
Seesaw Loss for Long-Tailed Instance Segmentation

Jiaqi Wang1 Wenwei Zhang2 Yuhang Zang2 Yuhang Cao1 Jiangmiao Pang5 Tao Gong6

Kai Chen3,4 Ziwei Liu2 Chen Change Loy2 Dahua Lin1

1SenseTime-CUHK Joint Lab, The Chinese University of Hong Kong
2S-Lab, Nanyang Technological University 3 SenseTime Research

4 Shanghai AI Laboratory 5Zhejiang University 6 University of Science and Technology of China

{wj017,cy020,dhlin}@ie.cuhk.edu.hk {wenwei001,zang0012,ziwei.liu,ccloy}@ntu.edu.sg

{pangjiangmiao,gongtao950513}@gmail.com chenkai@sensetime.com

Abstract

Instance segmentation has witnessed a remarkable
progress on class-balanced benchmarks. However, they fail
to perform as accurately in real-world scenarios, where
the category distribution of objects naturally comes with
a long tail. Instances of head classes dominate a long-
tailed dataset and they serve as negative samples of tail
categories. The overwhelming gradients of negative sam-
ples on tail classes lead to a biased learning process for
classifiers. Consequently, objects of tail categories are more
likely to be misclassified as backgrounds or head categories.
To tackle this problem, we propose Seesaw Loss to dynam-
ically re-balance gradients of positive and negative sam-
ples for each category, with two complementary factors,
i.e., mitigation factor and compensation factor. The miti-
gation factor reduces punishments to tail categories w.r.t.
the ratio of cumulative training instances between different
categories. Meanwhile, the compensation factor increases
the penalty of misclassified instances to avoid false posi-
tives of tail categories. We conduct extensive experiments
on Seesaw Loss with mainstream frameworks and different
data sampling strategies. With a simple end-to-end training
pipeline, Seesaw Loss obtains significant gains over Cross-
Entropy Loss, and achieves state-of-the-art performance on
LVIS dataset without bells and whistles. Code is available
at https://github.com/open-mmlab/mmdetection.

1. Introduction

Deep learning-based object detection and instance seg-

mentation approaches have achieved immense success on

datasets with relatively balanced category distribution, e.g.,

COCO dataset [26]. However, the distribution of cate-

gories in the real world is long-tailed [28]. There are a

few head classes containing abundant instances, while most

other classes comprise relatively few instances.

On long-tailed datasets, existing instance segmentation

Cross-Entropy Loss Seesaw Loss

gradients of negative samples on a tail class

gradients of positive samples on a tail class

Cross-Entropy

Seesaw Loss

Classification Accuracy

Mitigation

Compensation

Sorted Category Index

Cross-Entropy

Seesaw Loss

Sorted Category Index

Instance Segmentation 𝑨𝑷

Figure 1: Seesaw Loss dynamically re-balances the gradients of

positive and negative samples on a tail class with two complemen-

tary factors. It mitigates the overwhelming punishments on the tail

class as well as compensates them to reduce the risk of inducing

false positives. In Mask R-CNN [15], Seesaw Loss achieves re-

markable higher classification accuracy of tail classes than Cross-

Entropy Loss on LVIS [12] dataset. As a result, instance segmenta-

tion AP on tail classes is significantly improved, leading to better

overall performance.

frameworks [1, 3, 15] fail to perform as accurately as on

the datasets with balanced category distribution, exhibiting

unsatisfactory performance on tail classes. Figure 1 shows

the classification accuracy and instance segmentation per-

formance of Mask R-CNN [15] on LVIS [12] dataset. The

classifier in Mask R-CNN trained by Cross-Entropy Loss

tends to misclassify tail categories as backgrounds or other

confusing head classes, which leads to extremely low accu-

racy on tail classes.
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The primary reason for this undesired phenomenon is

that the instances from head classes are predominant in

a long-tailed dataset. These instances contribute an over-

whelmingly large quantity of negative samples for tail

classes. Thus, the gradients of positive and negative sam-

ples on a tail class are heavily imbalanced, leading to a

biased learning process for the classifier. One can imag-

ine that gradients of positive and negative samples resemble

two objects positioned on each end of a seesaw (see Fig. 1).

