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Abstract

Scene text retrieval aims to localize and search all text

instances from an image gallery, which are the same or

similar with a given query text. Such a task is usually re-

alized by matching a query text to the recognized words,

outputted by an end-to-end scene text spotter. In this pa-

per, we address this problem by directly learning a cross-

modal similarity between a query text and each text in-

stance from natural images. Specifically, we establish an

end-to-end trainable network, jointly optimizing the pro-

cedures of scene text detection and cross-modal similar-

ity learning. In this way, scene text retrieval can be sim-

ply performed by ranking the detected text instances with

the learned similarity. Experiments on three benchmark

datasets demonstrate our method consistently outperforms

the state-of-the-art scene text spotting/retrieval approaches.

In particular, the proposed framework of joint detection

and similarity learning achieves significantly better per-

formance than separated methods. Code is available at:

https://github.com/lanfeng4659/STR-TDSL.

1. Introduction

In the past few years, scene text understanding has re-

ceived rapidly growing interest from this community due

to a large amount of everyday scene images that contain

texts. Most previous approaches for scene text understand-

ing focus on the topics of text detection, text recognition

and word spotting, succeeding in many practical applica-

tions such as information security, intelligent transportation

system [38, 29], geo-location, and visual search [3]. Differ-

ent from the above topics, we study the task of scene text

retrieval introduced by Mishra et al. [26], aiming to search

all the text instances from a collection of natural images,

which are the same or similar with a given text query. Dif-

ferent from a scene text reading system that must localize

and recognize all words contained in scene images, scene

text retrieval only looks for the text of interest, given by a

*Corresponding author.

Figure 1. Given a query text “google”, the end-to-end scene text

retrieval method aims to retrieve the images containing “google”

from gallery, as well as their locations in the images.

user. Such a task is quite useful in many applications in-

cluding product image retrieval, book search in library [37]

and key frame extraction of videos [30].

As depicted in Fig. 1, the goal of scene text retrieval is

to return all images that are likely to contain the query text,

as well as the bounding boxes of such text. In this sense,

scene text retrieval is a cross-modal retrieval/matching task

that aims to close the semantic gap between a query text

and each text proposal. Traditional text retrieval meth-

ods [2, 1, 5, 7] are often designed to handle cropped doc-

ument text images. Since the well-cropped bounding boxes

are not easy to obtain by a detector for natural images, these

methods cannot be directly applied in scene text retrieval.

Mishra et al. [26] first study text retrieval in scene images,

which is cast as two separated sub-tasks: text detection and

text image retrieval. However, the performance is limited,

as their framework is designed based on handcraft features.

Another feasible solution to scene text retrieval is based

on an end-to-end text recognition system, such as [14, 12].

Under this setting, the retrieval results are determined ac-

cording to the occurrences of the given query word within

the spotted words. As verified by [26, 6], such methods of-
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ten achieve unsatisfactory retrieval performance, as the end-

to-end text recognition system is optimized with a different

evaluation metric that requires high accuracy in terms of

both detection and recognition. However, for a retrieval en-

gine, more text proposals can be leveraged to reduce the per-

formance loss brought by the missed detections. Gomez et

al. [6] directly predict the corresponding Pyramidal His-

togram Of Character [2] (PHOC) of each text instance for

ranking. However, these methods don’t explicitly learn the

cross-modal similarity.

In this paper, we propose a new deep learning frame-

work for scene text retrieval that combines the stages of

text detection and cross-modal similarity learning. Our ba-

sic idea is motivated by the recent end-to-end text spotting

methods [22, 24, 17, 12, 34, 18], which unify the two sub-

tasks of text detection and text recognition with an end-to-

end trainable network. Such methods usually achieve better

spotting performance than those optimized separately, ben-

efiting from feature sharing and joint optimization. Specif-

ically, our network for scene text retrieval is optimized by

two tasks: a text detection task that aims to predict bound-

ing boxes of candidate text instances, and a similarity learn-

ing task for measuring the cross-modal similarity between

a query text and each bounding box. With joint optimiza-

tion, the text detection task and similarity learning task are

complementary to each other. On the one hand, the detec-

tion task can pay more attention to the recall than the pre-

cision in order to avoid missing detections, as the feature

matching process by the similarity learning task can effec-

tively eliminate false alarms. On the other hand, the faithful

cross-modal similarity provided by the similarity learning

task can be used for looking for an accurate bounding box

that contains a given text. In addition, both tasks share CNN

features, significantly improving the inference speed.

