

free LiDAR-only 3D detector. LiDAR points in Center-

Point are first fed to a 3D encoder cascaded by voxelization,

voxel-wise feature encoder, and 3D backbone, yielding flat-

tened compact 2D BEV feature maps. Finally, a 2D CNN

broadcasts the features to multi-heads for multi-prediction:
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object centers, 3D size, and orientation.

Point-wise Feature Fetching. The success of the recent

detector PointPainting [19] inspires us to decorate LiDAR

points with semantics from camera images. While our pre-

liminary results in Figure 1 show that high dimensional

CNN features perform better than segmentation scores. As

such, we choose CNN features of images for point decora-

tion. To extract the point-wise image features, we use an

off-the-shelf network trained for 2D object detection rather

than semantic segmentation. The reasons lie in three as-

pects. First, 2D and 3D object detection are complementary

tasks that focus on different levels of granularity of objects.

They benefit from each other. Second, 2D detection labels

are readily available from 3D projection, whereas segmen-

tation labels are expensive and usually unavailable. Last,

the detection network is more friendly to data augmenta-

tion than the segmentation network, as suggested by [1]. To

be specific, we take the output activation from DLA34 [30]

of CenterNet [33, 32] as image features, where the chan-

nel number of the feature map is 64 and its scale factor is

4. To fetch the corresponding point-wise image features,

we project LiDAR points onto the image plane by a homo-

geneous transformation to set up the correspondence. Af-

terwards, LiDAR points are appended by the fetched point-

wise image features as network inputs to perform detection.

3D Detection. Each LiDAR point is defined by

(x, y, z, r, t) and (x, y, z, r) respectively on the nuScenes

and Waymo datasets, where x, y, z are location coordi-

nates, r denotes the reflectance, and t is the relative times-

tamp. We set fi as the 64D image features. The fused

LiDAR points can be denoted by (x, y, z, r, (t), fi). Con-

sidering the modality gap and different data characteristics

between LiDAR and cameras, unlike point-wise concatena-

tion used by PointPainting, we employ a late fusion mech-

anism across modalities. As shown in Figure 3, after the

voxel-wise feature encoder, we use two separate 3D sparse

convolution branches to process the LiDAR and camera fea-

tures. Afterwards, we flatten the two downsampled 3D fea-

ture volumes into 2D BEV maps, each with the channel

number of 256. These two BEV maps are then concate-

nated in channel-wise and then fed into four 2D convo-

lution blocks for feature aggregation. Each convolutional

block consists of two 3 × 3 convolution layers followed by

a batch normalization layer and a ReLU activation function.

The first block shrinks the channel number from 512 to 256.

Finally, we add a skip connection between the aggregated

features and the previous camera and LiDAR BEV features

before forwarding to the region proposal network.

3.2. Cross­Modal Data Augmentation

We propose an efficient data augmentation scheme to

make GT-Paste applicable during training our cross-modal

detector. Inspired by the recent image augmentation ap-

proach Cutmix [31], we attempt to simultaneously attach

an image patch to images when pasting LiDAR points of

a virtual object into current 3D scene. The main challenge

lies in the preservation of the consistency between camera

and LiDAR data. As shown in Figure 4, from the observer’s

perspective, the pasted bicycle is partly occluded by the car

in the original 3D scene, resulting in an overlap on camera

image. If we directly paste the virtual object patch onto im-

ages, the points of objects projected in the overlap region

may fetch mismatching features. Furthermore, the back-

ground points projected into the virtual patch also capture

incorrect information. To address this issue, we identify

the occlusion relationships between foreground objects and

filter those occluded LiDAR points from the observer’s per-

spective. For camera images, we take out both virtual and

original objects and attach their patches by a far-to-near or-

der.

Augmentation for LiDAR Points. We transform the Li-

DAR point (x, y, z) into the LiDAR spherical coordinate

system as (r, θ, φ) and represent the perspective of an ob-

ject using the range of θ and φ, where the minimum and

maximum of θ and φ are obtained from the eight corners

of its ground-truth box. When selecting virtual objects,

the original GT-Paste requires to avoid the collision of ob-

jects. Our method also restricts the perspective overlap be-

tween objects so as not to filter over too much foreground

points. Then the selected virtual objects are pasted into cur-

rent scene and we filter occluded points from the perspec-

tive of an observer. Specifically, given both original and

pasted virtual objects in current scene, we process each ob-

ject in a near-to-far order. If an original object is taken,

we only discard those occluded points that belong to farther

pasted objects. If a pasted object is processed, all occluded

points farther than this object will be disposed. Moreover,

we filter the background points in the perspective of this vir-

tual object. It is because original objects occlude only the

far virtual objects, whereas the pasted virtual objects oc-

clude all the far objects as well as background points. The

detailed procedure of our occlusion-aware point filtering is

illustrated in Algorithm 1.

Augmentation for Camera Images. To match the consis-

tency between LiDAR and cameras, for each virtual object

that pasted into LiDAR scenes, we attach its correspond-

ing patch within a 2D bounding box onto images. The 2D

bounding box is obtained from 3D ground-truth projection.

To determine the pasted position, we note that although vir-

tual points are pasted at their original locations in LiDAR

scenes, virtual patches are not exactly at the original posi-

tion of camera planes due to the jitter of camera external pa-

rameters. We need to re-compute the position of 2D bound-

ing box through the current camera external calibration and

then transform the original patch by translation and scaling.
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Figure 4. Example of cross-modal data augmentation. In (d), a pasted bicycle (green) is partly occluded by the car (yellow) in the original

scene, whose LiDAR points are shown in (a). Directly attaching the virtual patch (green) onto the image yields mismatch between points

and camera pixels (b and e): (i) the LiDAR points of both objects are partly projected into the overlap region, (ii) a few background points

(purple) fetch the features in the virtual patch. To avoid such ambiguities, we filter the foreground points (red) occluded by the front objects

and the background points (purple) that in the perspective of virtual objects. For images, we crop image patches of both virtual and original

objects, then paste them onto images in a far-to-near order. This observes the consistency between LiDAR points (c) and images (f).

Algorithm 1: Occlusion-aware point filtering

Input: Objects O, Object perspectives V, Object

depths D, Points P, Point depths R

1 ObjectInds← AscendingSort(D) ;

2 for i in ObjectInds do

3 if Oi is pasted then

4 FGInds← (P ∈ Vi) and (P ∈ FG) and

(R ≥ Di);

5 BGInds← (P ∈ Vi) and (P ∈ BG);

6 FilterInds← FGInds ∪ BGInds;

7 else

8 FilterInds← (P = pasted) and (P ∈ Vi) and

(R ≥ Di);

9 P← P− P(FilterInds) ;

Output: P

Moreover, rather than directly pasting the virtual patches,

we take hold of the patches of both virtual and original ob-

jects, and paste them in a far-to-near order. In this way,

background objects are occluded by foreground objects in

images, in accordance with the occlusion relationship be-

tween objects in LiDAR scenes.

Fade Strategy. Despite the large performance gains, data

augmentation violates the real data distribution, especially

for our data across LiDAR points and camera images. To

this end, we disable data augmentation when the model

is near convergent, leading our model to learn from real

scenes. This strategy further yields an improvement of

+1.3% mAP on the 1/8 nuScenes dataset (see Table 5).

4. Experiments

We evaluate the proposed PointAugmenting 3D detector

on both the nuScenes and Waymo Open datasets, and con-

duct extensive ablation studies to verify our design choices.

4.1. Experimental Setup

Through experiments, we use the adamW [12] optimizer

with the one-cycle policy [5], with max learning rate 1e− 3
and 3e−3 for nuScenes and Waymo, weight decay 0.01, and

momentum ranges from 0.85 to 0.95. During training, we
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Method mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bicycle Ped. T.C.

PointPillars [9] 30.5 45.3 68.4 23.0 4.1 28.2 23.4 38.9 27.4 1.1 59.7 30.8

3DSSD [25] 42.6 56.4 81.2 47.2 12.6 61.4 30.5 47.9 36.0 8.6 70.2 31.1

PointPainting [19] 46.4 58.1 77.9 35.8 15.8 36.2 37.3 60.2 41.5 24.1 73.3 62.4

CBGS [35] 52.8 63.3 81.1 48.5 10.5 54.9 42.9 65.7 51.5 22.3 80.1 70.9

CenterPoint [27] 60.3 67.3 85.2 53.5 20.0 63.6 56.0 71.1 59.5 30.7 84.6 78.4

Ours 66.8 71.0 87.5 57.3 28.0 65.2 60.7 72.6 74.3 50.9 87.9 83.6

Table 2. Performance comparisons on the nuScenes test set. We report the NDS, mAP, and mAP for each class.

Method
Vehicle Pedestrian Cyclist All

L1 mAP L2 mAP L1 mAP L2 mAP L1 mAP L2 mAP L1 mAP/mAPH L2 mAP/mAPH

CenterPoint [27] 66.70 62.00 73.55 68.64 72.51 70.00 70.92 / 68.26 66.88 / 64.36

Ours 67.41 62.70 75.42 70.55 76.29 74.41 73.04 / 70.39 69.22 / 66.70

Gains of fusion +0.71 +0.70 +1.87 +1.91 +3.78 +4.41 +2.12 / +2.13 +2.34 / +2.34

Table 3. Performance comparisons on the Waymo validation set. The results of CenterPoint are reproduced by ourselves.

conduct data augmentation of random flipping along both

X and Y axis, global scaling, global rotation and random

global translation. We also apply our proposed cross-modal

data augmentation to paste virtual objects into both LiDAR

scenes and camera images. Models are trained with batch

size 16 for 20 epochs on 8 V100 GPUs. At inference, we

keep the top 1000 predictions in each group, then use the

non-maximum-suppression (NMS) with IoU threshold 0.2
and score threshold 0.1. Following CenterPoint, we adopt

the double-flip testing.

4.2. nuScenes Results

The nuScenes dataset [2] is a large-scale dataset for

3D detection, which consists of 700 scenes for training,

150 scenes for validation, and 150 scenes for test. The

dataset is collected using six cameras and a 32-beam Li-

DAR, and 3D annotations for 10 objects in 360 degree field

of view are provided. We set the detection range to within

[−54m, 54m] for X and Y axis, and [−5m, 3m] for the

Z axis, which is voxelized with (0.075m, 0.075m, 0.2m)
voxel size. We use 10 sweeps for LiDAR enhancement and

limit the max number of non-empty voxels to 90000. We

follow the official evaluation protocol [2] to report results.

We submitted our detection results to the nuScenes test

server for evaluation. In Table 2, our PointAugmenting

performs well over previous state-of-the-art methods on

the official leaderboard by remarkable margins. Compared

to CenterPoint, our approach obtains significant gains of

+6.5% mAP and +3.7% NDS with consistent improve-

ments over all the classes. In more detail, bicycle receives

the largest increase with +20.2% mAP. This is because

bicycles often have few LiDAR points and confusing ge-

ometry, thus the additional semantic cues serve as a valu-

able guidance for 3D detectors. Moreover, notable gains

are achieved on both small classes (+5.2% mAP for traffic

cone) and tail classes (+8.0% mAP for construction vehi-

cle), which manifests the effectiveness of leveraging camera

to assist LiDAR to deal with hard examples.

4.3. Waymo Results

Waymo Open Dataset [18] is currently the largest dataset

for autonomous driving. There are totally 798 scenes

for training and 202 scenes for validation, which is col-

lected by five LiDAR sensors and five pinhole cameras

and annotated with 2D and 3D labels. During training,

we set detection range to [−76.8m, 76.8m] for X and Y

axis, and [−5m, 3m] for the Z axis with a voxel size of

(0.075m, 0.075m, 0.1m). Max number of non-empty vox-

els is set as 120000. Note that cameras in Waymo only

cover around 250 degree field, which is different from Li-

DAR points and 3D labels in full 360 degree field. Thus,

nearly 1/3 LiDAR points fails to fetch their corresponding

image features due to the lack of camera in back perspec-

tive. As such, we only select LiDAR points and ground-

truth in the camera FOVs for training our cross-modal de-

tector. At the inference stage, to retrieve the 3D detection

predictions in the whole scene, we complete the left 1/3

scene with predictions from CenterPoint.

Table 3 compares our detection results with CenterPoint.

Although our cross-modal detector utilizes less training

data than CenterPoint, it still performs superbly over all the

object classes and two difficulty levels. In particular, we

achieve remarkable gains on pedestrian and cyclist respec-

tively with +1.91% and +4.41% mAP on LEVEL 2, which

manifests the outstanding performance of our method for

the objects with fewer than 5 LiDAR points. In terms of

mAPH, we also yield superior performance, indicating a

more accurate heading prediction on objects. The results on

the Waymo dataset further validate both the effectiveness

and generalization of our proposed PointAugmenting.
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Figure 5. Qualitative comparison of detection Results. We compare our method with CenterPoint [27] and PointPainting [19]. We improve

PointPainting with our fusion mechanism for fair comparison. (a) indicates the necessity of leveraging camera information, where Center-

Point falsely detects a human-like tree due to the loss of semantics. In (b), PointAugmenting successfully detects two far-away pedestrians

while the other two both fail. In (c), a sign is falsely detected as a barrier or a bicycle by CenterPoint and PointPainting owing to the

confusing geometry. In (d), CenterPoint and PointPainting mistake a truck as a construction vehicle while our PointAugmenting succeeds.

Seg Score DetFeat. CC LF mAP NDS

(a) 37.4 49.9

(b) X X 42.3 51.4

(c) X X 46.0 53.9

(d) X X 47.5 55.6

Table 4. Comparison of fusion policies. Seg Score: decorating Li-

DAR points with segmentation scores as suggested by PointPaint-

ing [19]. DetFeat: decorating LiDAR points with image features

from the detection task. CC: fusing LiDAR and image features by

point-wise concatenation. LF: our late fusion mechanism.

4.4. Ablation Studies

We conduct ablation studies on the nuScenes dataset to

pinpoint the improvements. For efficiency, we use the 1/8

training data for training and test on the whole validation

set. We train the models for 20 epochs with voxel size of

(0.1m, 0.1m, 0.2m) throughout ablation studies.

Fusion Architecture. We compare different fusion policies

in Table 4. All studies here are trained under our cross-

modal data augmentation but without the fade strategy. For

image segmentation, we adopt HRNet-W48 [20] pretrained

on Cityscapes [4]. We conclude the observation as below:

(1) Benefits of cross-modal fusion (a,d): Our fusion

architecture dramatically boosts the LiDAR-only perfor-

mance by +10.1% mAP, which indicates the significance

of cross-modal fusion for 3D object detection.

Naive CM Fade Fusion mAP NDS

(e) 32.8 42.3

(f) X 37.6 49.5

(g) X 37.4 49.9

(h) X 42.6 50.0

(i) X X 47.5 55.6

(j) X X X 48.8 56.8

Table 5. Effectiveness of cross-modal data augmentation. Naive:

the original GT-Paste applied to CenterPoint. CM: Our cross-

modal GT-Paste data augmentation. Fade: the training strategy

that discontinues our data augmentation in the last 5 epochs. Fu-

sion: adding camera stream by our late fusion mechanism.

(2) Camera input for fusion (b,c): Replacing the seg-

mentation scores suggested by PointPainting with our de-

tection features yields an improvement of +3.7% mAP. Al-

though segmentation scores offer a compact representation

to complement LiDAR points, CNN features are better at

providing rich appearance cues and large receptive fields.

The results manifest the importance of choosing effective

representation for camera modality.

(3) Different fusion mechanism (c,d): Comparing our

late fusion mechanism to simple concatenation, we achieve

a gain of +1.5% mAP by using our detection features as

input. Early point-wise concatenation ignores the huge dif-

ference in data characteristics between LiDAR and camera
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Figure 6. Qualitative results of 2D detection after our data augmen-

tation. Top row: 2D detection results of original scenes. Bottom

row: the results after our GT-Paste data augmentation. Yellow and

green boxes respectively denote the detection results of original

and pasted objects. Red boxes are the false negative predictions.

features whereas ours narrow down the modality gap by fu-

sion at BEV. Although late fusion scheme performs the best,

it brings additional computation cost due to the separate 3D

sparse convolution stream. Therefore, an effective and effi-

cient fusion mechanism is desirable in the future.

We present qualitative results in Figure 5 to com-

pare three detectors, i.e, CenterPoint, PointPainting and

PointAugmenting. We train three models on the whole

training data of nuScenes. Figure 5 illustrates the superi-

ority of both cross-modal fusion as well as our fusion poli-

cies. By leveraging rich camera information, our PointAug-

menting significantly outperforms the other two methods in

mitigating false predictions.

Cross-Modal Data Augmentation. We validate the effec-

tiveness of our cross-modal data augmentation scheme in

Table 5. Key observations are summarized as below:

(1) GT-Paste for LiDAR-only input (e,f,g): Applying GT-

Paste to LiDAR points yields a boost of +4.8% mAP. This

motivates us to investigate cross-modal data augmentation.

Comparing (g) to (f), replacing the naive GT-Paste with ours

yields a −0.2% mAP drop, which suggests that our opera-

tion on LiDAR points does not hurt LiDAR-only detection.

(2) GT-Paste for cross-modal input (h,i): When we lever-

age camera features to assist LiDAR detection, removing

our cross-modal data augmentation for GT-Paste leads to an

overall performance drop of−3.7% mAP. This discrepancy

indicates the effectiveness of our strategy. Moreover, our

scheme is applicable to other cross-modal detectors.

(3) Fade strategy (i,j): We apply the fade strategy dur-

ing the last 5 training epochs. This further achieves an im-

provement of +1.3% mAP. Although our data augmenta-

tion scheme remarkably benefits the detector, it disturbs the

real data distribution. The fade strategy is therefore helpful

to learn from real scenes.

Visualization of 2D Detection. To verify the influence of

Methods Image size Fusion mAP 2D time Total time

CenterPoint - - 37.6 - 85ms

Ours 896× 1600 LF 47.5 383ms 542ms

Ours lite 1 448× 800 LF 47.3 95ms 238ms

Ours lite 2 448× 800 CC 46.4 95ms 178ms

Table 6. Runtime per frame on the nuScenes dataset. CC: point-

wise concatenation. LF: our late fusion mechanism. The runtime

is on a NVIDIA 1080Ti GPU.

GT-Paste on the 2D image backbone, we visualize 2D de-

tection results by forwarding camera images to the 2D de-

tection network we used for camera feature extraction, i.e.,

CenterNet with DLA34 backbone. Figure 6 shows the 2D

detection results after data augmentation, where most of

the objects can still be successfully detected. This implic-

itly suggests the effectiveness of image features for LiDAR

point decoration under our patch-pasting operation on im-

ages. Nevertheless, false negative (red box) emerges after

the augmentation on images. In Figure 6, the pasted bus is

lost due to the occlusion by other objects while the traffic

cone is missed caused by the similar color with the back-

ground in left virtual patch. This phenomenon is one of the

reasons that drives us to adopt the fade strategy.

Runtime. We report the runtime per frame in Table 6.

Compared with the lidar-only detector CenterPoint, our

PointAugmenting takes extra running time due to the 2D

image feature backbone (383 ms with image size of 896 ×
1600) and the following 3D branch (60 ms) to generate cam-

era features in BEV space. Running time is of great impor-

tance for autonomous driving. We find that reducing the

input image size or replacing our late fusion with simple

point-wise concatenation can largely accelerate our method.

Table 6 shows that our two lite versions achieve much faster

speed with slight drop in detection accuracy.

5. Conclusion

In this paper, we have presented a novel cross-modal

3D object detector, named PointAugmenting. With the

proposed cross-modal data fusion and data augmentation

scheme, PointAugmenting sets the new state-of-the-art re-

sults on the nuScenes detection leaderboard. Served as a

strong baseline for cross-modal 3D detector, our PointAug-

menting can be improved in two aspects in the future work.

First, despite the effectiveness of our late fusion mecha-

nism, a more efficient cross-modal fusion scheme is de-

sirable. Moreover, considering the different fields of view

between LiDAR and cameras in the Waymo dataset, a sin-

gle model that adapts to different modalities, either LiDAR-

only or cross-modality, is required for real applications.
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