
Rich features for perceptual quality assessment of UGC videos

Yilin Wang, Junjie Ke, Hossein Talebi, Joong Gon Yim, Neil Birkbeck,

Balu Adsumilli, Peyman Milanfar, Feng Yang

Google Inc.

[yilin, junjiek, htalebi, joonggonyim, birkbeck, badsumilli, milanfar, fengyang]@google.com

Abstract

Video quality assessment for User Generated Content

(UGC) is an important topic in both industry and academia.

Most existing methods only focus on one aspect of the per-

ceptual quality assessment, such as technical quality or

compression artifacts. In this paper, we create a large scale

dataset to comprehensively investigate characteristics of

generic UGC video quality. Besides the subjective ratings

and content labels of the dataset, we also propose a DNN-

based framework to thoroughly analyze importance of con-

tent, technical quality, and compression level in perceptual

quality. Our model is able to provide quality scores as well

as human-friendly quality indicators, to bridge the gap be-

tween low level video signals to human perceptual quality.

Experimental results show that our model achieves state-of-

the-art correlation with Mean Opinion Scores (MOS).

1. Introduction

Video streaming services currently consume the majority

of today’s internet traffic [23]. Service providers typically

optimize and stream transcoded versions of the content that

may have come from a professional (e.g., Netflix) or ca-

sual creator (e.g., social media). In the former case, the

service provider has a pristine original and can rely on full-

reference video quality assessment methods to optimize the

quality / bitrate of transcodes sent to viewers. Instead, so-

cial media platforms often serve User Generated Content

(UGC), where the non-pristine version shared by a user of-

ten has pre-existing distortions or compression artifacts.

Given the prevalence of UGC on social media sharing

platforms, understanding the perceptual subjective video

quality of such content (and compressed versions of it) are

important to make informed quality of service trade-offs.

Unlike early approaches at blind video and image quality

assessment, where a set of pre-existing distortions is ap-

plied to pristine content [36, 16], the biggest challenge of

UGC is its diversity due to several factors. First, the con-

tent could be a popular live show watched by millions of

people, or a bunch of meaningless frames with no views.

Second, the original quality could be created by a 4K HDR

camera with professional post-processing, or captured by a

low-end shaky camera. Finally, it is unclear how many ad-

ditional operations have been applied on the video: some

videos have been cropped, rescaled, or heavily compressed

before being uploaded. The UGC video quality discussed in

this paper is a generic concept, encompassing a mixture of

content attractiveness, aesthetic quality [21, 29], and com-

pression artifacts [39]. Each of these factors affects a view-

ers’ expectation of the video quality, and may significantly

influence their watching experience.

While an uploader may not be able to alter the subject

matter of the video, feedback that quantifies the contributing

perceptual quality factors may benefit the uploader. Also,

understanding the quality of the original can be used by the

service provider to optimize recommendation systems (if

multiple videos are present at a single event) or to further

compress low quality originals with little or no perceptual

impact on the final result [35]. Taking advantage of such

optimizations allows for better user experience at lower cost

for the provider. Perceptual quality metrics are also becom-

ing an integral part of image and video enhancement frame-

works [13, 28, 40], and have shown promising results.

In this paper, we propose a framework to analyze video

quality in a comprehensive way to allow for all the above

applications. Unlike traditional video quality assessment

metrics that work as black boxes outputting a single quality

score, our model also provides human-friendly descriptors

(as illustrated in Table 1) that decomposes the perceptual

quality of the content into its constituent parts. Our contri-

butions are as follows1:

• An enhanced dataset to explore distinct characteristics of

UGC video quality, which contains subjective data for

both original videos and corresponding transcoded ver-

sions. The collected ground truth data makes to it possi-

ble to understand the relationship between video content

and perceptual quality, and improve content-aware video

compression (Sec. 3).

1All data are available at https://media.withyoutube.com/ugc-dataset
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UGC videos

CoINVQ diagnosis report

Compression level 0.924 0.022 0.015 0.039

Content labels Dance, Food, Vehicle, Action-adventure game,

Musical ensemble, Recipe, Car, Vehicle,

Outdoor recreation Cooking Video game Cartoon

Distortion types Gaussian blur, Color saturation, Color shift, Multiplicative noise,

Multiplicative noise, Denoise, Quantization, Gaussian blur,

Color saturation Pixelate Contrast change Color saturation

Quality predicted by

single feature (CP, CT, DT) (2.862, 3.621, 3.16) (3.107, 3.172, 2.95) (3.69, 3.376, 3.548) (4.029, 3.89, 3.941)

Quality predicted by

all features (CP+CT+DT) 2.955 3.03 3.448 3.971

MOS 2.754 2.881 3.29 3.795

(from subjective tests)

Table 1. Understanding generic UGC video quality by Comprehensive Interpretation Network for Video Quality (CoINVQ), which pro-

vided an overall quality estimation as well as human friendly quality indicators, including compression level (0: low, 1: high), content labels

(3800+ UGC entities [2]), distortion types (20+ artificial distortions [17]). CP, CT, DT: features from Compression, Content, and Distortion

submodels. Besides a single quality score, CoINVQ report also reveals the rationale of quality assessment. For example, the first video

has interesting contents (Dance and outdoor recreation), i.e. its content quality is good (CT=3.621). However, it is heavily compressed

(CP=2.862) and has distortions like blur and noise (DT=3.16), which leads to a poor watching experience (CP+CT+DT=2.955).