Unlike general objects such as person and car, scene

text is a kind of sequence-like object. In order to learn a

proper similarity between a query text and a text proposal,

we adopt the normalized edit distances as the supervision

of the pairwise loss function, which has been widely used

in string matching. However, learning such similarity is not

easy, as the similarity values of all word pairs for training

are not evenly distributed in the similarity space. For exam-

ple, the number of word pairs with low similarity is much

larger than those with high similarity. As a result, the net-

work is prone to distinguish dissimilar word pairs but diffi-

cult to similar word pairs. To ease this problem, we propose

a word augmentation method: a series of pseudowords that

are very similar to a given query text, are randomly gener-

ated, which are fed into the network together with the query

text during the training process.

The contribution in this work is three-fold. First, we

present a new end-to-end trainable network for joint op-

timizing scene text detection and cross-modal similarity

learning, which is able to efficiently search text instances

from natural images that contain a query text. Second, we

propose a word augmentation method by generating similar

pseudowords as input queries, which enhances the discrim-

inatory power of the learned similarity. Third, we collect

and annotate a new dataset for Chinese scene text retrieval,

consisting of 23 pre-defined query words and 1667 Chinese

scene text images. This dataset is adopted to verify the ef-

fectiveness of text retrieval methods over non-latin scripts.

2. Related work

Traditional text retrieval methods [1, 2, 31, 36] are pro-

posed to retrieve cropped document text images. A popular

pipeline of these methods is to represent both text string

and word image and then calculate the distance between

their representations. In [2], PHOC is first proposed to rep-

resent text string for retrieval. Then, Sudholt et al. [31]

and Wilkinson et al. [36] respectively propose to predict

PHOC and DCToW from word image using neural net-

works. Without carefully designing a hand-crafted repre-

sentation of text, Gomez et al. [7] propose to learn the Lev-

enshtein edit distance [16] between text string and word im-

age. The learned edit distances are directly used to rank

word images. However, the above methods consider per-

fectly cropped word images as inputs, rather than more uni-

versal and challenging scene text images.

Mishra et al. [26] first introduce the task of scene text

retrieval, and adopt two separate steps for character de-

tection and classification. Then, images are ranked by

scores, i.e., the probability of query text exists in the im-

ages. Ghosh et al. [4] propose a scene text retrieval method

consisting of a selective search algorithm to generate text

regions and a SVM-based classifier to predict correspond-

ing PHOCs. Nevertheless, these methods ignore the rele-

vance and complementarity between text detection and text

retrieval. Moreover, it is inefficient to separate scene text

retrieval into two sub-tasks. To integrate text detection

and text retrieval in a unified network, Gomez et al. [6]

introduce the first end-to-end trainable network for scene

text retrieval, where all text instances are represented with

PHOCs. Specifically, the method simultaneously predicts

text proposals and corresponding PHOCs. Then, images in

the gallery are ranked according to the distance between the

PHOC of a query word and the predicted PHOC of each

detected text proposal.

A few text spotting methods [12, 14] are also adopted for

scene text retrieval. These methods first detect and recog-

nize all possible words in each scene image. Then, the prob-

ability that the image contains the given query word is rep-

resented as the occurrences of the query word within those

spotted words. Unlike retrieving text instances by match-

ing a query word to the spotted words, our method directly

measures cross-modal similarity between them.
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Figure 2. Illustration of our proposed framework. Given an image, text regions are detected and the corresponding features are extracted

for the subsequent Image-S2SM. Meanwhile, features F of all query words Q are obtained through word embedding module and the

Text-S2SM. The whole network is jointly optimized by text detection task, text translation task and similarity learning task.

3. Methodology

As illustrated in Fig. 2, our network consists of two

branches, i.e., image branch for extracting features E of all

possible text proposals and text branch that converts query

words Q = {qi}
N
i=1

into features F . Then, the pairwise

similarity between F and E is calculated for ranking.

3.1. Image Branch

The image branch aims at extracting features of all pos-

sible text proposals. Unlike general objects, scene text usu-

ally appears in the form of a character sequence. Therefore,

the sequence-to-sequence module (Image-S2SM), whose

structure is detailed in Tab. 1, is used to enhance the contex-

tual information of each text proposal. As shown in Fig. 2,

there are two modules in the image branch, including the

text detection module and Image-S2SM. To simplify the de-

tection pipeline, the text detection module is based on an

anchor-free detector [32], where the backbone is FPN [21]

equipped with ResNet-50 [11].

Given an image, the detection module in the image

branch first yields K text proposals. The corresponding re-

gion of interest (RoI) features P = {pi}
K
i=1

are extracted

via RoI-Align [10] and are fed into the subsequent Image-

S2SM to generate the features E ∈ R
K×T×C . T and C

stand for the width and channel of RoI features.

3.2. Text Branch

Different from images, query words are a set of text

strings that are unable to be directly forwarded by the neural

network. So a word embedding module is employed to con-

vey query words into features. Similar to Image-S2SM, the

sequence-to-sequence module (Text-S2SM), whose struc-

ture is detailed in Tab. 1, is also used in this branch.

Word Embedding Module consists of an embedding

layer and a bilinear interpolation operator. Specifically,

given query words Q, the word qi can be considered as a

character sequence (y1, ..., y|qi|), where |qi| is the number

of characters in qi and yj is the one-hot representation of the

j-th character of qi. The embedding layer first converts each

character yj into 2C dimensional feature, producing an em-

bedded feature sequence for each word. Then, each feature

sequence is concatenated and interpolated as a fixed-length

feature f̂i ∈ R
T×2C . Finally, all features {f̂i}

N
i=1

of Q are

stacked as output features F̂ ∈ R
N×T×2C .

After the word embedding module for query words, the

obtained features F̂ is projected to F ∈ R
N×T×C by Text-

S2SM. Then, both features E and F are fed for the subse-

quent similarity learning task.

3.3. Similarity learning

After the features of text proposals and query words,

E ∈ R
K×T×C and F ∈ R

N×T×C , are extracted, the

pairwise similarity between query words Q and features

of text proposals P can be formulated as similarity matrix

Ŝ(Q,P ) ∈ R
N×K . Here, the value of Ŝi,j(Q,P ) equals to

the cosine similarity between features Fi and Ej , which is

formulated via

Ŝi,j(Q,P ) =
tanh(V (Fi)) tanh(V (Ej))

T

|| tanh(V (Fi))|| ∗ || tanh(V (Ej))||
. (1)

V stands for the operator that reshapes a two-dimensional

matrix into one-dimensional vector.

During training, the predicted similarity matrix Ŝ(Q,P )
is supervised by the target similarity matrix S(Q,P ). Each

target similarity, Si,j(Q,P ) is the normalized edit distance
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Layers
Parameters

Output Size
(kernel, stride)

Image-

S2SM

conv layer × 2 (3,(2,1)) (N, 2C, h, T )

average on h - (N, 2C, 1, T )

BiLSTM - (N,T,C)

Text-

S2SM

conv layer (1,(1,1)) (N, 2C, 1, T )

BiLSTM - (N,T,C)

Table 1. Architectures of Image-S2SM and Text-S2SM. BiLSTM

stands for bidirectional LSTM [13] layer.

between the corresponding word pairs (qi, qj), which is

defined as Eq. 2. Distance is the Levenshtein edit dis-

tance [16], |qi| denotes the character number of qi.

Si,j(Q,P ) = 1−
Distance(qi, qj)

max(|qi|, |qj |)
. (2)

Besides Ŝ(Q,P ), both Ŝ(P, P ) ∈ R
K×K and

Ŝ(Q,Q) ∈ R
N×N are also calculated for assistant train-

ing. During inference, the similarity between qi and an in-

put image equals to the maximum value of Ŝi(Q,P ), which

is used for ranking.

To close the semantic gap between visual feature E

and textual feature F , the connectionist temporal classifica-

tion [8] (CTC) loss is adopted for aligning visual feature to

a text string. Particularly, for each Ei, a classifier consisting

of a fully connected layer and a softmax layer is supervised

by the associated sequence label of qi.

3.4. Word augmentation strategy

We observe that the similarity learning task suffers from

imbalanced distribution in the similarity space, as most ran-

dom word pairs are dissimilar. As shown in Fig. 3 (a), for

query words, the proportion of word pairs with low simi-

larity is much larger than those with high similarity. As a

result, the learned network tends to distinguish dissimilar

word pairs but difficult to handle similar word pairs.

To alleviate this effect, a word augmentation strategy is

proposed to randomly generate pseudowords that are very

similar to the given query words. Then, both original query

words and pseudowords are fed into the network during the

training process. As illustrated in Fig. 3 (b), with such an

augmentation strategy, the proportion of word pairs with

high similarity is greatly enlarged, which eases the problem

brought by uneven similarity distribution.

As illustrated in Fig. 4, we define four types of character

edit operators, i.e., inserting a random character behind the

current character, deleting the current character, replacing

the current character with a random one, and keeping the

current character. For each character in the query word qi,

an edit operator is randomly chosen. Then, a pseudoword q̂i
similar with qi is generated. Obviously, the higher the ratio

of keeping current character is, the more similar the pseu-

doword is with the input word. In our experimental setting,

Figure 3. Similarity distribution of word pairs from query words

Q in (a) and augmented query words Q̃ in (b) on SynthText-900k.

Figure 4. The process of word augmentation strategy. Given an

input word “true”, this strategy outputs a word “cute”.

the sampling ratio among four character edit operators is

set to 1 : 1 : 1 : 5. The algorithm description of the word

augmentation strategy is summarized in the supplementary.

Finally, query words Q̃ = {q̃i}
2N
i=1

consisting of original

words Q and their associated pseudowords Q̂ = {q̂i}
N
i=1

,

are fed into text branch for training. In this case, the pre-

dicted pairwise similarity matrices are Ŝ(Q̃, P ) ∈ R
2N×K ,

Ŝ(P, P ) ∈ R
K×K and Ŝ(Q̃, Q̃) ∈ R

2N×2N .

3.5. Loss functions

The objective function consists of three parts, which is

defined as follows,

L = Ld + Ls + Lc, (3)

where Ld is the detection loss in [32]. Lc is CTC loss for

text translation task. Ls is the cross-modal similarity learn-

ing loss, which is calculated with Smooth-L1 loss Lr for

regression. The loss function Ls is formulated as

Ls =
1

K

K∑

i

max(Lr(Ŝi(P, P ), Si(P, P )))

+
1

2N

2N∑

i

max(Lr(Ŝi(Q̃, P ), Si(Q̃, P )))

+
1

2N

2N∑

i

max(Lr(Ŝi(Q̃, Q̃), Si(Q̃, Q̃))) ,

(4)

where Ŝ and S are the predicted similarity matrix and its as-

sociated target similarity matrix. 2N and K are the number
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of query words after augmentation and the number of text

instances respectively.

4. Experiments

First, we introduce the datasets used in our experiments

and the new dataset created by us. Then, the implementa-

tion details are given. Third, we evaluate our method and

make comparisons with the state-of-the-art scene text re-

trieval/spotting approaches. Last, we provide the ablation

studies and validate a potential application of our method.

4.1. Datasets

Street View Text dataset (SVT) [35] has 349 images col-

lected from Google Street View. This dataset is divided into

a train set of 100 images and a test set of 249 images. 427

annotated words on the test set are used as query text.

IIIT Scene Text Retrieval dataset (STR) [26] consists

of 50 query words and 10,000 images. It is a challenging

dataset due to the variation of fonts, styles and view points.

Coco-Text Retrieval dataset (CTR) is a subset of Coco-

Text [33]. We select 500 annotated words from Coco-Text

as queries. Then, 7196 images in Coco-Text containing

such query words are used to form this dataset.

SynthText-900k dataset [6] is composed of about

925,000 synthetic text images, generated by a synthetic en-

gine [9] with slight modifications.

Multi-lingual Scene Text 5k dataset (MLT-5k) is a sub-

set of MLT [27], which consists of about 5000 images con-

taining text in English.

All text instances from these datasets are in English.

In our experiments, SVT, STR and CTR are the testing

datasets, while SynthText-900k and MLT-5k are only used

for training the proposed model.

In order to validate our method’s effectiveness on non-

Latin scripts, we create a new dataset for Chinese scene text

retrieval, named as Chinese Street View Text Retrieval

dataset (CSVTR1). This dataset consists of 23 pre-defined

query words in Chinese and 1667 Chinese scene text images

collected from the Google image search engine. Each im-

age is annotated with its corresponding query word among

the 23 pre-defined Chinese query words. As shown in

Fig. 5, most query words are the names of business places,

such as Seven Days Inn, China Construction Bank, Wallace,

and Yunghe Soy Milk.

4.2. Implementation details

The whole training process includes two steps: pre-

trained on SynthText-900k and fine-tuned on MLT-5k. In

the pre-training stage, we set the mini-batch to 64, and in-

put images are resized to 640 × 640. In the fine-tuning

stage, data augmentation is applied. Specifically, the longer

1https://github.com/lanfeng4659/STR-TDSL

Figure 5. Examples from our CSVTR dataset.

sides of images are randomly resized from 640 pixels to

1920 pixels. Next, images are randomly rotated in a certain

angle range of [−15◦, 15◦]. Then, the heights of images

are rescaled with a ratio from 0.8 to 1.2 while keeping their

widths unchanged. Finally, 640 × 640 image patches are

randomly cropped from the images. The mini-batch of im-

ages is kept to 16.

We optimize our model using SGD with a weight de-

cay of 0.0001 and a momentum of 0.9. In the pre-training

stage, we train our model for 90k iterations, with an initial

learning rate of 0.01. Then the learning rate is decayed to a

tenth at the 30kth iteration and the 60kth iteration, respec-

tively. In the fine-tuning stage, the initial learning rate is

set to 0.001, and then is decreased to 0.0001 at the 40kth

iteration. The fine-tuning process is terminated at the 80kth

iteration. For testing, the longer sides of input images are

resized to 1280 while the aspect ratios are kept unchanged.

All experiments are conducted on a regular workstation

with NVIDIA Titan Xp GPUs with Pytorch. The model is

trained in parallel on four GPUs and tested on a single GPU.

4.3. Experimental results

The experimental results of previous state-of-the-art

methods and our method are summarized in Tab. 2. Note

that two most recent state-of-the-art scene text spotting

approaches, namely Mask TextSpotter v3 [19] and ABC-

Net [23] are also adopted in the comparisons. Specifically,

edit distances between a query word and the spotted words

from scene images are used for text-based image retrieval.

The retrieval results by Mask TextSpotter v3 and ABCNet

are obtained with their officially released models2,3.

2https://github.com/MhLiao/MaskTextSpotterV3
3https://github.com/Yuliang-Liu/bezier curve text spotting
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Method SVT STR CTR FPS

Mishra et al. [26] 56.24 42.70 - 0.10

Jaderberg et al. [14] 86.30 66.50 - 0.30

He et al. [12] (dictionary) 80.54 66.95 - 2.35

He et al. [12] (PHOC) 57.61 46.34 - 2.35

Gomez et al. [6] 83.74 69.83 41.05∗ 43.50

Gomez et al. [6] (MS) 85.18 71.37 51.42∗ 16.10

Mafla et al. [25] 85.74 71.67 - 42.20

ABCNet [23] 82.43∗ 67.25∗ - 17.50

Mask TextSpotter v3 [19] 84.54∗ 74.48∗ 55.54∗ 2.40

Ours 89.38 77.09 66.45 12.00

Ours (MS) 91.69 80.16 69.87 3.80

Table 2. Performance comparisons (mAP scores) with the state-of-the-art text retrieval/spotting methods on SVT, STR and CTR. MS

means multi-scale testing. ∗ represents the result is obtained with the officially released code from authors. Results with (dictionary) are

filtered using a pre-defined word dictionary. Results with (PHOC) denote that recognized words are transformed to PHOC for ranking.

4.3.1 Comparisons with state-of-the-art methods

We can observe that the proposed method outperforms

other methods by a significant margin over all datasets. The

method [14] exhibits the best performance among previous

methods on SVT, but still performs worse than our method

by 3.08%. Compared with other methods, Mask TextSpot-

ter v3 performs best on STR and CTR, yet our method still

obtains 2.61% and 10.91% improvements. Moreover, our

method runs much faster than Mask Textspotter v3 with sin-

gle scale testing. Due to the equipment with a fast detector,

YOLO [28], these PHOC-based methods [6, 25] achieve the

fastest inference speed. However, our method obtains sig-

nificantly superior performance than PHOC-based methods

among all datasets. The consistent improvements over both

PHOC-based methods and end-to-end text spotters further

demonstrate that it is essential to learn a cross-modal simi-

larity for scene text retrieval.

To further boost the performance, we use multi-scale

testing by combing the outputs under multiple resolutions

of test images. In this experiment, longer sides of input im-

ages are resized to 960, 1280 and 1600. Compared with sin-

gle scale testing, the performance is significantly improved

by 2.31%, 3.07% and 3.42% on SVT, STR and CTR.

Some qualitative results of our method are shown in

Fig. 6. We can find that the proposed method can accurately

localize and retrieve text instances from an image gallery

with the given query word.

4.3.2 Chinese scene text retrieval

To further confirm the generality of our method over

non-latin scripts, we conduct experiments on the CSVTR

dataset for Chinese scene text retrieval. Our method is

compared with the recent end-to-end scene text retrieval

method [25] with its officially released code4. Follow-

4https://github.com/AndresPMD/Pytorch-yolo-phoc

Method
Fea.

Dim.

Char.

Num.
mAP FPS

Mafla et al. [25] 14266 1019 4.79 1.70

Ours 1920 1019 60.23 12.00

Ours† 1920 3755 50.12 12.00

Table 3. Feature dimension, retrieval performance and inference

time comparisons on CSVTR dataset. Fea. Dim. and Char. Num.

denote feature dimension and the number of character types.

ing [9], we first generate 70k synthesized images with hori-

zontal text instances in Chinese and their corresponding an-

notations. Then, the models of our method and [25] are

trained with this synthesized dataset and evaluated on the

CSVTR dataset.

According to the definition of PHOC [2], the dimension

of PHOC dramatically increases as the number of charac-

ter types grows. Due to the limitation of GPU memory,

only around 1500 Chinese character types are allowed for

PHOC in [25] during training. In order to successfully ap-

ply the PHOC-based retrieval method to Chinese scene text

retrieval, we combine 1000 most common Chinese charac-

ters and characters in CSVTR to construct the character set

of 1019 categories. In Tab. 3, our method achieves 60.23%

mAP under the setting of 1019 character types. However,

the method in [25] only performs 4.79% mAP, and its infer-

ence speed decreases to just 1.7 FPS, while our method re-

mains 12 FPS. Moreover, our method could support all 3755

character categories appearing in the training dataset and

achieve 50.12% mAP. These results reveal that our method

is more robust and can be easily generalized to non-Latin

scripts. Some qualitative results of retrieving Chinese text

instances are shown in the supplementary.

4.4. Ablation study

In this section, we first provide elaborate ablation stud-

ies to further verify the effectiveness of the proposed word

augmentation strategy (WAS) and CTC loss. The results are
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Figure 6. Retrieval results on STR. Only top 8 retrieved images are shown for the query word “coffee”.

Method SVT STR CTR

Baseline 88.05 73.70 62.97

+ CTC 88.62 75.54 64.08

+ WAS 88.68 75.76 64.59

+ WAS + CTC 89.38 77.09 66.45

Separated 82.88 70.83 61.16

Table 4. The ablation studies on WAS and CTC. “+ Component”

denotes adding “Component” to the Baseline method. Compar-

isons with the method learning in separated manner are also given.

The numbers in the table stand for mAP scores.

reported in Tab. 4. The Baseline is the basic method based

on similarity learning without WAS and CTC loss. Then we

discuss the influences of assistant training by S(P, P) and

S(Q, Q), and compare our cross-modal similarity learning

method with the PHOC-based method on the same detec-

tion network in Tab. 5.

WAS. As we discussed before, WAS is important for

cross-modal similarity learning. Compared with the Base-

line method, WAS respectively increases the mAP by

0.63%, 2.06% and 1.62% on SVT, STR and CTR datasets.

The results reveal the importance of WAS, as it can enlarge

the proportion of similar word pairs to prevent the model

from suffering from imbalanced sample distribution in the

training stage. Such an augmentation strategy facilitates the

retrieval model to better distinguish similar words.

CTC loss. Learning cross-modal similarity is of great

importance in our method. CTC loss is adopted to align

the cross-modal features of query words and text instances.

From Tab. 4, we can observe that CTC loss also obtains

improvements of 0.57%, 1.84% and 1.11% on SVT, STR

and CTR, compared with the Baseline method. As shown

Method SVT STR CTR

Detection+PHOC 80.87 60.00 42.89

Ours‡ 85.28 66.50 51.79

Ours 87.78 70.18 53.90

Table 5. Ablation study with PHOC. All models are trained with

SynthText-900k. ‡ denotes training without S(P, P) and S(Q, Q).

The numbers in the table stand for mAP scores.

Figure 7. (a): The retrieved image with the query word “MOTEL”.

The visualization of similarity between each character of “MO-

TEL” with text image when the network is trained with CTC loss

(b) or without CTC loss (c).

in Fig. 7, such a process assists the image branch to fo-

cus on text regions and thus extract purified visual fea-

tures, which facilitates the cross-modal similarity measure.

Therefore, similarity learning can benefit from aligning the

cross-modal features via the text recognition task.

After combining the two components, the performance is

further improved on all datasets, which demonstrates WAS

and CTC loss are complementary for text retrieval.

Ours vs. Separated. In general, scene text retrieval

methods in an end-to-end manner could achieve better per-

formance than methods with separated detection and re-
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trieval, due to feature sharing and joint optimization. To

confirm this assumption, we separate our scene text retrieval

pipeline into scene text detection and text image retrieval.

The text detection network is first trained. Then, text images

are cropped according to annotated bounding boxes to train

the scene text retrieval network. For a fair comparison, the

scene text retrieval network consists of a ResNet-50 back-

bone and a similarity learning network. And the similarity

learning network is composed of a word embedding mod-

ule, Image-S2SM and Text-S2SM. During inference, text

images are cropped according to the detection results from

the text detection network, and then fed to the text image re-

trieval network for ranking. The results are shown in Tab. 4.

Compared with the separated retrieval system, the end-to-

end retrieval system can respectively improve the perfor-

mance by 6.50%, 6.26% and 5.29% on SVT, STR and CTR,

demonstrating its effectiveness.

Ours vs. PHOC. For a fair comparison with PHOC-

based methods [6, 25] on the same text detector, we drop

out the text branch and add a classifier behind Image-S2SM

to predict the PHOC vector. The better results achieved in

Tab. 5 demonstrate the effectiveness of the cross-modal sim-

ilarity method. The reason behind might be PHOC embed-

ding does not explicitly learn a faithful similarity between a

word and a word image.

The impact of S(P, P) and S(Q, Q). Both S(P, P) and

S(Q, Q) are only utilized for training. As shown in Tab. 5,

the performance degrade 2.5% mAP on average on all

datasets if they are removed.

4.5. Application to weakly supervised text annota
tion

In this section, we extend our retrieval method to a novel

application. Nowadays, there are a large number of images

with corresponding descriptions on the Internet. Given the

associated words, our method is able to precisely localize

them in images, which is essentially a weakly supervised

text annotation task. Specifically, for each word appearing

in the image, its region annotation can be formulated as the

bounding box of text proposal that is most similar to the

word. We evaluate the annotation quality using the scene

text detection protocol in [15].

To demonstrate its effectiveness, a recent text detector

DB [20] and an end-to-end text spotter Mask TextSpotter

v3 [19] are adopted for comparisons. Firstly, the models

of DB, Mask TextSpotter v3 and our proposed method are

consistently trained with the SynthText-900k. Then, the

detected results by DB, the spotted text boxes by Mask

TextSpotter v3, and the retrieved text proposals by our

method are used for evaluation on IC13 [15] and CTR. As

shown in Fig. 8, our method outperforms Mask TextSpotter

v3 with improvements of over 10.0%. Furthermore, com-

pared with the text detector DB, our method achieves sig-

Figure 8. Comparison of text detection results on IC13 and CTR.

MST-V3 denotes Mask TextSpotter v3.

Figure 9. The bounding boxes annotated by our method on IC13

and CTR.

nificant improvements of over 20.0% and 35.0% on IC13

and CTR. Some qualitative results of the annotated text in-

stances on IC13 and CTR are shown in Fig. 9. We can ob-

serve that the bounding boxes of most text instances are an-

notated accurately.

5. Conclusion

In this paper, we have presented an end-to-end train-

able framework combining scene text detection and pair-

wise similarity learning, which could search the text in-

stances that are the same or similar with a given query text

from natural images. The experiments demonstrate that the

proposed method consistently outperforms the state-of-the-

art retrieval/spotting methods on three benchmark datasets.

Besides, it has been shown that our framework could cope

with Chinese scene text retrieval, which is more challenging

for existing methods. In the future, we would like to extend

this method in dealing with more complicated cases, such

as multi-oriented or curve text.
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[7] Lluı́s Gómez, Marçal Rusiñol, and Dimosthenis Karatzas.

LSDE: levenshtein space deep embedding for query-by-

string word spotting. In ICDAR, 2017. 1, 2

[8] Alex Graves, Santiago Fernández, Faustino Gomez, and

Jürgen Schmidhuber. Connectionist temporal classification:

labelling unsegmented sequence data with recurrent neural

networks. In ICML, 2006. 4

[9] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.

Synthetic data for text localisation in natural images. In

CVPR, 2016. 5, 6

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017. 3

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 3

[12] Tong He, Zhi Tian, Weilin Huang, Chunhua Shen, Yu Qiao,

and Changming Sun. An end-to-end text spotter with explicit

alignment and attention. In CVPR, 2018. 1, 2, 6

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 4

[14] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and An-

drew Zisserman. Reading text in the wild with convolutional

neural networks. IJCV, 116(1):1–20, 2016. 1, 2, 6

[15] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida,

Masakazu Iwamura, Lluis Gomez Bigorda, Sergi Robles

Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Al-

mazan, and Lluis Pere De Las Heras. Icdar 2013 robust read-

ing competition. In ICDAR, 2013. 8

[16] Vladimir Levenshtein. Binary codes capable of correcting

deletions, insertions, and reversals. In Soviet physics dok-

lady, volume 10, pages 707–710, 1966. 2, 4

[17] Hui Li, Peng Wang, and Chunhua Shen. Towards end-to-end

text spotting with convolutional recurrent neural networks.

In ICCV, 2017. 2

[18] Minghui Liao, Pengyuan Lyu, Minghang He, Cong Yao,

Wenhao Wu, and Xiang Bai. Mask textspotter: An end-to-

end trainable neural network for spotting text with arbitrary

shapes. TPAMI, 2019. 2

[19] Minghui Liao, Guan Pang, Jing Huang, Tal Hassner, and Xi-

ang Bai. Mask textspotter v3: Segmentation proposal net-

work for robust scene text spotting. In ECCV, 2020. 5, 6,

8

[20] Minghui Liao, Zhaoyi Wan, Cong Yao, Kai Chen, and Xi-

ang Bai. Real-time scene text detection with differentiable

binarization. In AAAI, 2020. 8

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 3

[22] Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, and

Junjie Yan. Fots: Fast oriented text spotting with a unified

network. In CVPR, 2018. 2

[23] Yuliang Liu, Hao Chen, Chunhua Shen, Tong He, Lianwen

Jin, and Liangwei Wang. Abcnet: Real-time scene text spot-

ting with adaptive bezier-curve network. In CVPR, 2020. 5,

6

[24] Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, and

Xiang Bai. Mask textspotter: An end-to-end trainable neural

network for spotting text with arbitrary shapes. In ECCV,

2018. 2
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