To balance them, a viable solution is to shorten the arm of

the heavier end in the seesaw, which is equivalent to scaling

down the overwhelming gradients of negative samples on

the tail class by a factor. Nevertheless, blindly reducing the

gradients of negative samples increases the risk of inducing

false positives of tail classes, since samples of other classes

are less punished when they are misclassified as tail classes.

Thus, a specialized mechanism is needed to compensate for

the excessively reduced penalties on tail classes.

In this work, we propose Seesaw Loss that dynamically

re-balances positive and negative gradients for each cate-

gory with two complementary factors, i.e., mitigation fac-

tor and compensation factor. According to the ratio be-

tween categories’ cumulative sample numbers during train-

ing, the mitigation factor reduces the penalty to relatively

rare classes. When a false positive sample of one category is

observed, the compensation factor will increase the penalty

to that category. The synergy of the two above factors en-

ables Seesaw Loss to mitigate the overwhelming punish-

ments to tail classes as well as compensate for the risk of

misclassification caused by diminished penalties.

Seesaw Loss has three appealing properties. 1) See-

saw Loss is dynamic. It explores the ratios of cumula-

tive training sample numbers between different categories

and instance-wise misclassification during training. This

differs significantly to previous solutions that rely either

on static group split [23] or loss reweighting with con-

stant values [2, 6, 38]. 2) Seesaw Loss is self-calibrated.

The mitigation and the compensation factor synergize to

relieve the overwhelming punishments on tail classes as

well as avoid increasing false positives of tail categories.

On the contrary, previous methods blindly reduce punish-

ments on tail classes [38] or decrease the loss weights

of head categories [6]. 3) Seesaw Loss is distribution-

agnostic. It does not rely on pre-computed datasets’ distri-

bution [2, 6, 28, 38], and it can operate well with any data

sampler [12, 17]. By accumulating the number of samples

in each class, Seesaw Loss gradually approximates the real

data distribution during training to achieve more accurate

balancing.

Through extensive experiments, we show consistent im-

provements of Seesaw Loss in different instance segmen-

tation frameworks and data samplers. On the challeng-

ing LVIS [12] dataset, Seesaw Loss achieves significant

improvements of 6.0% AP and 2.1% AP upon Mask R-

CNN [15] with random sampler and repeat factor sam-

pler [12], respectively. Even if switching to the stronger

Cascade Mask R-CNN [1], we still observe an impressive

improvement of 6.4% AP and 2.3% AP with random sam-

pler and repeat factor sampler. To show the versatility of

Seesaw Loss, we integrate it into the long-tailed image clas-

sification task. Seesaw Loss significantly improves the clas-

sification accuracy by 6% on ImageNet-LT [28] dataset. Be-

sides, we also explore the necessity of the decoupling train-

ing pipeline [20, 23] in Seesaw Loss. Experimental results

demonstrate that Seesaw Loss provides a simpler and more

effective solution to long-tailed instance segmentation with-

out relying on complex training pipelines.

2. Related Work

Object Detection. Recent years have witnessed a remark-

able improvement in object detection [7, 14, 44, 41, 42]. A

leading paradigm in this area is the two-stage pipeline [10,

36], where the first stage generates a set of region pro-

posals, and then the second stage classifies and refines the

proposals. Unlike the two-stage approaches, the single-

stage pipeline [25, 27, 34, 35] directly predicts bounding

boxes. Classical single-stage approaches [25, 27] require

densely populated anchors as a prior, while anchor-free

methods [21, 22, 39, 45] manage to achieve similar or bet-

ter performance without such prior. There are also attempts

to apply cascade architecture [1, 8, 19, 31, 43] to refine the

bounding boxes’ predictions progressively.

Instance Segmentation. Instance segmentation is becom-

ing popular in tandem with a surge in the interest in ob-

ject detection. Early methods perform segmentation be-

fore object recognition [32, 33]. Via adding a mask pre-

diction branch in the Faster R-CNN [36] architecture, Mask

R-CNN [15] bridges the gap between object detection and

instance segmentation. The idea is also adopted by [1, 3]

in their cascading frameworks. More recent works [5, 47]

introduce an even shorter pipeline by skipping the detec-

tion process and directly predicting mask for each instance.

