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Abstract

We revisit human motion synthesis, a task useful in vari-

ous real-world applications, in this paper. Whereas a num-

ber of methods have been developed previously for this task,

they are often limited in two aspects: 1) focus on the poses

while leaving the location movement behind, and 2) ignore

the impact of the environment on the human motion. In this

paper, we propose a new framework, with the interaction

between the scene and the human motion taken into ac-

count. Considering the uncertainty of human motion, we

formulate this task as a generative task, whose objective is

to generate plausible human motion conditioned on both the

scene and the human’s initial position. This framework fac-

torizes the distribution of human motions into a distribution

of movement trajectories conditioned on scenes and that of

body pose dynamics conditioned on both scenes and trajec-

tories. We further derive a GAN-based learning approach,

with discriminators to enforce the compatibility between the

human motion and the contextual scene as well as the 3D-

to-2D projection constraints. We assess the effectiveness

of the proposed method on two challenging datasets, which

cover both synthetic and real-world environments.

1. Introduction

The ability to synthesize human motions is beneficial to

many real-world applications, including virtual reality, film-

making, and stochastic action forecasting. Previous meth-

ods [1, 2, 6, 9, 17, 20, 31, 33] for human motion synthesis

often focus only on the movements of human bodies, while

the scene context is neglected. Basically, people move their

bodies for interacting with the outside world and are re-

stricted by the outside world. It is hard to execute reason-

able movements without observing the surrounding envi-

ronment. And thus, the problem is worth further exploring.

Inspired by the importance of scene context, in this pa-
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(a) (b) (c)

Figure 1. Visualization of human motions in different scenes.

For the same starting point, the human not only can go to different

goals, as in (a) and (c), but also the same goals under different tra-

jectories and body movements, as in (a) and (b). All these human

motions are sample from our generated results.

per, we aim at synthesizing human motions under scene in-

fluence. Actually, human motions in the scene consists of

two components, namely body movements and the trajec-

tory of human in the surrounding scene. This trajectory

controls the human movement in the scene, and the body

movements always represent the action of humans, such as

walking or sitting. Thus, there are two major challenges to

handle when involving scene context. The first challenge

is how to effectively reflect the semantic guidance provided

by the scene context, e.g. do sitting action on a chair. The

second challenge is how to model the complicated physical

relationship between scenes and action sequences. Specif-

ically, we need to know the geometric configuration of the

scene context to avoid the collision, e.g. where the floor is.

To solve these problems, there is an early attempt [3] in-

troducing the scene context into motion forecasting, which

supposes human actions are deterministic predictions when

the history and the destination are given. This method treats

the distribution of human motion as the distribution of end-

points in the scene. While in the motion synthesis task,
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we argue that such this treatment may lead to gaps between

the learned distribution of human motion and the one in the

real world since there could be infinite ways for a person to

move from one place to another. They are all valid human

motions, as shown in Figure 1.

Therefore, we propose our scene-aware fully genera-

tive framework to close this gap in motion synthesis. This

framework can learn the distribution of human motion in

given scenes directly, rather than predicting human motions

deterministically. Following [3], we represent scene context

using an RGB image, which is relatively easy to acquire in

real scenarios. Specifically, we divide the joint distribution

as the trajectory prior in the scene and the conditional dis-

tribution of body movements given a trajectory. Inspired by

the success of convolutional sequence generation networks

(CSGN) [31] in skeleton-based action synthesis, we intro-

duce the scene context into CSGN to respectively model

the trajectories and fine-grained body movements. The dis-

tribution of trajectories is first learned by the trajectory gen-

erator under the condition of given scenes· Intuitively, with

the guidance of the scene context and the trajectory, it is

easier for the pose generator to model the distribution of

semantic compatible body movements than direct synthe-

sis (e.g. human always do sitting action with the static tra-

jectory and context information of chair). In this way, our

method is fully generative and is capable of capturing the

diversity of human motions at various levels.