• We design a comprehensive framework to analyze UGC

video quality from different aspects, such as semantic

content, technical quality, and compression level, which

brings new insights to interpret video perceptual quality

as the interaction of complementary features (Sec. 4).

• The proposed model achieves state-of-the-art precision

on UGC quality prediction, while also providing reliable

indications for quality degradation caused by compres-

sion (Sec. 5).

2. Related Works

Perceptual quality for UGC videos is a broad concept.

Besides compression artifacts, distortions introduced dur-

ing the process of video production (like lens blur and cam-

era shake) could also influence viewers’ watching experi-

ence. Some large scale UGC image datasets have been re-

leased recently [12, 38, 6], but UGC video datasets are still

very limited. Traditional public video quality datasets (e.g.,

LIVE datasets [24, 3, 9]) mainly focus on compression dis-

tortions introduced to pristine originals and contain limited

UGC features. Some public UGC datasets, like YouTube-

8M [2] and AVA [7] are designed for recognition and don’t

provide raw video data and corresponding MOS, making

them less useful for quality assessment research. In con-

trast, a few large-scale UGC quality datasets [11, 26, 33]

were released in the past two years that provide both raw

videos and MOS. Within these datasets, YouTube’s UGC

dataset (YT-UGC) [33] is one of the most representative.

It contains 1500 videos sampled from 1.5 million YouTube

videos with the creative commons license. However, al-

though one major goal of YT-UGC is to facilitate research

on the practical applications of video compression and qual-

ity assessment, the current dataset doesn’t contain any com-

pressed versions of videos and corresponding differential-

MOS (DMOS). Also videos within the provided coarse con-

tent categories show high quality diversity, making it diffi-

cult to establish a connection between content and quality.

Video quality assessment has been studied for decades

and is still a challenging research topic. Reference qual-

ity metrics (e.g., PSNR, SSIM [36], and VMAF [16]) are

designed for measuring relative quality changes from the

reference (pristine original), and mainly focus on com-

pression quality. Since traditional no-reference metrics

[18, 20, 19, 34, 5] mainly rely on several manually de-

signed features that are summarized from limited sam-

ples, they don’t perform well on various UGC conditions.

TLVQM [14] proposed 75 handcrafted features to handle

various video distortions. Recent machine learning based

metrics [15, 41] achieved significant improvements, benefit-

ing from models pretrained on large scale datasets (e.g., Im-

ageNet). However, these metrics are more or less biased on

content related factors, and thus are less sensitive to small

picture quality changes (e.g., may be caused by compres-

sion). How to build a metric for generic UGC video quality

is still an open research topic.
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3. YT-UGC+: Content, Quality, Compression

To provide a comprehensive understanding of generic

UGC video quality, we first explore and motivate the im-

portance of UGC quality attributes (i.e., content labels,

generic video quality, compression sensitivity) and con-

nections among them. We reuse videos from the origi-

nal YT-UGC dataset because of its broad diversity: 1500

20-second video clips, covering 15 categories (Animation,

Cover Song, Gaming, HDR, How To, Lecture, Live Music,

Lyric Video, Music Video, News Clip, Sports, Television

Clip, Vertical Video, Vlog, and VR) and various resolutions

(from 360P to 4K). We complement the original videos with

content labels and compressed versions to enable thorough

investigation on different aspects of UGC video quality. We

call the enhanced dataset YT-UGC+.

3.1. UGC Content Labels

Video content plays an important role in UGC perceptual

quality and overall quality impression. Thus a good quality

metric should have reasonable power of content recogni-

tion. Most UGC video datasets collect MOS [11, 26] or

just provide content labels [2, 7]. The original YT-UGC

dataset contains 15 high level content categories, which is

too coarse to have significant descriptive power when pre-

dicting quality (explored further in Sec. 3.2). To enable fur-

ther investigation on the connection between UGC content

and perceptual quality, the first key feature of the YT-UGC+

dataset is more fine-grained content labels.

We first used the public YT8M baseline model [2] to

generate multiple labels, and selected top 12 confident la-

bels as candidates. The advantage of using the YT8M

model is that their labels (3862 coarse and fine-grained enti-

ties) have been refined for the UGC scenario, and the model

was also trained on real YouTube clips, so we expect similar

accuracy on the YT-UGC+ dataset videos. Then we refined

these candidate labels through a subjective test to get the

final ground truth labels. Each video content was shown 4

times to the same subject, each time with 3 candidate labels

as well as a ”none of above” option. Each subject was asked

to label 8 randomly selected videos, and finally every label

on each video was voted by more than 10 subjects. We de-

fine the label confidence as its actual votes divided by its

total shows. We set the minimum confidence at 0.2, then

there are 610 individual labels from YT8M that appear on

YT-UGC+ videos. Besides high level content labels (e.g.,

Game and Musician), most labels are more concrete and

fine-grained (e.g., Car, Tree, Dance, and Pet), which were

more informative and descriptive of the content (Fig. 1).

3.2. From Content to Generic Video Quality

Diversity in generic video quality is an important char-

acteristic of UGC. Fig. 2 shows MOS for the entire set

as well as individual content categories. The majority of

MOS: 4.55
Labels: Outdoor recreation(0.455), Game(0.455), 
Ball(0.455), Baseball bat(0.364), Cricket(0.182), 
Yo-yo(0.182), Walking(0.091), Mabinogi (video 
game)(0.091)  

MOS: 4.33 
Labels: Beach(0.917), Eating(0.500), Resort(0.417), 
Ibiza(0.333), Nail (anatomy)(0.333), Food(0.167), 
Swimming pool(0.083), Hotel(0.083),Bar(0.083)  

MOS: 2.74  
Labels: Forest(0.818), Tree(0.727), Photography(0.455), 
Nature(0.455), Musician(0.182), Guitar(0.091), 
Vehicle(0.091), Bicycle(0.091), Cycling(0.091)  

MOS: 3.01  
Labels: Racing(1.000), Motorsport(0.692), Stock 
car racing(0.615), Dirt track racing(0.615), 
Vehicle(0.538), Auto Race (Japanese 
sport)(0.231), Clown(0.077)  

Figure 1. Original videos with MOS and content labels.

MOS ranges from 3 to 4 (on a scale of 1-5), while HDR

has the highest average quality (4.02) and CoverSong has

the lowest average quality (3.25). The quality of HowTo,

LyricVideo, NewsClip, and TelevisionClip are relatively

uniformly distributed, while Gaming, Sports, and Verti-

calVideo have a bias on the high quality range. All content

categories have large standard deviations on MOS implying

it is difficult to map the high level content labels to percep-

tual quality at video level.

We also explored the correlation between MOS and the

collected content labels from Sec. 3.1. To simplify the

problem, we divided the MOS range into 3 quality levels

(low, medium, and high) with thresholds 3.0 and 3.8 as

low and high quality bars respectively. Armed with more

fine-grained content labels, we start to find more interesting

correlations between content and quality. For example, 52

video clips contain label “Strategy video game”, and 65%
of them are in the high quality range, which is much higher

than the high quality ratio of label “Video game” (50%). In

contrast, the label “Forest” appears on 7 videos, and 5 of

them belong to low quality. The combination of multiple

fine-grained content labels and deep content features can

be even more indicative of the video quality (discussed in

Sec. 4.1). The connection between content and visual qual-

ity is still an open question, and the content labels provided

in YT-UGC+ can be a benchmark to evaluate the power of

a quality metric from content aspects.

3.3. UGC Compression Sensitivity

UGC compression has received more and more research

interest recently [35]. However, most existing UGC datasets

only contain original videos and their MOS. To enable

more future research, we conducted another subjective ex-

periment to collect MOS for compressed UGC videos.

We selected all 720P and 1080P videos (189 originals)

from three popular content categories (Gaming, Sports, and
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Figure 2. MOS distributions for original videos by content type.

Figure 3. DMOS distributions for transcoded variants.

Vlog). Each original video (the same one used in Sec. 3.2)

was then transcoded by VP9 into three variants: Video-

On-Demand (VOD), Video-On-Demand with Lower Bi-

trate (VODLB), and Constant Bit Rate (CBR), using the

recommended VP9 settings and target bitrates [1]. VOD

and VODLB are two-pass transcoding at the native res-

olution, where VODLB used the recommended target bi-

trate from the lower resolution (i.e., using 720P bitrate to

compress 1080P video, and 480P bitrate for 720P video).

CBR is one pass transcoding, which is widely used in live

streaming. We restricted the device display height to be

within 700P and 800P as that was the most popular resolu-

tion reported in the YT-UGC crowd-sourcing platform [37].

Videos were played in full screen mode, and subjects were

asked to score quality between 1 and 5 for all 4 versions

of the same content (playing in random order to reduce the

influence of personal preferences). Finally, each video clip

was rated by more than 30 subjects.

Fig. 3 shows the distribution of DMOS (= MOS(orig)

- MOS(v)) for 3 variants v (VOD, VODLB, and CBR).

In general, the VOD version has better quality than the

VODLB version due to the higher target bitrate; and the

CBR version tends to have the lowest quality since 1 pass

transcoding is less optimized than 2 passes. The DMOS of

the compressed variants is an important complement of the

original MOS. A good quality metric should also be sen-

sitive to the difference among those variants, i.e., it should

have reasonable correlation with DMOS.

As pointed out in [35], the recommended settings may

not be optimal for low quality UGC inputs, since the de-

fault settings have some bias on high quality inputs to avoid

decreasing quality too much. To further investigate the im-

pact of compression on UGC perceptual quality, we classi-

fied the videos into 3 compression sensitivity levels based

MOS=3.25 MOS=3.41 MOS=3.22 MOS=3.32
Labels: Stairs(0.800), Forest(0.600), Trail(0.500), Mountain bike(0.500), Mountain biking(0.500), 
Cycling(0.200), Car(0.200), Food(0.100)

Orig VOD VOBLB CBR

MOS=4.02 MOS=3.82 MOS=3.55 MOS=3.77
Labels: Boxing(0.917), Kickboxing(0.833), Kick(0.667), Combat(0.333), Santa Claus(0.250), 
Gym(0.167), Floyd Mayweather Jr. vs. Manny Pacquiao(0.167), Stretching(0.083), Tai chi(0.083), 
Dance(0.083) 

Figure 4. Low (top) & high (bottom) compression sensitivity
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Figure 5. MOS distributions for original versions in different com-

pression sensitivity levels.

on DMOS: low, medium, and high. For low sensitivity

videos, all compressed variants’ DMOS are less than T sc
low

(=0.1 in this paper). For high sensitivity, all DMOS are

greater than T sc
high (=0.2 in this paper). Other videos be-

long to the medium level. In general, low sensitivity means

there are no significant quality differences between original

and transcoded version. Those videos’ bitrates could be fur-

ther reduced to save users’ bandwidth. For high sensitivity

videos, the recommended VOD settings still causes notice-

able quality degradation and should be improved.

We found that there are 36 (19%) videos at low sensitiv-

ity and 29 (15%) at high sensitivity, which means a signifi-

cant amount of UGC videos could be further optimized (ei-

ther reducing bitrate or improving quality). Two examples

from low and high levels are shown in Fig. 4. Fig. 5 shows

the MOS distribution for original versions with different

compression sensitivity levels, where we can see the aver-

age MOS in low sensitivity is significantly lower than the

other levels’. It matches the conclusion in [35] that people

are less sensitive to quality changes in low quality videos

than in high quality ones. Although videos at the high sensi-

tivity level have the highest average MOS, some videos with

high MOS (> 4) fall in (or below) the medium sensitivity

group. This implies that in addition to input quality, com-

pression sensitivity may be affected by other factors (e.g.,

video content). Compression sensitivity is a core character-

istic of UGC, and we hope our data inspires more advanced

optimizations for UGC compression and transcoding.

4. CoINVQ Framework

To further explore intrinsic properties of UGC percep-

tual quality, we propose a framework called Comprehensive

Interpretation Network for Video Quality (CoINVQ) to (1)

extract quality related features in various aspects to facili-
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tate deeper understanding of the video, enabling customized

treatment for improving video quality, and (2) predict the

quality of the video with comprehensive features that allow

for more quantitative analysis. Specifically, CoINVQ cap-

tures video quality effects from multiple aspects:

• Content: the meaningfulness and attractiveness of the

video content inevitably affects viewers’ attention as well

as their quality sensitivity.

• Distortion (technical quality): distortions could be in-

troduced during the video producing stage. Some distor-

tions are intended (e.g., proper sharpness filters or fine-

tuning color saturation) and may have positive impact on

perceptual quality. Unintended distortions (e.g., motion

blur or jitter) have negative impact.

• Compression level: many UGC videos are compressed

before being shared publicly due to bandwidth restric-

tions. Unlike technical quality, which is an intrinsic prop-

erty of the video, compression artifacts are usually in-

troduced by a third-party (e.g., upload app) and is ad-

justable. The impact of compression highly depends on

the spatial/temporal complexity of content, and apply-

ing the same settings to different videos may cause com-

pletely different artifacts. Due to the complexity of video

compression, we treat compression level as an individual

aspect of the overall video quality.

• Temporal aggregation: a video is a sequence of small

chunks (or frames), and those chunks could have differ-

ent perceptual quality. Is the average chunk quality score

a good representative of the overall video quality, or is a

more complicated temporal aggregation strategy needed?

In our framework (Fig. 6), we decompose UGC quality un-

derstanding into these 4 sub-problems and feed input frames

into 3 subnets (ContentNet, DistortionNet, and Compres-

sionNet) to extract corresponding 2D deep features as well

as high level quality indicators: content label, distortion

types, and compression level (as shown in Table 1). The fea-

tures are then concatenated together and aggregated through

an AggregationNet to obtain the overall video quality es-

timation. Note that our framework is different from [8],

where the baseline model was shared across different qual-

ity assessment tasks. As discussed in Sec. 5.2, using sepa-

rate networks to learn different features performs better than

learning all features through a single network.

Due to use cases and model training restrictions, the sub-

net inputs are slightly different from each other. ContentNet

requires the entire frame to run overall semantic classifica-

tion, and the result should not be affected by the input res-

olution, so we sampled frames at 1 frame per second (fps,

common in video recognition applications) and resize them

into a small resolution. DistortionNet and CompressionNet

work on the native resolution to avoid rescaling artifacts.

Frames are split into disjoint patches for feature extraction,

Quality Conclusions
● quality score

Chunk Features

Video Quality Indicators
● content labels
● distortion types
● compression level

+

Inputs

Outputs:

ContentNet

DistortionNet

CompressionNet

AggregationNet

Figure 6. Overview of CoINVQ framework. Frames and chunks

extracted from the input video are fed into three sub DNN models

to extract corresponding features and quality indicators which are

then aggregated to obtain the final quality score.

and patch features are then stitched together to obtain fea-

tures for the entire frame. DistortionNet only takes a sin-

gle frame (1 fps) while CompressionNet requires multiple

frames (5 fps) to capture both spatial and temporal artifacts.

4.1. ContentNet

ContentNet is our video classification model that pro-

vides semantic-level embeddings for the UGC quality as-

sessment task. It is a multi-label classification model trained

on single video frames. The outputs of ContentNet are

content-sensitive embedding features and the predicted con-

tent labels (defined in [2]). As can be seen in Fig. 7, the

predicted content labels represent the frame semantics.

Inspired by recent success in deep CNN classifiers, we

opt to fine-tune some existing pre-trained models on our

data. We experimented with pre-trained ResNet-V2-50 [10]

and EfficientNet [30] on the ImageNet dataset [22]. To

adapt the classification CNN to our data, the following

changes are applied to the baseline CNN model: 1) A fully

connected layer with output feature maps of size (16, 16,

100) is added before the last layer, and 2) The last layer

(head) is changed to output 3862 logits, which corresponds

to the total number of video classes. We resize the input

frames to 496 × 496, and use a cross-entropy loss to fine-

tune the baseline CNN in a multi-label mode. Note that

input frames may have up to 20 labels.

Our classification results for various baseline CNNs are

shown in Table 2. In most cases both EfficientNet mod-

els outperform the ResNet model. Also, the difference be-

tween the two EfficientNet models tested on the YT8M data

is not significant, but the gap seems to get larger on the UGC

data. Note that our ultimate goal is to deploy the ContentNet

embeddings into our perceptual quality assessment model.

Hence, in our supplementary results we compare the im-

pact of each model on the overall quality prediction prob-

lem. We found that retraining on YT8M achieved signif-

icantly higher correlations than directly using embeddings

from ImageNet. These observations justify our efforts on
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Labels: Animal (0.43), Pet (0.23), Vehicle 
(0.16), Transport (0.08), Cycling (0.07)

Labels: Video Game (0.95), Game (0.94), 
World of Warcraft (0.45), Warcraft (0.4), 
Strategy Video Game (0.07)

Labels: Car (0.58), Vehicle (0.42), Sports Car 
(0.32), Motorsports (0.18), Racing (0.11)

Figure 7. Examples of predicted content labels. The top-5 class

predictions and probabilities are reported for each frame.

Model YT8M UGC-VQ

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

ResNet-V2-50 0.325 0.554 0.659 0.234 0.425 0.517

EfficientNet-b0 0.463 0.721 0.792 0.196 0.426 0.531

EfficientNet-b7 0.460 0.723 0.788 0.249 0.455 0.605

Table 2. Accuracy of the multi-label ContentNet model on the

YT8M and the UGC datasets which have a total of 3862 classes.

Distortion types: White noise in 
color component (0.155), Mean shift 
(0.155), Contrast change (0.154)

Distortion types: Denoise (0.243), 
JPEG2000 (0.240), Quantization 
(0.232), Lens blur (0.228)

Distortion types: Jitter (0.112), 
Color quantization (0.111), Lens 
blur (0.108), Denoise (0.107)

Figure 8. Examples of predicted distortion types.

fine-tuning CNNs specifically on UGC data. Finally, given

the performance and the computational complexity of each

CNN, we decide to use EfficientNet-b0 as our ContentNet.

4.2. DistortionNet

User generated content naturally contains various distor-

tions (e.g., contrast change or denoise), which are orthog-

onal to video content features, and could have good or bad

impact on perceptual quality. To learn quality related fea-

tures in the distortion domain, we build our second sub-

model called DistortionNet. The outputs of DistortionNet

are distortion-sensitive embedding features and the detected

distortion types (as shown in Fig. 8).

To achieve this goal, we train the network on syntheti-

cally distorted images from KADIS-700K and KADID-10K

[17]. The dataset provides pristine original images and 25

distortion filters, like High sharpen, Denoise, and Gaus-

sian blur. Each filter can generate distortions in 5 differ-

ent levels, so each original has 125 distorted variants. We

used EfficientNet-b0 (pre-trained on ImageNet) as the back-

bone network. The training loss contains three parts. The

first one is cross-entry loss, LDT
T , for multi-label (distortion

type) classification. The second one is the pairwise hinge

loss, LDT
P , between the two randomly selected variants with

the same distortion type. We use LDT
T +LDT

P as loss to train

the initial DistortionNet on KADIS-700K. Then we fine-

tune the model on KADID-10K dataset. Since KADID-10K

also provides ground truth MOS, we use a separate MLP

head to predict the MOS scores and train with a L2 distance

loss (LDT
M ), and the total loss for training on KADID-10K

Compression level: 0.892 
(high) 

Compression level: 0.651 
(medium)

Compression level: 0.0 
(low)

Figure 9. Examples of predicted compression levels.

is LDT = LDT
T +LDT

P +LDT
M . The final model achieves an

accuracy of 0.97 on distortion type classification, and 0.74

MOS correlation on KADID-10K dataset.

4.3. CompressionNet

Most video sharing platforms transcode the original

video into different bitrates/resolutions to meet device and

network requirements. Commonly used video compres-

sion strategies are lossy, causing noticeable quality degra-

dation. Such compression artifacts could heavily influence

the watching experience, so we built an isolated sub-model

to learn compression related features. The outputs of Com-

pressionNet are compression-sensitive embedding features

as well as a continuous compression level score in the range

of 0 (no compression) to 1 (heavy compression) (see Fig. 9).

Due to the limited public UGC video sets with associated

ground truth MOS, we used self-supervised learning to train

the model. The input original videos are transcoded by VP9

with two different compression strengths: VOD (2 passes)

with recommended bitrate (75kbps) and CBR (1 pass) with

a low bitrate (20kbps). The underlying quality order is:

Orig ≈ VOD > CBR. Five frames were uniformly sam-

pled from the original and transcoded clips, and fed into a

shared D3D model [27] to get predicted compression level.

A (1, 4, 4, 100) feature layer, inserted before the fully con-

nected layer, is used to extract compression features.

The loss function contains two parts: pairwise loss

(LCP
P ) and contrastive loss (LCP

C ). We set LCP
P =

sigmoid((orig − cbr) ∗ K) (where K = 4) to evaluate

the compression level difference between the Original and

CBR versions. To compute the contrastive loss, features

were projected into a 1d space (1 × 1600) by two dense

layers (to form a nonlinear mapping), and the similarity

(sim(x, y)) between two features is defined by their feature

distance [32]: LCP
C = sim(orig, vod)/(sim(orig, vod) +

sim(orig, cbr)+ sim(vod, cbr)). The final loss is defined as

LCP = LCP
P + LCP

C .

4.4. AggregationNet

A common way to estimate video quality is to use the

average of frame quality scores, and it performs well on

most public video datasets [31]. It is unclear whether such

basic pooling methods still work well in UGC scenario,

or whether more elaborate aggregation strategies could

achieve better accuracy. To investigate the impact of tem-

poral pooling strategies, we compared 3 aggregation mod-
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els, AvgPool, LSTM, and ConvLSTM, on YT-UGC orig-

inal MOS. LSTM and ConvLSTM are classical temporal

models. In AvgPool model, each chunk feature is filtered

by a 1 × 1 Conv2D layer (256 units) to refine the feature

space. Those refined features are then sent through a shared

2D head (formed by BatchNormalization, Activation(relu),

GlobalMaxPool2D, Dropout, and Dense layers) separately

to get per chunk scores, whose average is used as the final

quality score. The experimental results show that AvgPool

has better performance than LSTM and ConvLSTM on our

dataset, which suggests that the majority of UGC videos

still have relatively consistent quality. This matches the ob-

servation in [35] where the average chunk MOS has 0.976

correlation with the entire video MOS for original videos

in YT-UGC dataset. Detailed comparison can be found in

supplementary material.

We use the absolute difference between ground truth

MOS and predicted score as the loss to train these 3 aggre-

gation models. The difference of predicted MOS between

target and reference videos gives the predicted DMOS. In

this way, no-reference CoINVQ scores can be used to mea-

sure quality degradation caused by video compression.

5. Experimental Results

5.1. Implementation Details

All sub-networks of the CoINVQ framework were

trained separately. ContentNet and DistortionNet are frame

based and use EfficientNet-b0 [30] (pretrained on Im-

ageNet) as the backbone network. CompressionNet is

trained by D3D model [27] (pretrained on Kinetics-600 [4]),

to learn both spatial and temporal video features.

Three datasets were used to retrain these sub models. We

randomly selected 1-second chunks from 100k 1080P video

from YT8M dataset, downscaled into 180P (320 × 180) to

remove noticeable compression artifacts, and used them as

the original version for training CompressionNet. We then

selected another 100k frames from YT8M 1080P videos,

using YT8M baseline model to get top 20 predicted labels,

then joined with the ground truth video labels to obtain the

refined labels for that particular frame to train the Content-

Net. For DistortionNet, the input images are cropped and

resized to 360x640. We pool the final convolution layer to

the size of (8, 8, 100) as our deep distortion features. For

each MLP head, we use a single fully connected layer with

512 units. The model was first trained on the KADIS-700K

(excluding type 13 and 23 due to the license issue), then

fine-tuned on the KADID-10K dataset [17].

ContentNet and DistortionNet were trained on 30 V100

GPU with a batch size of 4 using RMSProp optimizer. The

learning rate starts from 0.001 is decayed by a factor of 0.99

every 15k steps, and training converged around 2.5 million

steps. CompressionNet was trained on a TPU v2 with a

batch size 64. Learning rate is 0.0001 with a cosine decay,

and the training converged after 10k steps.

To align with the display resolution of the subjective

data, all YT-UGC original videos are first rescaled to 720P,

and divided into 4 disjoint 360P patches for DistortionNet

and 16 180P patches for CompressionNet. Deep embedding

features from 3 pre-trained submodels: Compression (CP),

Content (CT), and Distortion (DT), are used to train Ag-

gregationNet on YT-UGC original MOS data. The training

was on a TPU v2 (batch size 256, learning rate 0.0001 with

a cosine decay), and converged around 20k steps.

5.2. Evaluation on Original MOS

In the following experiments, we evaluate the model per-

formance against the YT-UGC original MOS data. We use

5-fold cross-validation with consistent splits for all tests and

report average results over the test folds. All compared met-

rics are evaluated at the original video resolutions with their

default parameters, and output scores are rescaled into [1, 5]
using a nonlinear logistic function [25].

Table 3 compared CoINVQ with popular no-reference

metrics. We can see non-learning based metrics

(BRISQUE [18], NIQE [20], and VIIDEO [19]) didn’t per-

form well on UGC cases, probably because UGC patches

don’t always follow some traditional characteristics found

in pristine videos, like Natural Scene Statistics.

All machine learning based metrics were fine-tuned on

the YT-UGC dataset with the same 5 splits. We first eval-

uated two recent video quality metrics (TLVQM [14] and

VSFA [15]). TLVQM is based on 75 hand-crafted features

and then fine-tuned with Support Vector Regression (SVR)

and Random Forest Regression (RFR). VSFA is a state-of-

the-art deep learning based video quality metric. It performs

better than metrics based on hand-crafted features, achiev-

ing similar correlation as CoINVQ(CT+DT).

We then evaluated several frame-based models. The

first two models were retrained EfficientNet-b0 (pretrained

on ImageNet) with frozen and trainable weights on frames

extracted from YT-UGC originals (100 frames per video,

assuming all frames have same MOS as the video’s).

The result of EfficientNet-b0 (frozen) roughly matched

CoINVQ(CT), since both of them learned content related

features with a trainable head. We also tested Distor-

tionNet (retrained on KADIS-700K and KADIS-10K with

MOS), and their correlations are around 0.73, close to

CoINVQ(DT), but worse than CoINVQ(CT+DT). This im-

plies many pre-learned content features were overwhelmed

by new learned distortion features in the DistortionNet, but

much better preserved when content and compression fea-

tures are learnt separately and joined as in CoINVQ.

For CoINVQ models, combining features performs bet-

ter than using a single feature, and CP+CT+DT has the

highest correlation on all feature combinations. Compres-

sion and distortion features seem to have higher impact on

visual quality than content features, but content features
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Model PLCC SROCC RMSE

BRISQUE [18] 0.112 0.121 0.639

NIQE [20] 0.105 0.236 0.640

VIIDEO [19] 0.146 0.130 0.637

TLVQM(SVR) [14] 0.697 0.722 0.479

TLVQM(RFR) [14] 0.719 0.730 0.448

VSFA [15] 0.761 0.761 0.431

EfficientNet-b0(frozen) 0.624 0.612 0.509

EfficientNet-b0(finetune) 0.671 0.690 0.474

DistortionNet(frozen) 0.732 0.735 0.443

DistortionNet(finetune) 0.732 0.738 0.435

CoINVQ (CP) 0.770 0.785 0.408

CoINVQ (CT) 0.628 0.628 0.495

CoINVQ (DT) 0.726 0.744 0.434

CoINVQ (CP+CT) 0.787 0.801 0.395

CoINVQ (CP+DT) 0.790 0.802 0.391

CoINVQ (CT+DT) 0.750 0.767 0.421

CoINVQ (CP+CT+DT) 0.802 0.816 0.382

Table 3. No-reference metrics on YT-UGC original MOS.

Model Trained on KoNViD-1k Trained on YT-UGC

PLCC SROCC RMSE PLCC SROCC RMSE

TLVQM(SVR) 0.758 0.763 0.421 0.482 0.484 0.599

TLVQM(RFR) 0.723 0.723 0.445 0.515 0.521 0.628

VSFA 0.792 0.782 0.398 0.602 0.599 0.425

CoINVQ

(CP) 0.725 0.727 0.441 0.517 0.521 0.550

(CT) 0.674 0.667 0.469 0.525 0.535 0.542

(DT) 0.737 0.742 0.436 0.602 0.614 0.511

(CP+CT) 0.755 0.755 0.417 0.636 0.647 0.493

(CP+DT) 0.747 0.749 0.427 0.628 0.643 0.498

(CT+DT) 0.757 0.760 0.415 0.630 0.637 0.497

(CP+CT+DT) 0.764 0.767 0.413 0.670 0.685 0.480

Table 4. Performance on KoNViD-1k original MOS.

also bring in additional gain when combining with other

features. Thus the 3 extracted features all inform the per-

ceptual quality. Adding a new feature gives 1 to 2% increase

in correlation, which implies those features cover comple-

mentary aspects of the perceptual quality.

We also evaluate CoINVQ on another UGC dataset

KoNViD-1k [11] by retraining AggregationNet with the

original MOS. Again we used 5-fold cross-validation and

report average results on test folds (Table 4). The combined

features (CP+CT+DT) still achieve the highest correlations

among CoINVQ models, and adding additional features has

positive impact. CoINVQ(DT) gets better correlations than

CoINVQ(CP), probably due to fewer videos in KoNViD-1k

having compression issues than in YT-UGC dataset. The re-

trained CoINVQ(CP+CT+DT) performs slightly better than

TLVQM, but worse than VSFA, which may also be rele-

vant to the lower importance of compression features on

KoNViD-1k dataset. Using models trained on YT-UGC

MOS to predict on KoNViD-1k video quality, then our

CoINVQ models outperforms both VSFA and TLVQM.

Feature PLCC SROCC RMSE

PSNR 0.402 0.389 0.099

SSIM [36] 0.493 0.479 0.093

VMAF [16] 0.401 0.399 0.143

LPIPS [41] 0.524 0.507 0.095

TLVQM(SVR) [14] 0.180 0.123 0.207

TLVQM(FRF) [14] 0.276 0.246 0.149

VSFA [15] 0.403 0.384 0.151

CoINVQ (CP) 0.640 0.590 0.196

CoINVQ (CT) 0.570 0.511 0.106

CoINVQ (DT) 0.315 0.325 0.235

CoINVQ (CP+CT) 0.660 0.594 0.192

CoINVQ (CP+DT) 0.476 0.459 0.232

CoINVQ (CT+DT) 0.312 0.335 0.201

CoINVQ (CP+CT+DT) 0.500 0.490 0.203

Table 5. Results on YT-UGC+ compressed DMOS (not retrained).

5.3. Evaluation on Compressed Video DMOS

The 5 trained models from the previous section were

used to predict the quality scores on compressed videos

(i.e., no retraining was done for this section). For no-

reference metrics (CoINVQ, TLVQM, VSFA), we compute

DMOS as the MOS difference between the original version

and the transcoded variant.

Table 5 shows the correlation of different features on

DMOS prediction, as well as some popular reference qual-

ity metrics. The full-reference metrics, PSNR, SSIM, and

VMAF, highly depend on pixel level difference or hand-

crafted features, so their performance is worse than deep-

learned metric like LPIPS [41]. LPIPS mainly relies on fea-

tures extracted from ImageNet and is slightly less correlated

to UGC compression than our content features directly ex-

tracted from UGC videos. CoINVQ(CP) had better corre-

lation than CoINVQ(CT), as expected, and combining CP

and CT gives the best performance. An interesting observa-

tion is that distortion features seem not as useful for com-

pression quality prediction, and adding them in the model

may give worse results. It suggests that we should carefully

choose features when dealing with different quality predic-

tion tasks. Naively combining as many features as possible

may not always return the best results.

6. Conclusion

In this paper, we discussed the main challenges in UGC

quality assessment. We complement YT-UGC dataset with

content labels and compressed videos with corresponding

DMOS to get a new dataset YT-UGC+. A comprehensive

framework for UGC quality assessment is proposed, and we

demonstrated that combining features learned from differ-

ent quality aspects can achieve better performance than sin-

gle features. There are still many open questions for UGC

quality assessment, and we hope our work inspires more

advanced research in this area.
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