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Abstract

Due to its powerful capability of representation learning

and high-efficiency computation, deep hashing has made

significant progress in large-scale image retrieval. How-

ever, deep hashing networks are vulnerable to adversarial

examples, which is a practical secure problem but seldom

studied in hashing-based retrieval field. In this paper, we

propose a novel prototype-supervised adversarial network

(ProS-GAN), which formulates a flexible generative archi-

tecture for efficient and effective targeted hashing attack.

To the best of our knowledge, this is the first generation-

based method to attack deep hashing networks. Generally,

our proposed framework consists of three parts, i.e., a Pro-

totypeNet, a generator and a discriminator. Specifically,

the designed PrototypeNet embeds the target label into the

semantic representation and learns the prototype code as

the category-level representative of the target label. More-

over, the semantic representation and the original image

are jointly fed into the generator for flexible targeted attack.

Particularly, the prototype code is adopted to supervise the

generator to construct the targeted adversarial example by

minimizing the Hamming distance between the hash code of

the adversarial example and the prototype code. Further-

more, the generator is against the discriminator to simul-

taneously encourage the adversarial examples visually re-

alistic and the semantic representation informative. Exten-

sive experiments verify that the proposed framework can ef-

ficiently produce adversarial examples with better targeted

attack performance and transferability over state-of-the-art

targeted attack methods of deep hashing.

1. Introduction

With the explosive growth of high-dimensional and

large-scale multimedia data, approximate nearest neighbor

*Equal contribution
†Corresponding author

(ANN) search [1] has attracted much attention in informa-

tion retrieval due to its efficiency and effectiveness. As a

solution of ANN, hashing [40] maps high-dimension data

to compact binary codes meanwhile preserving the seman-

tic similarities, yielding significant advantages in storage

cost and retrieval speed. Benefiting from the strong rep-

resentation ability of deep learning, deep hashing that em-

ploys deep neural networks (DNNs) to automatically ex-

tract features has achieved great success in learning to hash

[42, 21, 47, 26, 28, 5], and also has been demonstrated its

superior performance than the shallow hashing methods.

Notably, recent studies [38, 12, 20, 29, 6] have recog-

nized that DNNs are usually vulnerable to adversarial ex-

amples, which are intentionally perturbed by adding imper-

ceptible noises to original images but can fool the networks

to make incorrect predictions. Deep hashing methods have

achieved encouraging performance on many benchmarks,

while, at the same time, they inevitably inherit the funda-

mental fragility of DNNs on handling adversarial examples

[44, 2]. This imperceptible malicious attack poses a serious

security threat to the deep hashing-based image retrieval.

For example, when querying with an intentionally perturbed

dog image, a hashing based retrieval system may return vio-

lent images. Accordingly, it is necessary to study the adver-

sarial attacks on deep hashing models in order to recognize

their flaws and help solve their security risks.

Currently, many works about adversarial examples have

been studied in image classification, but very few researches

focus on the security of deep hashing based retrieval. Dif-

ferent from the typical classification, hashing aims to learn

the semantic similarity between images, and its final out-

puts are discrete binary codes instead of categories. Thus,

these attack methods in image classification cannot be di-

rectly used or transferred to the deep hashing tasks. Ex-

isting adversarial attack methods of deep hashing only in-

clude an non-targeted attack method called HAG [44] and

two targeted attack methods called P2P [2] and DHTA [2],

respectively. Notwithstanding, they are verified to be ef-
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Figure 1. The framework of our Prototype-supervised Adversarial Network (ProS-GAN).

fective in attack, there are still some significant limitations

hindering the current adversarial attacks in deep hashing.

On one hand, these methods are inefficient because they

are optimization-based methods that rely on a very time-

consuming iterative gradient. For example, to make the

attacked hashing model bias significantly, DHTA requires

around 2000 iterations to optimize adversarial perturba-

tions. On the other hand, these methods heuristically select

a hash code as representative of the target label to guide the

generation of the targeted adversarial example. However,

this code can not represent the discriminative category-level

semantics of the target label due to lack of preserving simi-

larity with relevant labels and dissimilarity with irrelevant

labels. Therefore, how to construct more representative

semantic-preserving hash code of the target label becomes

crucially important to achieve satisfactory performance in

adversarial attack of deep hashing.