Seesaw Loss can easily cooperates with object detection

and instance segmentation frameworks for the long-tailed

datasets.

Long-Tailed Recognition. Long-tailed recognition

tasks [28, 12, 13, 48] receive growing attention recently as

the problems are closer to real-world applications. One rep-

resentative solution to the problem is loss re-weighting [2,

6, 18]. Loss re-weighting methods adopt different re-

weighting strategies [2, 6, 18, 25, 38] to adjust the loss of

different classes based on each class’s statistics [2, 6]. Other

common approches [13, 17, 30] re-balance the distribution

of the instance numbers in each class, e.g., repeat factor

sampling [12] and class-balanced sampling [30], both are

based on the sample numbers of classes. Different sampling
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strategies can be adopted at different training stages to for-

mulate a multi-stage training procedure [17, 20]. A recent

work [20] proposes a decoupling training pipeline. which

first trains a good representation network with natural sam-

pling and then finetunes the classifier with class-balanced

sampling. There are also attempts to modify the classifier

to improve the performance on tail classes, e.g., using dif-

ferent classifiers for different groups of classes [23], or use

two classifiers trained with different data samplers [46].

3. Methodology

The classifier trained by the widely applied Cross-

Entropy (CE) Loss (Sec. 3.1) is highly biased on long-

tailed datasets, resulting in much lower accuracy of tail

classes than head classes. The major reason is that gradients

brought by positive samples are overwhelmed by gradients

from negative samples on tail classes. Therefore, we pro-

pose Seesaw Loss to mitigate the overwhelming gradients

of negative samples on tail classes as well as compensate

the gradients of misclassified samples to avoid false pos-

itives (Sec. 3.2). We also explore some practical compo-

nent designs to adopt Seesaw Loss in instance segmentation

(Sec. 3.3).

3.1. Cross­Entropy Loss

We first revisit the most widely adopted Cross-Entropy

(CE) Loss in existing frameworks [3, 15]. The formulation

of CE Loss can be written as

Lce(z) = −

C∑

i=1

yi log(σi), with σi =
ezi

∑C

j=1
ezj

, (1)

where z = [z1, z2, . . . , zC ] and σ = [σ1, σ2, . . . , σC ] are

the predicted logits and probabilities of the classifier, re-

spectively. And yi ∈ {0, 1}, 1 ≤ i ≤ C is the one-hot

ground truth label. Given a training sample of class i, the

gradients on zi and zj are given by

∂Lce(z)

∂zi
= σi − 1, (2)

∂Lce(z)

∂zj
= σj , (3)

It shows that samples of class i punish the classifier of class

j w.r.t. σj . In the case that the instance number of class i is

enormously greater than that of class j, the classifier of class

j will receive penalties in most samples and attains few pos-

itive signals during training. Thus the predicted probabili-

ties of class j will be heavily suppressed, which results in a

low classification accuracy of tail classes, as shown in Fig-

ure 1.

3.2. Seesaw Loss

To alleviate the above mentioned problem, one feasible

solution is to decrease the gradients of negative samples in

Eq. 3 imposed by head classes on a tail class. Therefore, we

propose Seesaw Loss as

Lseesaw(z) = −

C∑

i=1

yi log(σ̂i),

with σ̂i =
ezi

∑C

j 6=i Sijezj + ezi
.

(4)

Then the gradient on zj of negative class j in Eqn 3 becomes

∂Lseesaw(z)

∂zj
= Sij

ezj

ezi
σ̂i. (5)

Here Sij works as a tunable balancing factor between differ-

ent classes. By a careful design of Sij , Seesaw loss adjusts

the punishments on class j from positive samples of class

i. Seesaw loss determines Sij by a mitigation factor and a

compensation factor, as

Sij = Mij · Cij . (6)

The mitigation factor Mij decreases the penalty on tail

class j according to a ratio of instance numbers between

tail class j and head class i. The compensation factor Cij
increases the penalty on class j whenever an instance of

class i is misclassified to class j.

Mitigation Factor. Seesaw Loss accumulates instance

number Ni for each category i at each iteration in the whole

training process. As shown in Fig. 2, given an instance with

positive label i, for another category j, the mitigation factor

adjusts the penalty for negative label j w.r.t. the ratio
Nj

Ni

Mij =

{
1, if Ni ≤ Nj(
Nj

Ni

)p

, if Ni > Nj
(7)

When category i is more frequent than category j, See-

saw Loss will reduce the penalty on category j, which is

imposed by samples of category i, by a factor of
(

Nj

Ni

)p

.

Otherwise, Seesaw Loss will keep the penalty on negative

classes to reduce misclassification. The exponent p is a

hyper-parameter that adapts the magnitude of mitigation.

Note that Seesaw Loss accumulates the instance num-

bers during training, rather than get the statistics from the

whole dataset ahead of time. This strategy brings two ben-

efits. First, it can be applied when the distribution of the

whole training set is unavailable, e.g., training examples

are obtained from a stream. Second, the training samples

of each category can be affected by the adopted data sam-

pler [12], and the online accumulation is robust to sampling
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Figure 2: Seesaw Loss adjusts the punishments on tail classes

with the mitigation factor Mij and the compensation factor Cij .

The mitigation factor decreases the punishments w.r.t. the ratio of

instance numbers between different categories. The compensation

factor increases the penalty of misclassified instances w.r.t. the ra-

tio of classification probabilities between the false positive and the

ground-truth category.

methods. During training, the mitigation factor is uniformly

initialized and smoothly updated to approximate the real

data distribution.

Compensation Factor. The mitigation factor effectively

balances the gradients of head and tail classes. Neverthe-

less, it may cause more false positives for tail classes due to

less penalty. Moreover, the false positives cannot be elim-

inated by simply adjusting p in Mij , since it is applied to

the whole category. We propose a compensation factor that

focuses on misclassified samples instead of adjusting the

whole category. As shown in Fig. 2, this factor compensates

the diminished gradient when there is misclassification, i.e.,

the predicted probability σj of negative label j is greater

than σi. The compensation factor Cij is calculated as

Cij =

{
1, if σj ≤ σi(
σj

σi

)q

, if σj > σi
(8)

For a training sample with positive label i, if the predicted

probability of any negative class j is greater than class i,

i.e., σj > σi, the compensation factor increases the punish-

ment on class j by a factor of
(

σj

σi

)q

, where q is a hyper-

parameter to control the scale. Otherwise, Cij = 1 and only

the mitigation factor Mij is applied.

Normalized Linear Activation. The classifier in an ob-

ject detector [36] usually predicts classification logits as

z = WTx + b on the dataset with balanced category dis-

tribution [26], where W and b are the weights and bias

of the linear layer and x is the input features. On long-

tailed datasets, previous works [20, 23] find that the weight

norm of Wi is highly related to the number of training in-

stances in the corresponding category i. The more train-

ing samples of category i there are, the larger ‖Wi‖ will

be. This phenomenon is also observed in the feature norm

‖x‖. Therefore, we adopt a normalized linear activation

(which [9, 28, 40] are related) to re-balance the scale of

‖Wi‖ and ‖x‖ as z = τW̃T x̃+ b, where W̃i =
Wi

‖Wi‖2

, i ∈

C, x̃ = x
‖x‖

2

, and τ is a temperature factor. The normalized

linear activation normalizes the weights W and features x

by their L2 norm to reduce their scale variance for different

categories. Thus, it effectively balances the distribution of

predicted probabilities of different categories and improves

the performance on a long-tailed dataset.

3.3. Model Design for Instance Segmentation

Objectness Branch. In contrast to image classification, the

classifier in an object detector has two functionalities. It

first determines if a bounding box is a foreground object

then distinguishes which category the foreground instance

belongs to. Previous practices [1, 15, 36] usually regard

the background as an auxiliary category in the classifier.

Given a dataset with C categories, the classifier in most de-

tectors [15, 36] predicts logits of C + 1 classes. Although

widely adopted, this design brings difficulty when adopt-

ing Seesaw Loss to balance long-tailed distribution. In gen-

eral, most object candidates in a detector are backgrounds.

Thus, all foreground categories are much rarer categories

compared to the background category. