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Abstract

Face recognition has achieved a great success in recent

years, it is still challenging to recognize those facial im-

ages with extreme poses. Traditional methods consider it

as a domain gap problem. Many of them settle it by gen-

erating fake frontal faces from extreme ones, whereas they

are tough to maintain the identity information with high

computational consumption and uncontrolled disturbances.

Our experimental analysis shows a dramatic precision drop

with extreme poses. Meanwhile, those extreme poses just

exist minor visual differences after small rotations. De-

rived from this insight, we attempt to relieve such a huge

precision drop by making minor changes to the input im-

ages without modifying existing discriminators. A novel

lightweight pseudo facial generation is proposed to relieve

the problem of extreme poses without generating any frontal

facial image. It can depict the facial contour information

and make appropriate modifications to preserve the criti-

cal identity information. Specifically, the proposed method

reconstructs pseudo profile faces by minimizing the pixel-

wise differences with original profile faces and maintaining

the identity consistent information from their corresponding

frontal faces simultaneously. The proposed framework can

improve existing discriminators and obtain a great promo-

tion on several benchmark datasets.

1. Introduction

Face recognition aims to figure out the ground-truth

identity for an unknown facial image. Inspired by the de-

velopment of deep learning, the performance of face recog-

nition has been improved rapidly [38, 40, 59, 60, 12, 10, 23].

LightCNN [47] is proposed as a superb model for face

recognition recently and reaches new heights on several

benchmark datasets. However, pose variations result in an

unsolved problem in desired real-world applications. As is

shown in Table 1, LightCNN recognizes faces well on the

*Jiwen Lu is the corresponding author.
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Figure 1. An illustration of the proposed pseudo facial generation.

From left to right, the input faces, residual faces and pseudo faces

are visualized in sequence. +90
◦ and +75

◦ faces are respectively

displayed in the first and second lines.

Multi-PIE dataset [13] in the range of ±15◦ and ±45◦, and

suffers a slight drop in ±60◦ and ±75◦. But for extreme

poses such as ±90◦, the recognition rate declines dramati-

cally, where the decrease is up to 35.09%.

Why does the recognition rate drop heavily when it

comes to the extreme profile faces? Deep learning methods

are data-driven and usually extract features with a propen-

sity [3]. Generally speaking, the frontal and profile facial

images lie in diverse domains. Models prefer to learn dis-

criminative features from the dominant domain, and may

fail in the subordinate domain. Both the imbalance of data

distribution and domain gap devote to this aforementioned

phenomenon, and researchers have tried several different

paths to settle it [9]. The existing methods are mainly di-

vided into two categories. One kind of them is to extract

pose invariant embeddings from original faces to maintain

the invariance [4, 30, 42]. The others rotate facial images to

the frontal pose and recognize them directly [43, 52].

For those embedding based methods, metric learning and

multi-view learning are usually applied to obtain pose in-

variant embedding features. Florian et al. [36] train a CNN

to optimize the desired embeddings directly rather than an

intermediate bottleneck layer. Kan et al. [21] consider the

imbalance of data distribution as large discrepancies be-

tween views, and devise several adaptive sub-nets to release
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the discrepancies. Wu et al. [48] propose a couple deep

learning approach to discover a shared feature subspace,

and the heterogeneous recognition problem can be approx-

imately considered as a homogeneous face matching. Con-

sidering the imbalance of poses which may cause a long tail

distribution problem, the performance of the obtained pose

invariant embeddings are often unsatisfied.

For those rotation based methods, the first attempt can

date back to 1990s by Roberto et al. [1] and Alex et al.

[31]. Huang et al. [18] propose a Two-Pathway Genera-

tive Adversarial Network (TP-GAN) to generate realistic

frontal faces. It is restricted by the huge computational

consumption and the intention only for frontal images. Hu

et al. [16] upgrade the TP-GAN to an arbitrary pose ro-

tation as well as decreasing training and inference time.

But a GAN-based frontal generation method needs to learn

plenty of parameters for approaching the ground-truth im-

ages. Yin et al. [52] propose a multi-task problem to devise

three sub-tasks: pose, illumination and emotion, then ad-

just weights between the main recognition task and three

sub-tasks adaptively. Although multi-task is a shortcut to

achieve better performance, it needs hand-craft for adjust-

ing weights of sub-task networks. Cao et al. [3] improve the

profile pose recognition rates by learning deep frontal resid-

ual mappings. Compared with our proposed method, this

method mainly focuses on the transform of learned residual

features, whereas our method concentrates on generating

pseudo profile facial images from original inputs. Recently,

a flow-based method named FFWM [43] also frontalizes fa-

cial images and reaches excellent scores on several bench-

mark datasets. FFWM contains a Waro Attention Module

(WAM) and an Illumination Preserving Module (IPM), that

can synthesize realistic and illumination preserved frontal

faces. Unlike those former pose invariant models, FFWM

generates frontal faces by estimating flows and can well rec-

ognize facial images with extreme poses.

Different from the above face frontalization based meth-

ods, we try to make minor pixel-wise changes to input fa-

cial images. This innovation derives from the observation

that there exists a dramatic precision drop between ±75◦

and ±90◦ in Table 1, but +75◦ and +90◦ facial images

in Fig. 1 may not be visually distinguished apparently.

Compared with those traditional GAN-based methods, we

reduce the number of parameters and flops by designing

a novel lightweight generator. As is shown in Fig. 1,

residual images mainly describe facial contour information

and the generated pseudo facial images can make appro-

priate modifications to preserve the critical identity infor-

mation. To illustrate its efficiency and expandable abil-

ity, the lightweight generator is applied to LightCNN-29-v2

and relieve the aforementioned phenomenon successfully.

Our proposed framework can help any existing discrimina-

tor obtain a great promotion on several benchmark datasets

Pose ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

Rank-1 100.00 100.00 99.94 98.83 92.91 57.82

Table 1. Rank-1 recognition rates (%) on the Multi-PIE dataset

under Setting2 by the pretrained LightCNN-29-v2.

without carrying too much burden. Quantitative and quali-

tative experiments demonstrate the efficiency and effective-

ness of our proposed method. Comparing with the baseline

LightCNN-29-v2, our method shows its appealing charm

by its superb performance, and can be further added to any

other high quality facial discriminator for a promising pro-

motion. To conclude, our contributions can be summarized

as the following points:

• We provide a novel, straight-forward and simple

method to relieve the dramatic precision drop for ex-

treme poses by generating pseudo profile facial images

under minor pixel-wise modifications rather than gen-

erating fake frontalized faces.

• A lightweight pseudo profile facial generator is pro-

posed as the front-end input of any existing facial dis-

criminator. The inherent identity information can be

well preserved by the generator at a low computational

consumption.

• Quantitative and qualitative experimental results con-

firm that the proposed framework can perform better

than the pre-trained discriminator. Specifically, it can

achieve a surprising recognition rate of 93.68% for

±90◦ on the Multi-PIE dataset under Setting2.

2. Related Work

2.1. Face Frontalization

Face frontalization is a challenging synthesis problem,

especially for extreme poses. Traditionally, we can divide

this topic into the following categories: 2D/3D local texture

warping [15, 63], statistic modeling [33] and methods based

on deep learning [7, 18, 20, 51, 53, 32].

Zhao et al. [56, 57] propose the Pose Invariant Model

(PIM) for face recognition in the wild, which contains both

the face frontalization sub-net and the discriminative learn-

ing sub-net. In [58], 3D morphable model is utilized to as-

sist a PIM-based model with prior knowledge. Cao et al. [2]

discover a connection between 2D and 3D surface spaces

and combine it with GAN.

Huang et al. [18] leverage the synthesized facial im-

ages which preserve identity information for face recogni-

tion and attribution estimation tasks. Hu et al. [16] propose

CAPG-GAN to apply facial landmark heatmaps to the face

rotation model for guidance in both training and inference
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Figure 2. The pipeline of our proposed framework. It contains a pseudo profile facial generator and a discriminator. During the training

stage, parameters of the discriminator are frozen. And the generator is supervised by the identity preserving loss and the pixel-wise

reconstruction loss simultaneously.

stages. It represents a type of GAN-based models which

need relative high computational costs for learning and gen-

erating fake facial images. Wei et al. [43] devise an Illumi-

nation Preserving Module to learn features from illumina-

tion inconsistent image pairs. As depicted in Table 6, the

proposed FFWM achieves high Rank-1 recognition rates in

those extreme poses on the Multi-PIE dataset, but fails to

reach a comparable performance with other state-of-the-art

methods under small poses. That is to say, those synthe-

sized facial images may confront an information loss and

will damage the identity preserving. To prevent from this

kind of information loss and realize the reduction of com-

putational consumption, a lightweight pseudo profile facial

generator is proposed in this work.

2.2. Facial Feature Mapping

Facial feature mapping extracts meaningful feature maps

to capture the geometric variations for recognition and de-

tection. A series of feature map based methods rely on Spa-

tial Transformer Network (STN) [19]. By aligning facial

landmarks, Dong et al. [5] design a supervised transformer

layer to frontalize facial images and improve the perfor-

mance of face detection. Zhong et al. [61] also utilize the

STN module and learn the optimized transform parameters

by facial feature maps. Zhou et al. [62] propose a face rec-

tification module called GridFace and perform an end-to-

end training with a recognition module. However, GridFace

has two problems. First, it optimizes both the face rectifi-

cation and recognition module simultaneously, which is at

high computational consumption. Second, similar to face

frontalization, it faces a challenge to maintain identity in-

formation and is insignificant to rectify those extreme poses.

Cao et al. [3] propose another feature mapping method for

face recognition. It originates from the features learning

from recognition models and projects the profile facial fea-

tures to the frontal facial feature space.

3. Proposed Method

In this section, based on the observed phenomenon, we

first give a definition of the profile face reconstruction prob-

lem and define the symbols used in our methodology in

Sec. 3.1. Secondly, we illustrate the network architecture of

our proposed lightweight Pseudo Profile Facial Generator

(PPFG) in Sec. 3.2. Finally, we elaborate the pipeline of

the whole framework and formulate the overall loss func-

tions in Sec. 3.3.

3.1. Problem Formulation

One typical existing method for face recognition is

LightCNN, which is proposed by Wu et al. [47]. As is

shown in Table 1, the LightCNN can get a good result on

the Multi-PIE dataset when the facial poses is in the range

of 0◦ to ±75◦. But for profile facial images under ±90◦, the

Rank-1 recognition rate drops heavily to 57.82% on Multi-

PIE. To make a further analysis, we investigate on large

amounts of faces with extreme poses to compare their dif-

ferences from an intuitive view. Fig. 1 shows two examples

under +90◦ and +75◦, respectively. It can be clearly found

that the pair between +90◦ and +75◦ exists just a little vi-

sual disparity, but their overall Rank-1 recognition rate has

a 35.09% drop.

To reduce this dramatic drop, traditional methods gen-

erally design generators to get fake frontal faces, and ex-

tract embedding features of those unrealistic faces. How-

ever, retraining a face generator costs a lot, and considering

its huge flops, this kind of method is hard to be deployed
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Input Resolution Operation Channel Stride

Encoder

128×128×3 Conv3×3 Block 24 1

128×128×24 Inverted Residual Block 24 1

128×128×24 Inverted Residual Block 24 1

128×128×24 Inverted Residual Block 48 2

64×64×48 Inverted Residual Block 48 1

64×64×48 Inverted Residual Block 48 1

Decoder

64×64×48 Deconv2×2 Block 24 2

128×128×24 Inverted Residual Block 12 1

128×128×12 Inverted Residual Block 12 1

128×128×12 Inverted Residual Block 12 1

128×128×12 Conv3×3 Block 12 1

128×128×12 Conv2D, 1×1 3 1

128×128×3 Sigmoid 3 1

Processor 128×128×3 Subtraction 3 1

Table 2. The architecture of the proposed Pseudo Profile Facial

Generator G.

in real-world scenes. We handle this tough question in an

innovative way. What if we reconstruct pseudo profile faces

by minimizing the pixel-wise differences with original pro-

file faces and maintaining the identity consistent informa-

tion from their corresponding frontal faces simultaneously?

The input facial image will be revised by minor changes

with a little computational consumption and the precision

drop phenomenon will be relieved finally.

Let Pdata be a dataset which contains facial images

within both frontal and profile poses. We assume that a fa-

cial image with a 0◦pose of the identity i is a frontal image

I
f
i . And a face with other poses of the identity i is de-

fined as a profile image I
p
i . Given a pair of frontal and

profile facial images of the identity i sampled from Pdata

— {Ifi , I
p
i }, our goal is to train a generator G to synthesize

the corresponding pseudo profile facial image I
g
i = G(Ipi )

from its original input I
p
i . The generated I

g
i is expected

to own a similar semantic embedding feature with a frontal

face I
f
i and tends to be as close as to the original profile

face I
p
i at the same time.

To reach this goal, we propose a lightweight pseudo pro-

file facial generator G as the front-end input. Any face

recognition discriminator D can be applied in our frame-

work as a back-end and achieve better face recognition per-

formance. The pipeline of our proposed framework is illus-

trated in Fig. 2.

3.2. Lightweight Pseudo Profile Facial Generator

Traditional face recognition methods [18, 32, 53] usu-

ally utilize those profile poses to reconstruct frontal poses.

GAN is used to establish the pixel-level connections be-

tween the profile and frontal faces [42, 54]. Those methods

fill in the domain gap by synthesizing frontal facial images.

Their computational costs are high and those synthetic im-

ages may lose some important identity information.

According to the above reasons, we devise a novel

lightweight pseudo profile facial generator to actually settle

this problem. Following the rule of ‘simple is the best’, the

Methods

Metrics
Parameters FLOPs

CAPG-GAN [16] 79.59M 62G

LightCNN-29-v2 [47] 10.4M 3.6G

Our Generator G 16.10K 103.56M

Table 3. Parameters and FLOPs comparison between existing

methods and the proposed Pseudo Profile Facial Generator G.

architecture of the generator is designed as efficient as pos-

sible. It mainly consists of several stacked inverted residual

blocks introduced in MobileNetV2 [34]. The expand ratio

is set as 1. The whole architecture of the proposed generator

network G is illustrated in Table 2. Conv3x3 Block means

a 3× 3 kernel-sized convolutional layer with a leaky ReLU

and Deconv2x2 Block means a 2× 2 kernel-sized deconvo-

lutional layer with a leaky ReLU. Conv2D, 1x1 denotes a

1 × 1 kernel-sized convolutional layer. Channel represents

the output channel size and stride means the sliding step.

The channel size is at most 48 with a relative shallow depth.

As depicted in Table 3, compared with CAPG-GAN [16]

which has 79.59M parameters and 62G FLOPs, our pro-

posed generator has only 16.10K parameters with 103.56M

FLOPs.

The generator is divided into three parts: Encoder, De-

coder and Pixel-wise Processor. By directly subtracting

those residual images from original profile facial images,

we generate the final pseudo profile faces as Fig. 1. From

Fig. 3, it is clear that residual images can describe partial

outline information of facial images. The pseudo profile fa-

cial images are generated from them. The architecture of

the generator is represented in the blue box of Fig. 2.

If we apply the frontal poses as reconstruct supervision

information, the proposed PPFG will try to generate pseudo

frontal facial images. It will belong to the face frontaliza-

tion based method as well as causing dramatic geometry and

pixel-wise changes, which increases the difficulty to train a

good generator.

3.3. Pipeline Description

Fig. 2 depicts the whole pipeline of our proposed frame-

work. Similar to GAN, our proposed method includes a

generator and a discriminator. However, it must be em-

phasized that the discriminator is frozen during the train-

ing stage, and the parameters of the proposed generator are

updated by the pixel-wise reconstruction loss and identity

preserving loss.

3.3.1 Pixel-wise Reconstruction Loss

In the training stage, one original profile facial image I
p
i is

firstly fed into the generator G(.) to obtain a pseudo profile

facial image as:

I
g
i = G(Ipi ). (1)
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We employ a pixel-wise reconstruction loss to hold the con-

tent consistency between the original profile image and its

corresponding generated pseudo image as:

LRecon = ‖Igi − I
p
i ‖1. (2)

3.3.2 Identity Preserving Loss

To preserve the identity consistent information, we min-

imize the embedding distances between the generated

pseudo ones and their corresponding frontal facial images.

Suppose D(.) denotes a embedding feature from a facial

discriminator, the identity preserving loss is formulated as:

LId = ‖D(Igi )−D(Ifi )‖
2

2
. (3)

It forces the embedding features of pseudo profile facial

images to be as close as their frontal images. In this pa-

per, LightCNN-29-v2 [47] is chosen as the discriminator

due to its good trade-off between recognition accuracy and

FLOPs. It is also noted that any other discriminators can

be well combined with the proposed generator for different

requirements.

3.3.3 Overall Loss

Based on the above losses, we reformulate the overall loss

function as follows:

Loverall = LRecon + γLId

= ‖Igi − I
p
i ‖1 + γ‖D(Igi )−D(Ifi )‖

2

2
,

(4)

where γ denotes a trade-off parameter between the pixel-

wise reconstruction loss and the identity preserving loss. In

Sec. 4.2, we discuss the influence of γ and set it according

to the experimental results on Multi-PIE.

From Table 3, it can be found that both the parame-

ters and FLOPs of our proposed generator are far less than

LighCNN-29-v2. Therefore, it is possible to apply our pro-

posed generator in practical situations.

4. Experiments

We evaluate the proposed framework qualitatively and

quantitatively on several benchmark datasets. In the follow-

ing parts, datasets for our experiments are introduced firstly

and followed by some implementation details in the training

stage. Secondly, we choose the hyper-parameter γ by some

experimental evaluation. Finally, we demonstrate the supe-

riority of our method on both qualitative and quantitative

results and reveal the benefits of the proposed PPFG.

4.1. Datasets and Experimental Settings

Dataset Details: Six benchmark datasets: Multi-PIE

[13], LFW [17], CFP [37], IJB-B [45], IJB-C [27] and

MegaFace [22] are adopted to evaluate our method.

γ

Poses
±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ AVG

25 100.00 100.00 99.94 99.20 95.63 79.62 95.73

100 100.00 100.00 99.85 99.13 96.07 85.91 96.83

1000 100.00 100.00 99.98 99.41 96.04 87.35 97.13

10000 100.00 100.00 99.94 99.17 95.61 87.37 97.02

Table 4. Rank-1 recognition rates (%) with different γ settings on

the Multi-PIE dataset. The best results are highlighted in bold.

Multi-PIE [13] is utilized as our training and testing

set. It consists of multiple Pose, Illumination and Expres-

sion (PIE) variants in a controlled setting. Therefore, it is

widely applied to evaluate the performance on PIE invariant

face recognition and synthesis. The whole dataset includes

754,204 facial images of 337 identities from 20 illumina-

tions and 15 poses. To compare with other methods in a

fair condition, we only select 13 poses in the range of ±90◦

with the neutral expression and carry out the same setting

as [43]. In particular, we employ two kinds of different

settings denoted as Setting1 and Setting2, respectively.

For Setting1, only images in Session 1 are exploited. All

the first 150 identities are used to compose the training set.

The testing set consists of a gallery set and a probe set. The

remaining 99 identities in frontal pose and normal illumina-

tion are selected as the gallery set and the others are selected

as the probe set. For Setting2, we select images which

are in a neutral expression from all four sessions. The first

200 identities are chosen for training and the remaining 137

identities are for testing. The composition of the testing set

is similar to Setting1.

The Celebrities in Frontal-Profile (CFP) dataset [37]

contains 500 identities in the wild. Following the standard

setting as [3], we evaluate our method on CFP by a 10-fold

protocol. Both the Frontal-Frontal and Frontal-Profile ex-

perimental evaluations are conducted on the proposed and

other comparable methods. LFW [17] consists of 13,233

facial images in the wild. It can be used to evaluate the

frontalization performance in an uncontrolled setting. Same

as [47], 6,000 facial image pairs are applied to evaluate the

methods. IJB-B [45] contains 1,845 subjects with 21,798

still images and 55,026 frames from 7,011 videos. IJB-C

[27] adds 1,661 new subjects to IJB-B. It contains 31,334

still images and 117,542 frames from 11,779 videos. As in

[8], we report TAR (@FAR=1e-4) results for the 1:1 verifi-

cation protocol. MegaFace [22] includes one million photos

of more than 690K individuals as the gallery set and 100K

photos of 530 individuals from FaceScrub [28] as the probe.

Note that CFP, LFW, IJB-B, IJB-C and MegaFace are

just considered as the testing sets and we use the MS-Celeb-

1M dataset [14] to train our proposed PPFG.

Implementation Details: All the inputs are cropped and

resized to a fixed size of 128× 128. LightCNN-29-v2 [47]

is chosen as our facial discriminator and is pretrained on

1998



Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ AVG

TP-GAN [18] 99.78 99.85 98.58 92.93 84.10 64.03 89.88

CAPG-GAN [16] 99.95 99.37 98.28 93.74 87.40 77.10 92.64

PIM [56] 99.80 99.40 98.30 97.70 91.20 75.00 93.57

3D-PIM [58] 99.83 99.47 99.34 98.84 94.34 76.12 94.66

FNM [32] 99.90 99.50 98.20 93.70 81.30 55.80 88.07

FFWM [43] 100.00 100.00 100.00 98.86 96.54 88.55 97.33

LightCNN-29-v2 [47] 100.00 100.00 99.97 99.44 95.25 62.40 92.84

Ours 100.00 100.00 99.95 99.49 97.98 88.74 97.69

LightCNN-29-v2* [47] 100.00 100.00 100.00 99.85 99.04 92.20 98.52

Ours* 100.00 100.00 100.00 99.87 98.94 94.07 98.81

Table 5. Rank-1 recognition rates (%) on Multi-PIE under

Setting1. The best results are highlighted in bold. The symbol

of ∗ represents that LightCNN-29-V2 is finetuned on Multi-PIE.

the MS-Celeb-1M dataset [14]. During the training stage,

all parameters of the discriminator are frozen. The learn-

ing rate is initialized as 0.0002 with 512 batch size. The

momentum and the weight decay are set to 0.9 and 0.0001,

respectively. We train the generator with 100 epochs. Ac-

cording to Sec. 4.2, we empirically set γ as 1,000 for better

recognition accuracy.

For Multi-PIE, facial images under 0◦are chosen as the

frontal faces and the others are considered as the profile

faces during the training stage. For MS-Celeb-1M, the lo-

cation of nose landmark decides whether the facial image

belongs to a frontal one or not. In particular, we empirically

select frontal facial images whose x-axis value ranging from

65 to 79 as well as y-axis value ranging from 79 to 86.

To further analyze the effectiveness of our method, we

also finetune LightCNN-29-v2 on the training set of Multi-

PIE. The basic learning rate is set as 0.01 with 1,024 batch

size and the total epoch number is 120.

4.2. Parameter Selection

The hyper-parameter γ is used to balance the trade-off

between the pixel-wise reconstruction loss and identity pre-

serving loss. We conduct an experiment on the Multi-PIE

dataset under Setting2 to choose the best γ for the follow-

ing training. γ ranges from 25 to 10,000. For a fair com-

parison, all PPFG models are respectively trained with the

pretrained LightCNN-29-v2 and selected from the 100-th

epoch and evaluated on the testing set. According to Table

4, with the increase of γ, the average Rank-1 recognition

rate rises rapidly. However, there is a slight decrease when

γ is set as 10,000. As a whole, γ is set to 1,000 and the

following experiments will apply this setting.

4.3. Quantitative Evaluation

Table 5 illustrates the Rank-1 recognition rates on the

Multi-PIE dataset under Setting1. It can be found that

FFWM [43] outperforms the previous frontalization meth-

ods [16, 18, 32, 56, 58] and achieves a 88.55% Rank-

1 recognition rate under ±90◦. As a comparison, the

pretrained LightCNN-29-v2 only gets a poor recognition

Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ AVG

DR-GAN [42] 94.00 90.10 86.20 83.20 - - 88.38

FF-GAN [53] 94.60 92.50 89.70 85.20 77.20 61.20 83.40

TP-GAN [18] 98.68 98.06 95.38 87.72 77.43 64.64 86.99

CAPG-GAN [16] 99.82 99.56 97.33 90.63 83.05 66.05 89.41

PIM [56] 99.30 99.00 98.50 98.10 95.00 86.50 96.07

3D-PIM [58] 99.64 99.48 98.81 98.37 95.21 86.73 96.37

HF-PIM [2] 99.99 99.98 99.98 99.14 96.40 92.32 97.97

DA-GAN [54] 99.98 99.88 99.15 97.27 93.24 81.56 95.18

FFWM [43] 99.86 99.80 99.37 98.85 97.20 93.17 98.04

MVF-HQ [11] 99.9 99.9 99.4 98.7 96.3 87.4 96.93

LightCNN-29-v2 [47] 100.00 100.00 99.94 98.83 92.91 57.82 91.58

Ours 100.00 100.00 99.98 99.41 96.04 87.35 97.13

LightCNN-29-v2* [47] 99.94 99.91 99.80 98.92 96.72 91.97 97.88

Ours* 99.96 99.92 99.83 99.39 97.60 93.68 98.40

Table 6. Rank-1 recognition rates (%) on Multi-PIE under

Setting2. The best results are highlighted in bold. The symbol

of ∗ represents that LightCNN-29-V2 is finetuned on Multi-PIE.

Method
Frontal-Frontal Frontal-Profile

ACC(%) EER ACC(%) EER

Sengupta et al. [37] 96.40 ± 0.69 3.48 ± 0.67 84.91 ± 1.82 14.97 ± 1.98

Sankarana et al. [35] 96.93 ± 0.61 2.51 ± 0.81 89.17 ± 2.35 8.85 ± 0.99

Chen et al. [6] 98.67 ± 0.36 1.40 ± 0.37 91.97 ± 1.70 8.00 ± 1.68

DR-GAN [42] 97.84 ± 0.79 - 93.41 ± 1.17 -

DREAM [3] - - - 6.02

Human 96.24±0.67 5.34± 1.79 94.57 ± 1.10 5.02 ± 1.07

LightCNN-29-v2 [47] 99.51 ± 0.44 0.31 ± 0.35 92.94 ± 2.00 6.06 ± 1.35

Ours 99.60 ±0.43 0.23 ± 0.25 94.10 ± 2.30 5.70 ± 1.60

Table 7. Face recognition accuracy (ACC) and equal-error-rate

(EER) results on CFP. The best results are highlighted in bold.

The perceptional results of human beings are highlighted in blue.

rate at 62.40%. However, once combining the pre-trained

LightCNN-29-v2 with our proposed PPFG, the recognition

rate can go up to 88.74%. After finetuning LightCNN-29-

v2 on Multi-PIE, our proposed method can even achieve

a surprising 94.07% recognition rate under ±90◦, which

outperforms FFWM with a 5.52% recognition rate promo-

tion. The average Rank-1 recognition rate of our proposed

method also ascends to the best at 98.81%.

Table 6 further lists the experimental results on Multi-

PIE under Setting2. It can be seen that LightCNN-

29-v2 without finetuning on Multie-PIE gets a poor re-

sult, our proposed method can still get a tolerable perfor-

mance, whose average recognition rate is just lower than

FFWM [43] and HF-PIM [2]. After finetuning, our pro-

posed method achieves the best average Rank-1 recognition

rate at 98.40%.

Considering the experimental results in Table 5 and Ta-

ble 6 simultaneously, we can find several interesting phe-

nomena. First, compared with a single LightCNN-29-v2

discriminator, a discriminator combined with our proposed

generator can acquire better average recognition rates. In

particular, our method can get a comparable or even slight

better performance than LightCNN-29-v2 ranging from

−45◦ to +45◦. When it comes to extreme poses such as

±75◦ and ±90◦, our proposed method brings in a great pro-

motion. It reveals the effectiveness of our proposed method.

Second, compared with all the frontalization methods, our
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Method ACC (%)

DeepFace [40] 97.35

VGGFace [29] 99.13

FaceNet [36] 99.63

DeepID2+ [39] 99.47

WST Fusion [41] 98.37

SphereFace [26] 99.42

RangeLoss [55] 99.52

HiReSR-9+ [46] 99.03

FF-GAN [53] 96.42

CAPG-GAN [16] 99.37

DA-GAN [54] 99.56

R100, ArcFace [43] 99.83

LightCNN-29-v2 [47] 99.60

Ours 99.62 (+0.02)

Table 8. Face recognition accuracy (ACC) results on LFW. The

best results are highlighted in bold. Compared with the baseline,

the improvement of our proposed method is highlighted in blue.

method achieves better performance on these two settings.

It implies that minor pixel-wise modifications for input im-

ages may be a better choice for face recognition with ex-

treme poses rather than generating fake frontalized faces.

For further evaluation, Table 7 refers to the face recog-

nition performance (ACC and EER) of our method with

other state-of-the-art methods and even human beings per-

ception on CFP. For ACC, a higher score means a better

performance. On contrast, a lower EER is better. Under

the frontal-frontal setting, our proposed method performs

the best in all metrics, and even can recognize more accu-

rate than human beings. The proposed method decreases

more than 5% for the EER rate and gains a accuracy in-

crease more than 3%. Under the frontal-profile setting, our

method beats all other state-of-the-art methods, but still ex-

ists a tiny gap with Human beings.

Table 8 lists the face recognition accuracy on the LFW

dataset while Table 9 refers to TAR (@FAR=1e-4) on IJB-B

and IJB-C for the 1:1 verification protocol. The rank-1 face

identification accuracy results on MegaFace Challenge 1 are

listed in Table 10. Although the frontal facial images domi-

nate these datasets, which is inconsistent with the initial de-

sired scene of our proposed method. Our proposed method

can still achieve competitive results on these datasets. Note

that ResNet100 with ArcFace [8] has much more param-

eters than our methods based on LightCNN-v2-29 and

ResNet50-SE. Our proposed method with ResNet50-SE ob-

tains the second highest results on IJB-B and MegaFace

with data refinement. Furthermore, the experimental results

of both LightCNN-v2-29 and ResNet50-SE on IJB-B, IJB-

C and MegaFace confirm that any existing face recognition

discriminator can be integrated to the front-end generator

and achieve better performance.

Method IJB-B (%) IJB-C (%)

ResNet50 [4] 78.4 82.5

SENet50 [4] 80.0 84.0

ResNet50+SENet50 [4] 80.0 84.1

MN-v [50] 81.8 85.2

MN-vc [50] 83.1 86.2

ResNet50+DCN(Kpts) [49] 85.0 86.7

ResNet50+DCN(Divs) [49] 84.1 88.0

SENet50+DCN(Kpts) [49] 84.6 87.4

SENet50+DCN(Divs) [49] 84.9 88.5

VGG2,R50,ArcFace [8] 89.8 92.1

MS1MV2,R100,ArcFace [8] 94.2 95.6

LightCNN-v2-29 85.93 87.99

Ours (LightCNN-v2-29) 87.00 (+1.07) 89.02 (+1.03)

ResNet50-SE 89.45 91.35

Ours (ResNet50-SE) 89.91 (+0.46) 92.03 (+0.68)

Table 9. 1:1 verification TAR (@FAR=1e-4) on IJB-B and IJB-C.

The best results are highlighted in bold. Our improvements over

the pre-trained discriminators are highlighted in blue.

Data Refinement
Methods

No (%) Yes (%)

Softmax [25] 54.85 -

Contrastive Loss [25] 65.21 -

Triplet [25] 64.79 -

Center Loss [44] 65.49 -

SphereFace [25] 72.73 -

CosFace [8] 82.72 -

AM-Softmax [8] 72.47 -

SphereFace+ [24] 73.03 -

FaceNet [36] 70.49 -

CASIA, R50, ArcFace [8] 77.50 92.34

MS1MV2, R100, ArcFace [8] 81.03 98.35

LightCNN-v2-29 72.30 86.49

Ours (LightCNN-v2-29) 73.15 (+0.85) 87.39 (+0.9)

ResNet50-SE 76.73 92.92

Ours (ResNet50-SE) 77.46 (+0.73) 93.70 (+0.78)

Table 10. The rank-1 face identification accuracy on MegaFace

Challenge 1. Data refinement removes noises in MegaFace [8].

The best results are highlighted in bold. Our improvements over

the pre-trained discriminators are highlighted in blue.

4.4. Qualitative Evaluation

In this subsection, we qualitatively compare our original

facial images, residual images and corresponding generated

images. The selected images are all from the 201-th identity

in Multi-PIE and we make a comparison in Fig. 3. In order

to better visualize residual images, we remap its color space

to generate more clear images in the second row.

Note that for those extreme poses, the generated pseudo

facial images are modified by some minor changes accord-

ing to the residual images. It can be observed that residual

images mainly describe the contour information of faces.

As is shown in Fig. 3, the residual images under −90◦ ap-

proximately depict the shapes of eye, nose and mouth. Af-

ter subtracting residual images from the original inputs, the

generated pseudo facial images can make appropriate modi-

fications to preserve the critical identity information. There-

fore, our method gains a remarkable promotion for extreme
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Figure 3. From top to bottom, it is a comparison of original facial images, visualized residual images and the generated pseudo facial

images. From left to right, the faces turn from −90
◦ to 0

◦ at an interval of 15◦.

±90 ∘ ±75 ∘ ±60 ∘ ±45 ∘ ±30 ∘ ±15 ∘ 0 ∘

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Figure 4. The mean values of residual images with different poses

on Multi-PIE.

poses. Although the generated pseudo facial images are not

friendly to perception of human beings, they can be well

understood by facial discriminators.

It can be seen that from left to right, the residual im-

ages contain gradually reduced information from −90◦ to

0◦. We can not even distinguish the visual differences be-

tween the generated pseudo frontal face and original one in

Fig. 3. The phenomenon can be further confirmed by Fig.

4. We calculate the mean values of residual images with

different poses, and find that the mean values are closely re-

lated to poses. Input images under ±60◦, ±75◦ and ±90◦

get higher mean values. When faces tend to be frontal, their

corresponding residual images have smaller mean values. It

reflects that our proposed method tries to maintain the origi-

nal features of those frontal faces. As a result, the generated

pseudo frontal faces just achieve a slight promotion or keep

a comparable performance with input frontal faces.

5. Conclusion

In this paper, we propose a lightweight pseudo profile

facial generator to reconstruct facial images with extreme

poses, and apply it to a pre-trained face recognition discrim-

inator. Compared with other GAN-based methods, our pro-

posed method needs less computational consumption and

reaches higher accuracy. Different from those face frontal-

ization models, we just make some minor changes to the

original inputs and generate pseudo profile faces. As is

pointed out in this paper, any existing face recognition dis-

criminator can be integrated to the proposed PPFG front-

end for better results. Experimental results on six bench-

mark datasets sufficiently confirm the effectiveness of our

proposed method on the face recognition task. It is notewor-

thy that our method is not limited to face recognition with

extreme poses, and those tasks suffer from the domain gap

can also benefit from it, such as the occlusion and makeup

problems. We will further explore these problems in the

future.
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