To overcome the above deficiencies and inspired by

generation-based adversarial attacks [3, 43, 13] in classifi-

cation, this paper proposes a prototype-supervised adversar-

ial network (ProS-GAN) for efficient and effective targeted

attack in deep hashing based retrieval. By feeding an origi-

nal image and a target label into ProS-GAN, it can generate

the targeted adversarial example, which would mislead the

attacked hashing network to retrieve the images semanti-

cally related to the target label. Specifically, ProS-GAN is

composed of three sub-networks: a prototype network (Pro-

totypeNet), an adversarial generator network and a discrim-

inator network, as shown in Figure 1. The designed Pro-

totypeNet encodes the input target label into the semantic

representation and learns the prototype code as the repre-

sentative of the target label. Then, the adversarial genera-

tor incorporates the original image and the semantic repre-

sentation into a self-reconstruction network for generating

the adversarial example. Moreover, the prototype code is

adopted to supervise the generator to construct the targeted

adversarial example by minimizing the Hamming distance

between the hash code of the adversarial example and the

prototype code. In addition, the discriminator is used to

distinguish real/fake images and categorize them into the

original and target categories, respectively. The generator

and discriminator are trained in an adversarial manner to

encourage the generated images visually realistic and the

semantic representation informative for further improving

the targeted attack performance. In summary, the main con-

tributions are outlined as follows:

• We propose a novel prototype-supervised adversarial

network* (ProS-GAN) for flexible targeted hashing at-

tack. To the best of our knowledge, this is the very

first work of formulating a generative architecture for

arbitrary-target attack in deep hashing based retrieval.

Importantly, different from the existing attack meth-

ods, our work could efficiently and effectively gener-

ate preferable adversarial examples with robust trans-

ferability under one-forward pass.

*Code: https://github.com/xunguangwang/ProS-GAN
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• Instead of heuristically selecting a hash code as rep-

resentative of the target label, we leverage the invari-

ant side of semantics to generate the flexible prototype

code in our ProtypeNet as the expected mainstay of the

target label from the optimization view.

• Extensive experiments validate the superior efficiency

and transferability of the produced adversarial exam-

ples than state-of-the-art targeted attack methods in

deep hashing based retrieval.

2. Related Work

2.1. Deep Hashing based Similarity Retrieval

Existing deep hashing methods can be roughly grouped

into unsupervised deep hashing and supervised deep hash-

ing. Unsupervised deep hashing methods learn deep fea-

tures of samples by preserving the structure or metric con-

sistence embedded in samples without using any seman-

tic labels, which are usually achieved by unsupervised rep-

resentation learning [34, 35, 10]. Although the unsuper-

vised schemes are more general, their performance for

retrieval is not satisfactory because of the semantic gap

dilemma [37]. Supervised deep hashing methods use the

class labels or pairwise similarities as the semantic super-

vision in the learning process, yielding promising results

[42, 21, 47, 26, 28, 5, 17, 4, 45]. For example, the first deep

hashing method [42] separates the whole hash learning into

two steps: hash codes learning and data encoding. Recent

works [21, 47, 26] validated the importance of jointly learn-

ing similarity-preserving hash codes and minimizing the

quantization error in continuous-binary space transforma-

tion, and also showed the nonlinear deep hashing function

learning could greatly improve the retrieval performance in

an end-to-end training architecture. Thanks to the power of

deep learning, researchers have extended the above methods

to other complex tasks, e.g., [16, 22, 46].

2.2. Adversarial Attacks

In image classification, an adversarial example is usu-

ally a carefully modified image, which is intentionally per-

turbed by adding visually imperceptible perturbations to the

original image but can confuse the deep model to misclas-

sify it. Since Szegedy et al. [38] discovered the properties

of adversarial examples, various adversarial attack meth-

ods in image classification have been proposed to fool a

trained DNN. According to the information of target model

exposed to the adversary, adversarial attacks can be cate-

gorized as white-box attacks (e.g., FGSM [12], I-FGSM

[20], PGD [29] and C&W [6]) and black-box attacks (e.g.

SBA [31] and ZOO [7]). For white-box attack, the ad-

versary knows the whole network architecture and param-

eters so that it can design the adversarial perturbations by

calculating the gradient of the loss w.r.t. inputs. As for

black-box attack, only the input and the output are avail-

able to the adversary, thus it is more challenging and practi-

cal. However, these attack methods are optimization-based

and they are quite slow for accessing the target model many

times. Recently, generation-based attack methods (e.g.,

[3, 43, 11, 30, 32, 13]) received much more attention due

to their high-efficiency during test phase. Generation-based

attack methods learn a generative model which transforms

the input images into the adversarial samples. Once the

generative model trained, it do not need to access the tar-

get model again and can generate adversarial examples with

one-forward pass.

In addition to image classification, recent works on simi-

larity retrieval [25, 39, 9, 44, 2, 23, 24] have also confirmed

the vulnerability of DNNs to adversarial examples. Cur-

rently, there are only two works on attacking deep hashing

models, i.e., [44] for non-targeted attack and [2] for tar-

geted attack. Specifically, HAG [44] is to make the hash

code of the adversarial example as dissimilar as possible

from that of the original example. Bai et al. [2] proposed

the two targeted attack schemes in hashing based retrieval,

dubbed point-to-point (P2P) and deep hashing targeted at-

tack (DHTA). P2P randomly chooses a hash code of a sam-

ple with the target label to direct the adversarial example by

maximizing their similarity of hash codes. DHTA trans-

forms the targeted attack into a point-to-set optimization

problem, which maximizes the similarity between the hash

code of the adversarial example and the set of hash codes of

samples with the target label. In detail, DHTA selects the

anchor code [2] which has the smallest distance to the set

as target code to guide the optimization of the adversarial

example by minimizing the Hamming distance between the

hash code of the adversarial example and the anchor code.

Although making some progress in adversarial attacks of

deep hashing, the existing works are generalized built on

heuristic rules and optimization-based attack, which are in-

efficient and less effective. In this work, we, for the first

time, design a neural network (PrototypeNet) to learn the

prototype code of the target label for targeted attack and use

a generative model to achieve the entire attack framework.

3. Generation-based Hashing Targeted Attack

We propose a novel prototype-supervised adversarial

network (ProS-GAN) to efficiently generate adversarial ex-

amples for targeted attack of deep hashing-based image re-

trieval. Given a query image and a target label, targeted

attack aims to learn an adversarial example for the query,

whose nearest neighbors retrieved by the target hashing

model from the database are semantically relevant to the

target label. As shown in Figure 1, the overall framework

is a generative adversarial network [11] and includes three

sub-networks: a well-designed PrototypeNet P for learn-

ing representative embedding of target labels, an adversarial
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generator G and a discriminator D for generating adversar-

ial examples. Specifically, P embeds the target label into

the semantic representation and outputs the predicted label

and the corresponding prototype code which can be used to

supervise the generation of adversarial examples. G learns

to transform the given query image into the targeted adver-

sarial example. D aims at distinguishing the generated im-

age from the real one and categorizing them into the target

and the original category, respectively. G and D are trained

in an adversarial manner, which encourages G to generate

more realistic images and ensures the semantic representa-

tion informative.

3.1. Problem Formulation

Let O = {(xi, yi)}
N
i=1 denote a dataset containing N in-

stances labeled with C classes, where xi indicates the orig-

inal image for the i-th instance, and yi = [yi1, ..., yiC ] ∈
{0, 1}C corresponds to a multi-label vector. yij = 1 indi-

cates that xi belongs to class j. Let L = {yi}
M
i=1 denote

all unique label dataset from O, where M is the number of

labels and M ≤ N . We use similarity matrix S to describe

semantic similarities between each pair of data points. For

any two instances xi and xj , Sij = 1 indicates they share

as least one label, otherwise Sij = 0. Similarly, we can use

Stj = 1 to indicate that a label yt and a instance (xj , yj)
have similar semantics.

Hashing aims to transform semantically similar data

items into similar binary codes for efficient nearest neigh-

bor search [40]. For a given deep hashing model F (·), the

hash code of the sample xi is generated by

bi = F (xi) = sign(fθ(xi)), s.t. bi ∈ {−1, 1}K , (1)

where f(·) is a DNN with parameters θ to approximate

F (·), sign(·) is the sign function which binarizes the out-

put of fθ(·) to −1 or 1, and K is the hash code length. We

use B = (b1 b2 ... bN )K×N to represent the hash code ma-

trix for O. In general, f(·) is a convolutional neural net-

work (CNN) [19, 36, 14], which consists of a convolutional

feature extractor followed by fully-connected layers. In par-

ticular, deep hashing methods adopt tanh(·) function to ap-

proximate the sign(·) function during training process.

In image retrieval, given a benign query image x and

a target label yt, the goal of targeted attack is to generate

corresponding adversarial example x′, which could cause

the target model to retrieve the images semantically related

to the target label. In addition, the adversarial perturbations

(i.e., x′ − x) should be as small enough to be imperceptible

to human eyes. In this paper, we aim to design a function Φ
to achieve such objective, i.e.,

Φ : (x, yt) → x′,

s.t. min
∑

i d(F (x′), F (x
(t)
i ))−

∑
j d(F (x′), F (x

(n)
j )),

‖x− x′‖p ≤ ǫ,
(2)

where d(·, ·) is a distance measure, ‖ · ‖p (p = 1, 2,∞)

denotes Lp norm, and ǫ is the maximum magnitude of ad-

versarial perturbations. x
(t)
i is a sample semantically rele-

vant to the target label, and x
(n)
j is a irrelevant sample. The

minimized objective in Eqn. (2) ensures the hash code of

the adversarial example x′ as close as possible to those of

the semantically relevant samples, and simultaneously stays

away from those of semantically irrelevant ones.

3.2. Prototype Generation

Unlike targeted attack in image classification, deep hash-

ing models aim to generate semantic-preserving hash codes

instead of categories, and thus labels can not directly used

for guiding the generation of targeted adversarial samples.

In hashing based retrieval, the most intuitive idea for tar-

geted attack is that we can construct the most representative

hash code of samples with the target label, and then use it

to supervise the learning process of the adversarial exam-

ple generation. As such, we construct a semantic encoding

strategy, i.e., PrototypeNet, to produce the prototype codes,

which are used for representing the target labels. In Proto-

typeNet, the semantic representations are transformed into

the corresponding prototype codes, and meanwhile could

preserve the category knowledge of each target label.

Let θp denote the network parameters of the Prototype-

Net P , and the objective function is defined as follows:

min
θp

Lpro = α1J1 + α2J2 + α3J3

= −α1

M∑

i=1

N∑

j=1

(
SijΩij − log

(
1 + eΩij

))

+ α2

∥∥∥H −B(p)
∥∥∥
2

F
+ α3

∥∥∥Ŷ − Y
∥∥∥
2

F
,

s.t. B(p) ∈ {−1, 1}K×M ,

(3)

where S is the semantic similarity matrix between the target

labels and image instances from O, Ωij = 1
2 (H∗i)

T (B∗j),
and B is the hash code matrix for O. H is the predicted

hash codes for the targeted labels Y , and Ŷ are the predicted

labels. B(p) is the expected binary codes of H , i.e., B(p) =
sign(H). α1, α2, α3 are hyper-parameters. ‖ · ‖F denotes

Frobenius norm.

The first term J1 in (3) is the negative log-likelihood of

the pair-wise similarity in S. Given S, the probability of S
under the condition B can be defined as follows:

p (Sij | B) =

{
σ (Ωij) , Sij = 1
1− σ (Ωij) , Sij = 0

(4)

where σ (Ωij) = 1

1+e
−Ωij

. Notably, this pair-wise class

encoding process can maximally capture the category in-

formation of the target label. Moreover, by using the above

pair-wise similarity preservation loss in J1, the prototype

codes can jointly maximize the compactness with the hash

codes from semantically-relevant samples and separability
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with those from semantically-irrelevant samples. Hence, by

optimizing J1, the generated prototype codes can maintain

the representative semantics of the target labels and the dis-

criminative characteristics.

J2 is the quantization loss to minimize the approxima-

tion error between the prototype embedding H and the ex-

pected binary codes B(p). J3 is the classification loss of the

semantic representation rt to keep its category information.

3.3. Adversarial Generator G

Given a semantic representation rt from PrototypeNet

and an original image x, we design an adversarial gen-

erator G to learn the targeted adversarial example of x.

Particularly, we integrate the decoded semantic represen-

tation and the original image into a well-designed encoder-

decoder network with skip connection strategy. Generally,

it is mainly composed of two parts: a semantic representa-

tion decoder Dt and a image encoder-decoder Gxt. Dt is

used to upsample rt to xt with the same size of x. Then, x
and xt are concatenated into Gxt to generate the adversarial

example. Inspired by the skip connection in [33, 48], we

concatenate the original image x and the output of the last

deconvolutional layer in Gxt, which can facilitate the recon-

struction of the adversarial example x′ during training.

To guarantee the high-quality of the adversarial exam-

ples, we define the objective of the generator G as follows:

min
θg

Lgen =
∑

yt∈L,(x,y)∈O

(Jham + αJre + βJadv), (5)

where α, β are the weighting factors, and θg is the param-

eters of G. Jham is the Hamming distance loss, Jre is the

reconstruction loss and Jadv is the adversarial loss.

Jham is the Hamming distance loss that enforces the

hash code of the adversarial example similar to the hash

codes of samples relevant to the target label. Since we take

the prototype code as representative of the target label, we

can choose the prototype code as a target code to guide the

generation of the adversarial example. As such, we can di-

rectly minimize the Hamming distance between the hash

code of the adversarial example and the prototype code:

Jham = dH(hx′ , ht), (6)

where dH(·, ·) is the Hamming distance operator, hx′ is the

hash code of x′, and ht is the prototype code of the target

label yt. Due to dH(hi, hj) =
1

2
(K − hT

i hj), we can re-

place Hamming distance with inner product. Besides, we

normalize the Hamming distance to range [0, 2]. Therefore,

the final Jham for instance x is calculated as follows:

Jham =−
1

K
hT
t f(x

′) + 1

=−
1

K
hT
t f(G(x, rt)) + 1,

(7)

where hx′ is approximated by f(x′), and rt is the semantic

representation of yt produced by PrototypeNet P .

Jre is the reconstruction loss that ensures the pixel dif-

ference between the adversarial example and the original

image as small as possible, i.e., the adversarial perturbations

are small enough to be imperceptible. We simply adopt L2-

norm loss to measure the reconstruction error as follows:

Jre = ‖x− x′‖22 = ‖x−G(x, rt)‖
2
2. (8)

Jadv is the adversarial loss that ensures the semantic rep-

resentation informative to enhance attack performance and

encourages the generated adversarial example looks real.

We re-formulate the objective label of Jadv as follows:

ỹt = [yt1, yt2, ..., ytC︸ ︷︷ ︸
yt

, 0],
(9)

where yt is in one-hot encoding, and the last node in ỹt is

for the fake sample. Hence, Jadv is defined as follows:

Jadv = ‖D(x′)− ỹt‖
2
2. (10)

3.4. Discriminator D

The designed discriminator is to distinguish the fake im-

ages (i.e., the adversarial images) from the real images (i.e.,

the benign images) and to categorize them into the target

categories and the original categories, respectively. This

strategy has two advantages: on one hand, the adversarial

learning between the G and D encourages the generated

adversarial examples look more realistic; on the other hand,

the discriminator for category classification can ensure the

representation rt semantically informative, which can en-

force the category information of the representation to be

embedded into the generated images and further improve

the targeted attack performance. Specifically, the output of

D is a Sigmoid layer with C + 1 nodes in order to predict

the category and to distinguish real/fake together, where the

first C nodes and the last one indicate the category and the

falsity for the input image, respectively.

By inputting the real image x, the objective label for the

discriminator is re-formulated as follows:

ỹ =

y︷ ︸︸ ︷
[y1, y2, ..., yC , 0],

(11)

where y is the label of the original image x. We set (C +
1)-th node as 0 for real samples. For the fake image, the

objective label is re-formulated as follows:

ỹt =

yt︷ ︸︸ ︷
[yt1, yt2, ..., ytC , 1],

(12)

where yt is the target label, and we set (C + 1)-th node as

1 for fake samples. In summary, the objective loss function

of D is formulated as below:

min
θd

Ldis =
∑

yt∈L,(x,y)∈O

1

2

(
‖D(x)− ỹ‖22 + ‖D(x′)− ỹt‖

2
2

)
,

(13)

where θd is the parameters of D.
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Table 1. t-MAP (%) of targeted attack methods and MAP (%) of benign samples for different code lengths on three datasets.

Method Metric
FLICKR-25K NUS-WIDE MS-COCO

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Original t-MAP 63.58 63.49 63.49 63.59 55.51 55.57 55.67 55.86 42.33 42.60 42.67 42.90

Noise t-MAP 63.37 63.40 63.45 63.55 54.23 54.59 55.61 55.83 42.33 42.60 42.67 42.90

P2P t-MAP 82.55 83.79 84.65 84.44 70.33 71.44 71.98 73.26 56.77 59.11 59.87 59.72

DHTA t-MAP 86.27 87.74 88.35 88.48 74.04 75.52 75.65 75.93 59.85 61.90 63.22 63.20

ProS-GAN t-MAP 89.05 89.85 91.10 91.09 77.73 78.21 78.25 78.75 66.22 71.28 71.65 68.92

Anchor code [2] t-MAP 86.40 87.98 88.68 88.97 75.15 77.41 78.40 78.12 60.35 63.14 64.41 64.65

Prototype code t-MAP 91.33 92.20 92.91 93.12 79.04 80.71 81.34 81.50 67.38 71.30 71.93 69.98

Original MAP 78.88 80.12 80.75 80.87 69.54 70.80 71.33 71.21 57.64 61.02 62.63 62.98

Figure 2. Precision-Recall and precision@topN curves on three datasets under 32 bits code length.

4. Experiments

4.1. Datasets

We evaluate our attack method on three popular multi-

label datasets, i.e., FLICKR-25K [15], NUS-WIDE [8]

and MS-COCO [27]. FLICKR-25K contains 25, 000 im-

ages with 38 classes. Follwing [41], we randomly sam-

ple 1, 700 images as queries, and the remaining as a

database. Besides, we randomly select 5, 000 images from

the database to train hashing models and our framework.

NUS-WIDE consists of 269, 648 images in 81 categories.

We only select 195, 834 images comprising the 21 most fre-

quent concepts. Following [16], we take 2, 100 images as a

query set, and the rest samples as a database. Moreover,

we sample 10, 500 images from the database as a train-

ing set. MS-COCO contains 82, 783 training images and

40, 504 validation images, where each image is labeled with

80 categories. We combine the training and validation sets,

obtaining 122, 218 images. Following [5], we randomly

sample 5, 000 images as queries, and the rest regarded as

a database. 10, 000 images are randomly sampled from the

database as training points.

4.2. Evaluation setup

For image hashing, we select the objective function of

DPSH [26] as default method, which is one of the most

representative deep hashing methods, to construct the tar-

get hashing model. Importantly, for any other popular deep

hashing method, similar results could be achieved by our

ProS-GAN. Specifically, VGG-11 [36] is adopted as the de-

fault backbone network. We replace the last fully connected

layer of VGG-11 with the hashing layer, including a new

fully-connected layer and the Tanh activation.

For the network architecture, we built PrototypeNet with

four-layer fully-connected networks (yt → 4096 → 512 →
rt → yt, ht). We adopt a fully-connected layer and four

deconvolutional layers for the Decoder Dt to upsample the

semantic representation rt. We adapt the architecture for

Gxt from [49], and the discriminator contains five stride-2

convolutions and last layer with a 7× 7 convolution.

After training ProS-GAN, we will use the PrototypeNet

and the generator to attack the target hashing network. We

set α1, α2 and α3 as 1, 10−4 and 1, respectively. The

weighting factor α are set with 50 for NUS-WIDE and MS-

COCO, 100 for FLICKR-25K, and β is set as 1. We train

ProS-GAN using Adam [18] optimizer with initial learning

rate 10−4. The training epochs are 100 in batch size 24.

The ProS-GAN is implemented via PyTorch and is run on

NVIDIA TITAN RTX GPUs. For the optimization proce-

dure of ProS-GAN, please refer to the supplementary file.

Following [2], we adopt t-MAP (targeted mean average

precision) to evaluate the targeted attack performance, in-

stead of MAP (mean average precision). Since t-MAP uses

the target labels as the test labels, the higher the t-MAP, the

stronger the targeted attack. In image retrieval, we calculate

t-MAP on all retrieved images from database. Besides, we

also present the precision-recall curves (PR curves) and pre-

cision@topN curves. In detail, we randomly select a label

as target label for each generation of adversarial examples.

We compare the proposed framework with gradient-based

methods, including P2P [2] and DHTA [2]. For fair compar-

ison, the experimental settings of P2P and DHTA are same

as [2], where the perturbation magnitude ǫ is set to 8/255.

4.3. Results

Targeted Attack Performance: We provide the tar-

geted attack performance of different methods, as shown

in Table 1, using t-MAP criteria for comparison. The Noise
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Figure 3. An example to retrieve top-5 similarity samples on NUS-

WIDE with the benign query and its adversarial query.

in Table 1 is to query with noisy samples which are benign

images with additive noises sampled from the uniform dis-

tribution U(−ǫ,+ǫ). The t-MAP values of Noise are al-

most the same as the values of querying with benign sam-

ples (called Original) on FLICKR-25K, NUS-WIDE and

MS-COCO datasets, which indicates the images with ran-

dom noises can not bias the predictions of deep hashing

models. In contrast, all the t-MAP values of DHTA and

ProS-GAN are higher than the t-MAP values of ’Origi-

nal’, which verifies the effectiveness of adversarial attacks.

Moreover, all the t-MAP values of our ProS-GAN are bet-

ter than all the previous methods including P2P and DHTA.

For example, compared with the state-of-the-art DHTA, we

achieve absolute boosts of more than 2% in t-MAP for vari-

ous number of bits on both FLICKR-25K and NUS-WIDE.

On MS-COCO, our method outperforms DHTA over 5%

in all cases. Especially, for 24 bits, the t-MAP of ProS-

GAN is higher than DHTA by 9.38% on MS-COCO. As

shown in Table 1, our superior performance benefits from

the superiority of the prototype code over the anchor code,

which indicates the prototype code is a more representative

code of the target label. Furthermore, the targeted retrieval

performance on three datasets in terms of the PR and preci-

sion@topN curves are shown in Figure 2 for comprehensive

comparison. The curves of ProS-GAN are always above

all other curves of previous methods, which also shows our

performance does surpass all other methods. An example of

the retrieval results with a benign image and its adversarial

example generated by our method is displayed in Figure 3.

Perceptibility & Efficiency: In addition to attack per-

formance, the perceptibility is also an important criteria

to evaluate the quality of adversarial examples. Follow-

ing [38], the perceptibility is calculated by

√
1
Z
‖x′ − x‖22,

where Z is the pixel number, and pixel values are all nor-

malized in the range [0, 1]. The higher the perceptibility, the

worse visual quality of adversarial examples.

To make comprehensive comparison between efficiency

and perceptibility of adversarial examples generated by var-

ious methods, we record t-MAP, perceptibility and gener-

ating time for 32-bits length on three datasets, which are

summarized in Table 2. It is observed that ProS-GAN has

Table 2. t-MAP (%), perceptibility (×10
−2) between benign sam-

ples and adversarial samples (per image) and generating time (sec-

ond per image) on attacking hashing models with 32 bits length.

The hyper-parameter settings of gradient-based attacks: for FGSM

[12], ǫ = 8/255; for I-FGSM [20], ǫ = 8/255 and step size

α = 1/255; for DHTA, the settings follows [2].

Method Iteration
FLICKR-25K NUS-WIDE MS-COCO

t-MAP Per. Time t-MAP Per. Time t-MAP Per. Time

DHTA + FGSM 1 80.18 3.06 0.013 66.78 3.09 0.020 51.44 3.10 0.017

DHTA + I-FGSM 100 88.65 2.46 0.270 77.26 2.57 0.280 64.50 2.56 0.277

DHTA 2000 88.35 0.84 9.957 75.65 0.80 5.601 63.22 0.63 5.685

ProS-GAN 1 91.10 2.23 0.006 78.25 1.87 0.005 71.65 1.86 0.005

the highest targeted attack performance, the second-best vi-

sual quality and the fastest generation speed for all datasets.

Specifically, DHTA with FGSM has fast speed to generate

adversarial examples, but it has lower attack performance

yet higher perceptibility. On FLICKR-25K, ProS-GAN out-

performs DHTA about 1660× of generation speed. Al-

though ProS-GAN performs a little worse than DHTA [2]

on visual quality, DHTA needs multiple gradient descent to

optimize adversarial perturbations and can not attack hash-

ing models in real time. In summary, ProS-GAN not only

outperform all the previous methods in attack performance

and speed, but also can produce adversarial examples with

high visual quality.

4.4. Ablation studies

Effect of the PrototypeNet: In order to explore the in-

fluence of the PrototypeNet for targeted attack performance,

we remove the Hamming distance loss from the proposed

structure denoted as GAN. As shown in Figure 4(a), ProS-

GAN outperforms GAN by a large margin. Thus, the pro-

totype code produced by PrototypeNet determines the per-

formance of the targeted attack.

(a) (b)

Figure 4. (a) t-MAP (%) for various code length on NUS-WIDE

with different ablation architecture. (b) t-MAP (%) and percepti-

bility (×10
−2) for 32 bits code length on NUS-WIDE.

Effect of the discriminator: In addition to making the

generated adversarial examples look more realistic, we ar-

gue that the discriminator plays an important role in cate-

gory classification and enforce the semantic representations

informative, which can boost the attack performance. In or-

der to verify this point, we remove the classification module
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Table 3. Transfer t-MAP (%) for the NUS-WIDE dataset. H-

AlexNet, H-VGG11 and H-ResNet18 denote 12 bits DPSH mod-

els based on AlexNet [19], VGG11 [36] and ResNet18 [14], re-

spectively, and ”*” denotes their 32 bits variants.

Method Attacked model H-AlexNet H-AlexNet* H-VGG11 H-VGG11* H-ResNet18 H-ResNet18*

DHTA

H-AlexNet 71.11 70.39 56.25 57.09 53.64 52.89

H-AlexNet* 68.27 71.86 55.98 56.98 53.36 52.54

H-VGG11 54.94 55.11 74.04 74.94 54.78 54.48

H-VGG11* 54.82 55.24 73.32 75.65 54.32 54.16

H-ResNet18 54.11 54.56 54.69 55.51 67.55 66.38

H-ResNet18* 54.03 54.46 54.31 55.41 65.34 70.08

Ours

H-AlexNet 75.13 74.96 63.70 64.14 58.51 58.43

H-AlexNet* 73.81 78.03 64.35 65.94 62.13 63.12

H-VGG11 60.69 60.75 77.73 76.05 62.20 61.99

H-VGG11* 60.61 61.84 76.42 78.25 63.34 63.52

H-ResNet18 59.06 59.35 60.59 60.50 70.79 69.69

H-ResNet18* 59.25 58.89 59.36 59.76 66.92 75.21

Original 54.09 54.45 55.51 55.67 53.54 53.28

of the discriminator denoted as ProS-GAN1, and the result

is shown in Figure 4(a). The curve of ProS-GAN is above

ProS-GAN1 in all different hash bits, which shows that the

discriminator can indeed further improve the attack perfor-

mance due to less interference to target information.

Visual quality vs. targeted retrieval precision: The

weighting factor α controls the reconstruction quality of

generated adversarial examples. To explore the impact of

different α on visual quality and attack performance of ad-

versarial examples, we make comparison results with 32

bits on NUS-WIDE, as shown in Figure 4(b). When α in-

creases, the visual quality gradually increases with the de-

creasing of perceptibility values, but the attack performance

gradually drops. Thus, α can control the balance between

the imperceptible quality and attack performance of adver-

sarial perturbations.

4.5. Transferability

Transferability refers to the capability of adversarial ex-

amples generated from one model to successfully attack

another model, which is a way to achieve black-box at-

tacks. To evaluate the transferability of our attack method,

we carry on the transferable experiments for hashing mod-

els with different backbone or different hash bits, which is

summarized in Table 3. We observe that the adversarial per-

turbations generated from one hash bit can achieve much

similar t-MAP to another hash bit based on the same ar-

chitecture of hashing model. Besides, our method equips

with good transferability from one DNN to another DNN

while DHTA fails to transfer cross networks. For example,

when we adopt adversarial examples generated by ProS-

GAN with H-AlexNet* to attack H-VGG11, an 8.84% tar-

geted performance increases for the Original t-MAP, but the

result of DHTA only changes by 0.47%.

4.6. Universality on different hashing methods

We argue that our proposed scheme is applicable to most

existing popular deep hashing methods. To evaluate this

Table 4. t-MAP (%) of targeted attack methods and MAP (%) of

benign samples for different hashing models on NUS-WIDE.

Method Metric
DPH HashNet

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Original t-MAP 54.31 54.56 54.58 54.59 54.42 54.99 55.40 55.31

Noise t-MAP 53.12 53.40 53.42 53.45 53.51 53.99 54.09 54.10

P2P t-MAP 69.66 70.79 71.00 71.38 65.16 69.28 71.72 73.17

DHTA t-MAP 72.75 73.86 74.29 74.07 66.23 71.25 73.83 76.29

ProS-GAN t-MAP 75.57 76.87 78.62 77.62 71.29 75.06 76.95 78.48

Anchor code t-MAP 74.25 75.72 75.94 75.97 70.41 75.68 77.92 79.56

Prototype code t-MAP 78.01 79.83 79.85 78.79 73.99 78.58 80.67 81.67

Original MAP 70.09 71.27 71.23 71.50 66.40 70.69 72.62 73.78

point, we compare with targeted attacks (P2P and DHTA)

on other hashing methods, including DPH [44], and Hash-

Net [5]. The results are reported in Table 4. As shown in

the table, even if tested on different deep hashing models,

our targeted attack method is still effective and much bet-

ter than the state-of-the-art DHTA in all cases, which fur-

ther demonstrates the effectiveness of the proposed targeted

hashing attack method. For example, the t-MAP value of

our ProS-GAN is higher than DHTA by 3.12% on the Hash-

Net with 32 bits code length.

5. Conclusion

In this paper, we proposed a prototype-supervised ad-

versarial network (ProS-GAN) for flexible targeted hashing

attack, including a PrototypeNet, a generator and a discrim-

inator. Specifically, we defined a category-level Prototype-

Net to generate the semantic representation and to learn the

prototype code as the representative of the target label for

supervising the adversarial example generation. Moreover,

the designed generator incorporated the decoded semantic

representation into the original image to construct the ad-

versarial example. Benefiting from the adversarial learning

between the generator and the discriminator, the adversar-

ial example could keep the visually realistic property and

hold stronger attack performance. Extensive experiments

showed that our ProS-GAN could achieve efficient and su-

perior attack performance with higher transferability than

the state-of-the-art targeted attack methods of deep hashing.
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