To fulfill the physical compatibility, it is crucial to in-

troduce the geometry structure of the scene as prior knowl-

edge into our synthesis framework. Therefore, we super-

vise the encoder to extract geometry context from the scene

by the depth map. Under this supervision, the encoder can

provide geometry-aware features of the scene, and we do

not need to provide depth information of the scene during

inference, which can be used more easily. Moreover, we

also propose a projection discriminator and a context dis-

criminator as geometry discriminators to further encourage

the compatibility between synthesized human motions and

the surrounding scene context. We deploy the projection

discriminator on the 2D human motion in image coordi-

nate space projected by the 3D human motion, because the

abnormal human motion can be clearly exhibited by scale

changes of humans in 2D space with the scene, as shown in

Figure 4. Therefore, this discriminator encourages the gen-

erator to synthesize trajectories following the global struc-

ture of the scene, such as the floor of the scene. To prevent

the collision between the synthesized human motions to the

objects in the scene, we deploy this context discriminator

to the relative depth sequence of the human motion to the

local environment at each time step. This discriminator en-

courages humans to move to the correct places surrounding

these objects, which are shown in Figure 5.

We choose two challenging datasets to evaluate the ef-

fectiveness of our proposed geometry-aware fully genera-

tive framework, covering both a synthesized environment

(GTA-IM [3]) and a real environment (PROX [10]). On both

datasets, the proposed framework is capable of synthesizing

promising human motions, in terms of the fidelity of each

independent sequence, the diversity of multiple sampled se-

quences, as well as the consistency between synthesized se-

quences and their corresponding scenes. To better quantita-

tively assess different methods, we also propose a series of

new metrics for human motion synthesis with scene context,

including Motion FID, which is inspired by FID for image

synthesis, and Non-collision Rate, which borrows insights

from 3D computer games and examines the potential colli-

sions between human motions and the scenes.

To summarize our contributions: 1) We reformulate the

task of human motion synthesis with scene context as a con-

ditional generation problem to avoid the limitations of de-

terministic prediction in previous works. We further pro-

pose a series of quantitative metrics to enhance the evalua-

tion protocol of this task. 2) We develop a novel geometry-

aware fully generative framework for this task, which ex-

plicitly takes the scene geometry into consideration and

captures the diversity of human motions in a scene from

multiple levels. 3)We propose two geometry-aware dis-

criminators to encourage the compatibility between synthe-

sized human motions and their corresponding scenes.

2. Related Works

Pose Generation Recently, rather than capturing human

poses directly [25, 26, 27, 29], lots of work begin to fo-

cus on pose sequence generation. HP-GAN [1] combines

the Seq2Seq model to the GAN framework for motion gen-

eration. Cai et al. [2] propose a Two-Stage GAN to gen-

erate the spatial and temporal information respectively for

pose generation. PSGAN [33] takes the initial pose as input

and action label as the condition to generate pose sequence

for video generation. CSGN [31] formulates both generator

and discriminator as graph convolution and generates pose

sequence from noise sequence directly. Action2Motion [9]

generates human pose sequences with a CVAE model for

the given action. However, all these methods neglect the

role of scene context in motion synthesis, and our frame-

work is the first one for this task, as far as our knowledge.

Pose Prediction Pose prediction is also another important

task to understand human behaviors. For given continuous

pose sequences, these models can predict the future human

motion at a few time steps. Encoder-Recurrent-Decoder

(ERD) [6] incorporates encoder and decoder models before

and after the recurrent units for motion prediction. Based

on the Seq2Seq [28] model, Martinez et al. [20] predicts

the velocities rather than the positions of joints for motion

prediction. Ac-Lstm [17] enhances the capability of LSTM
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Figure 2. Overview of our framework. There are three components in our framework. The first component is the scene branch, which

extracts the geometry-aware feature of the given scene and sends it to the generative network as the condition. The second branch is

our motion generator. We first learn the distribution of trajectory, and the pose distribution is learned under the guidance of sampled

trajectories. The human motion can be synthesized by aligning different sampled trajectories as well as poses. At last, the discriminator

branch is introduced into this framework for the synthesized motions, and the detailed structure of this branch is demonstrated in Figure 3.

by training the mixture of synthesized frames and observed

frames. Graph convolution network (GCN) is also widely

used in motion prediction in recent advances [4, 15, 19].

These methods model dynamic spatial and temporal rela-

tionship from the obvious frames to the future frames. Re-

cently, more researchers focus on human motion prediction

under 2D or 3D scene context [18, 22, 23, 24, 30, 34]. Cao

et al. [3] propose a three-stage motion prediction method

which can predict different human motions under different

destinations. However, our method is significantly differ-

ent against previous motion prediction methods. Our fully

generative network can directly learn the distribution of hu-

man in the scene and synthesize diverse human motions, as

shown in Figure 1, rather than the deterministic prediction.

3. Scene-aware Generative Network

At first, we formally define the problem of human mo-

tion synthesis given the scene context. The human motion

is represented as X = (R,P ), where R stands for the tra-

jectory in the scene, and P stands for the pose sequence.

Inspired by previous methods [3, 16, 35], we represent the

scene as an RGB image. Besides the RGB image, we also

provide the initial pose following previous methods [3, 9],

and they together constitute the input condition S. Without

loss of generality, we fix the start point of R at the image

center, since we can always crop the image around the start

point. Based on these notations, human motion synthesis

under the given scene context thus can be described as sam-

pling a valid X from a conditional distribution:

X ∼ p((R,P )|S). (1)

Instead of learning a deterministic mapping from a given

S to some X , we propose a fully generative framework

based on generative adversarial networks [7] to directly

model the distribution p((R,P )|S), so that the diversity

of X under the given S can be fully captured. Moreover,

inspired by the observation that humans usually subcon-

sciously plan a rough trajectory in mind before moving, we

divide the conditional distribution p((R,P )|S) into two in-

dependent distributions as:

p((R,P )|S) = p(R|S) · p(P |R,S), (2)

and further organize our framework in two stages consist-

ing of two different GANs. These two GANs respectively

capture p(R|S) and p(P |R,S) and are jointly trained in an

end-to-end manner. Such a decomposition not only signif-

icantly reduces the computational complexity but also pro-

vides the flexibility to add trajectory- or pose-specific con-

straints to the proposed framework. Specifically, we include

two extra discriminators, namely a projection discriminator

and a context discriminator to emphasize the consideration

of scene context when modeling p(R|S). An overview of

our final two-stage generative framework with scene-aware

constraints is included in Fig. 2. Below we briefly introduce

these components separately, and include their detailed ar-

chitectures in the supplemental materials.

3.1. Scene Encoder

Given a scene in the form of an RGB image, a good scene

encoder Escene should reflect both the visual scene seman-

tics and the scene structure in its extracted scene feature

fscene, as humans are likely to move following the scene

structure and perform actions that are semantically consis-

tent with the scene, e.g. going upstairs when there is a stair-

way in the scene. To capture visual semantics of the scene,
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Figure 3. Overview of our discriminator branch. This discrimi-

nator branch contains four discriminators. The trajectory and pose

discriminator help the synthesized human motions to be smooth

and continuous. The projection and context discriminator encour-

age the human motions following the physical structure of the

scene.

we deploy a ResNet-18 [11] pre-trained on ImageNet [5]

as the scene encoder. More importantly, depth estimation

is added as an auxiliary task for Escene when training it

with the whole framework jointly. To estimate the depth

map from the given scene image, Escene is required to in-

clude the scene structure in the extracted feature fscene. In

practice, depth estimation is achieved via an inverse huber

loss Lscene, which is commonly adopted in recent works for

monocular depth estimation [14].

3.2. Generator Branch

As mentioned, the proposed generative framework nat-

urally decomposes p((R,P )|S) into two independent dis-

tributions, namely p(R|S) and p(P |R,S). Subsequently, a

trajectory generator is used to model p(R|S) and synthesize

trajectories under the condition S.

Once a trajectory R is synthesized, at each time step R

provides the location in the scene, as well as the moving

speed and orientation. Since all this information served as

strong priors for the distribution of pose sequences, a pose

generator is thus adopted to learn p(P |R,S) conditioned

on both S and R. Finally, we append the trajectory R to the

root joint of the pose sequence P to form our final output.

3.2.1 Trajectory Generator

The trajectory generator Gtraj represents a trajectory

R of length TR as a sequence of velocities V =
(v0,v2, ...,vTR−1) so that the location Rt at time step t

is obtained via Rt =
∑t−1

i=0 vi. To learn V , Gtraj follows a

process where it gradually increases the sequence length to

T , based on the scene feature fscene and the initial pose.

Such a coarse-to-fine process is shown to effectively re-

duce the learning complexity. Specifically, we at first sam-

ple a sequence of latent vectors Z = (z0, z1, ..., zT (0)−1)

where its length T (0) is smaller than the final length TR,

and each z is a dz-dimensional vector. Since trajectories

should be smooth, the sequence Z is set to follow a Gaus-

sian Process, where c-th component of [z0, ..., zT (0)−1]

satisfies [z
(c)
0 , ..., z

(c)

T (0)−1
] ∼ GP (0, κ) with κ(t1, t2) =

exp(− |t1−t2|
2σ2

c

). We change the value of σc for each c to en-

courage them capture different temporal correlations. After

Z is sampled, Gtraj will use its first block G
(1)
traj consist-

ing of deconvolution layers to upsample Z into a feature

sequence F (1) of length T (1) where T (1) = 2T (0). This

upsampling step will be repeated K times so that F (K) =

G
(K)
traj ◦G

(K−1)
traj ◦ ... ◦G

(1)
traj(Z) and T (K) = TR = 2KT (0).

While each feature in F (K) is a scalar, the velocity sequence

V is obtained by V = α tanh(F (K)) conducted at each

time step. The hyperparameter α is used to control the av-

erage moving speed. It’s worth noting the velocity sequence

is modeled in the 3D camera coordinate system rather than

the 2D image coordinate system to avoid potential issues

raised by the 3D-2D projection.

3.2.2 Pose Generator

Conditioned the scene feature fscene, the initial pose, and

the synthesized trajectory R of length TR, the pose gen-

erator Gpose will output a pose sequence P consisting of

TP = TR poses each of which contains J joints. Gpose fol-

lows a similar structure with the trajectory generator Gtraj.

Starting from a sequence of latent vectors Z ′ that follows

another Gaussian Process, Gpose gradually upsamples Z ′

into the pose sequence P via blocks of graph-upsampling

layers, as in [31]. It’s worth noting that the pose sequence

is also represented in the 3D camera coordinate system, and

all poses in the synthesized pose sequence are center sub-

tracted as their movements in the scene will be controlled

by the synthesized trajectory R as X = P +R.

3.3. Discriminator Branch

While both the trajectory generator Gtraj and the

pose generator Gpose have a corresponding discriminator,

namely Dtraj and Dpose, to distinguish synthesized trajec-

tories and pose sequences from real ones, relying on only

the scene feature fscene to reflect the scene structure is in-

sufficient as shown in Fig. 4, where the synthesized tra-

jectory and pose sequence looks natural when viewed in

isolation, but lead to some inconsistency when combined

with the scene. Therefore, to further enhance the compat-

ibility between synthesized human motions and the given

scene, we propose two additional discriminators, namely
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(a) 3D Human Motion (b) 2D Human Motion

Figure 4. Visualization of 3D human motion and the projection

of this motion in 2D space. The results in the first row is sampled

from the method without projection discriminator and the second

is supervised by this discriminator. With the scale changes of hu-

man motions in the 2D scene, the geometry compatibility of them

can be easily judged.

the projection discriminator Dproj and the context discrim-

inator Dcontext, that respectively focus on global structural

constraints such as walls, the floor or the ceiling, and local

structural constraints such as chairs and tables.

3.3.1 Projection Discriminator

The projection discriminator Dproj is used to enhance the

compatibility between synthesized human motion X and

the global scene structure, so that X will not result in the

human goes through the wall, collides into the floor, or

floats in the air. One challenge to solve when applying

Dproj is that the motion X , either real or fake, is repre-

sented in the 3D camera coordinate system, while the scene

is described using a 2D image, the mismatch between 3D

and 2D thus may lead to an inferior discriminator. Fortu-

nately, Dproj will only be deployed during training, and

the camera matrix of each scene image is often provided

by existing datasets. Therefore, Dproj will project the in-

put human motion X into the image coordinate system, ac-

quiring its 2D counterpart X ′. As shown in Figure 4, the

projected human motion X ′ can be effectively represented

by the changes of 2D coordinates and the scale of human

in the scene, which are relatively easier for the discrimina-

tor to make judgments. Since X ′ is a trajectory-aligned 2D

pose sequence, Dproj is built upon graph convolution lay-

ers with graph downsampling, with a final global average

pooling layer to aggregate information across all time steps.

3.3.2 Context Discriminator

Besides the projection discriminator Dproj, we also include

a context discriminator Dcontext to encourage the compat-

ibility between the synthesized human motion X and the

BA

Figure 5. Visualization of the local context for context discrim-

inator. Point A is the collision position to the desk and the point

B is the compatible position of the scene for human motions. The

geometry context of these two positions are significantly different.

local scene structure, which mainly refers to the constraint

that a human should avoid hitting objects in the scene when

moving. Such a constraint requires Dcontext to have a de-

tailed understanding of the local scene context around X

at each time step. On the other hand, as shown in Fig-

ure 5, when a human motion X is incompatible with the

local scene structure, the relative depth between it and the

scene contains meaningful patterns. Inspired by this ob-

servation, Dcontext utilizes local relative depth crops as its

main source of judgments. Specifically, Dcontext will also

project the input human motion X into its 2D counterpart

X ′, followed by cropping the scene depth map around X ′

at each time step. The crop at t-th time step has the shape

(Hc

dt

, Wc

dt

), where dt is the corresponding depth value of X ′

at that time, and (Hc,Wc) is the pre-defined crop size (in

practice, we set it to be 1
4 of the image size.). All these

local depth crops will subtract their corresponding depth

values of X ′ and resize to (Hc,Wc), forming the local

relative depth crop sequence. It’s worth noting the scene

depth map is estimated from the scene feature fscene as dis-

cussed in Section 3.1, and the Spatial Transformer Network

(STN) [12] is used as a differentiable cropping function.

4. Experiments

4.1. Dataset

In this paper, we mainly evaluate the proposed method

on two public datasets, which contain both 3D human mo-

tions and geometry information of different scenes.

GTA-IM: GTA-IM [3] is a recent dataset based on the

virtual GTA environment. This dataset contains long-term

and diverse human motions in different indoor and outdoor

scenes, as well as sufficient information of the scene, in-

cluding depth maps and instance labels. We select 70 se-

quences in 6 scenes as the training set and 30 sequences in

3 scenes as the testing set. Then we sampled sub-sequences

by a sliding window with a fixed length of 65 frames and

a step of 5 frames, where the begin frame is as the condi-

tion for motion synthesis. Two scenes in the testing set are

also shared with the training set, and one scene is exclusive.

Although these two sets contain the sequences in the same

12210



scene, they are synthesized in different camera viewpoints

and the initial pose for generation is also different. There-

fore, testing our method on same scenes is non-trivial on

this dataset. Similar to [3], we only choose 19 key joints

from 98 human joints provided by this dataset for human

motion synthesis.

PROX: Proximal Relationships with Object eXclusion

(PROX) [10] is captured by the Kinect. This dataset con-

tains 12 different 3D scenes and provides 3D human model

sequences. To evaluate our method in the real-scene, we

split 10 scenes as the training set and 2 scenes as the test-

ing set. To improve the quality of synthesized motions, we

first train our model on GTA-IM and the fine-tune it on this

dataset. We select 16 joints from the SMPLX [21] model

and all these joints are contained in GTA-IM.

4.2. Implementation Details

We adopt Adam [13] algorithm under (0.5, 0.999) betas

and 0.0002 learning rate as optimizer for all the experiments

on both GTA-IM and PROX datasets. Following [31], our

model is supervised by the WGAN-GP [8] framework. The

gradient penalty is 10 and the gradient regression target is

0.1. We train our model 150 epochs and generate 64 frame

pose sequences on both GTA-IM and PROX dataset.

4.3. Metric

Since the previous works did not propose metrics to mea-

sure the quality of scene-aware action generation, we intro-

duce different metrics to evaluate the different characteris-

tics of generated pose sequences, such as motion, pose, and

compatibility with the given scene.

Motion FID: In CSGN [31], the well-known metric

Frméchet Inception Distance (FID) has been extended to

pose generation task. Because explicit action labels are not

available in both GTA-IM and PROX, we change the en-

coder model from ST-GCN [32] model, which is used to

compute FID score in [31], to ERD [6], which is a well-

known LSTM based method for motion prediction. There-

fore, this FID score is extend to measure the continuity and

rationality of generated pose sequences by the action ag-

nostic features. To well measure the quality of the synthe-

sized motion in different lengths, firstly, we conduct dif-

ferent ERD models, who are trained based on the human

motions with 16, 32, and 64 frames. Then we clip the syn-

thesized T frames human motion to multiple short human

motions. The clip lengths of these sequences are 2, 4, 8,

16, 32, and 64. The average value of the fid score is cal-

culated based on the composition of these ERD models and

the clip length as our Motion FID. Besides, we define the

mean fid for 2 and 4 length as short-term value, 8 and 16 as

middle-term value, and 32 and 64 as long-term value.

Non-collision Ratio: Besides the motion FID, we also

propose the non-collision ratio as metric for physical com-

Collision

3D	Keypoints

Radius

Cylinder	Model Collision	Computing

Objects

Figure 6. Collision between human cylinder model and objects.

Pre-defined cylinder radius is conducted to the bones of the syn-

thesized 3D human motions. We define the collision by computing

the point number of 3D objects in this cylinder model.

patibility between human motions and the given scene.

Firstly, we conduct cylinder model to synthesized skeleton

sequences by pre-defined radius, as shown in 6. Then, the

human-scene collision area can be represented as the in-

tersection points between these cylindricalization pose se-

quences and the point cloud of given scenes, which are pro-

jected from the 2D depth map by camera parameters. Under

this representation, the collision motion can be defined as

motions with intersection points more than the pre-defined

threshold t. Thus, our non-collision ratio can be calculated

by the ratio between the number of human motions with-

out human-scene collision and all sampled motions. In this

work, we discuss non-collision ratio with different thresh-

olds t: 40, 60, 80, and 100 and the radius of cylinder model

with different r: 30, 45, and 60mm. We randomly sam-

ple 10000 different frames in GTA-IM and 2000 frames in

PROX for ablation studies.

User Study: At last, we conduct user study to further

evaluate the quality of the synthesized human motions, es-

pecially the rationality of interaction between generated hu-

man motions and the scene. In this user study, we let the

users focus on the two kinds of compatibilities: one be-

tween the human motions and the given scene, and one be-

tween the trajectory and pose sequence. We named these

two scores as scene compatibility and motion compatibility,

respectively. For this user study, we mixed the human mo-

tions from the ground-truth, the origin CSGN, our method

without geometry discriminators, and the proposed method

in the same scene, and sample equal numbers of human mo-

tions for each approach. The score for this user study is

between 1 (strongly abnormal) and 5(strongly compatible).

And we will illustrate the mean and standard deviation of

the scores from users.

4.4. Ablation Studies

In this section, we will first conduct ablation studies on

GTA-IM dataset to demonstrate the effectiveness of our

framework in detail. As shown in Table 1, we demon-

strate the Motion FID and Non-Collision Score of the mod-
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Figure 7. Standard deviation over time of 5 synthesized trajecto-

ries given the same start and end points for images in GTA-IM,

where [3] obtains 0 metre since it’s deterministic in this case.

Table 1. Ablation studies on GTA-IM dataset. M: separately gen-

erate trajectory and pose; D: depth supervision; P: projection dis-

criminator; C: context discriminator.

Motion FID

Method M D P C Short Mid Long Ave ↓

CSGN 92.4 125.6 137.8 118.6

Ours

X 27.6 33.4 38.6 33.1

X X 26.8 32.2 37.5 32.1

X X X 25.9 31.0 35.6 30.8

X X X 23.3 28.4 34.5 28.7

X X X X 22.4 27.6 33.7 27.6

Non-Collision Score

Method M D P C 30mm 45mm 60mm Ave ↑

Ours

X 0.931 0.882 0.851 0.891

X X 0.941 0.902 0.874 0.902

X X X 0.948 0.919 0.904 0.923

X X X 0.956 0.934 0.915 0.938

X X X X 0.962 0.943 0.924 0.943

els with different module combinations. Firstly, with sep-

aration synthesis between trajectory and pose, Motion FID

decreases significantly (118.6 → 33.1), which verifies the

effectiveness of our design choices on generator branch.

Then, the Motion FID is mitigated with discriminators for

physical compatibility, and the Non-Collision score is im-

proved from 0.902 to 0.943. The influence of depth super-

vision is also demonstrated in this table. The Motion FID

is decreased from 33.1 to 32.1, as well as the Non-Collision

score is improved from 0.891 to 0.902. Moreover, as the

ablation studies on GTA-IM, we demonstrate the Motion

FID and Non-collision score on PROX in Table 3 and Ta-

ble 4, respectively. Our geometry-aware discriminators im-

prove this score from 0.742 to 0.792, and the ability of them

to synthesize physical compatibility motions is verified in

captured real scenes. Besides, the Motion FID is mitigated

from 161.1 to 54.6 based on our framework.

To further evaluate the effectiveness of proposed method,

especially the design choices of our generator and discrimi-

nator, we compare our framework against different state-of-

the-art methods in Table 2 and Table 3. All the methods in

these tables are condition on the same scene context. The

significant mitigation on Motion FID demonstrates the abil-

ity of our framework on synthesizing human motions in the

Table 2. Comparison of Motion FID on GTA-IM. M: separately

generate trajectory and pose; G: geometry-aware discriminator.

Method Short Mid Long Ave ↓

Two-Stage [2] 172.8 196.5 210.4 193.2

HP-GAN [1] 156.6 176.2 190.4 174.4

CSGN [31] 92.4 125.6 137.8 118.6

CSGN+ M 26.8 32.2 37.5 32.1

CSGN+ M + G 22.4 27.6 33.7 27.6

Table 3. Comparison of Motion FID on on PROX. M: separately

generate trajectory and pose; G: geometry-aware discriminator.

Method Short Mid Long Ave ↓

Two-Stage [2] 261.5 276.8 292.4 276.9

HP-GAN [1] 214.7 225.3 251.7 230.6

CSGN [31] 141.5 160.3 183.2 161.6

CSGN+ M 55.3 58.4 62.5 58.7

CSGN+ M + G 52.4 54.5 56.9 54.6

Table 4. Collision score of the method with and without the su-

pervision of geometry discriminator on PROX.P: projection dis-

criminator; C: context discriminator

P C 30mm 45mm 60mm Ave ↑

0.793 0.731 0.692 0.742

X 0.813 0.764 0.733 0.770

X X 0.831 0.782 0.753 0.792

Table 5. User studies on both GTA-IM and PROX for different

methods. M: separately generative framework of human motion;

G: supervision of geometry discriminators; GT: ground-truth hu-

man motions. The user study score is written as mean(std).

Method
GTA-IM PROX

Scene ↑ Human ↑ Scene ↑ Human ↑

CSGN 2.66(0.74) 2.92(0.84) 2.46(0.82) 2.52(0.73)

CSGN + M 3.26(0.76) 3.32(0.73) 3.12(0.88) 3.23(0.71)

CSGN + M + G 3.56(0.72) 3.53(0.68) 3.36(0.74) 3.32(0.66)

GT 4.51 (0.49) 4.45(0.49) 4.13(0.62) 4.14(0.61)

scene. Besides these motion synthesis framework, we com-

pare our framework against [3] in Figure 7. Under the same

start and end points, this motion standard deviation demon-

strate the diversity of sampled human motions rather than

deterministic prediction.

At last, we also demonstrate the results of the user study

on GTA-IM and PROX in Table 5. It is not surprising that

the ground-truth human motions achieve the highest score

on both datasets. For theses datasets, we observe that the

geometry discriminators can significantly improves the per-

formance for learning compatible human motions with the

scene. And the two-stage human motion synthesis frame-

work can also help the generator to synthesize smooth and

continuous human motions.

4.5. Qualitative Results

At last, we show more qualitative results on the GTA-

IM dataset and the PROX dataset in Figure 8 and Figure 9.
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Figure 8. Visualization on GTA-IM. All the results are sampled from the synthesized 64 frame sequences. Our framework can synthesize

diverse and compatible human motions in different scenes.

(a) (b)

Figure 9. Visualization on PROX. Our method can synthesize di-

verse and compatible human motions in these scenes, although the

environment in this dataset is more complex than GTA-IM.

From these figures, our method can synthesize diverse and

compatible motions in both synthetic and real-world envi-

ronments. Especially, the first row in Figure 8 indicates

that our method can synthesize specific motions on chairs or

stairs. And in the second row of this figure, we can also find

out that the synthesized human motion turning around to

avoid obstacles. The third and fourth rows demonstrate that

our method can synthesize the diverse motions with same

and different end points from the same start points. More

qualitative results are in the following video1.

5. Conclusion

In this paper, we propose a novel scene-aware genera-

tive framework to model the distribution of human motion

in the given scene. We at first decouple this distribution into

the distribution of trajectories in the scene and the distribu-

tion of body movements based on the scene and trajectory.

And a projection discriminator and a context discriminator

are further introduced into our framework to encourage the

compatibility between human motions and the scene. On

two large-scale datasets, we demonstrate the effectiveness

of the proposed generative framework which is able to syn-

thesize human motions that are not only diverse in both tra-

jectories and body movements, but also coherent with both

structure and semantics of the given scene.
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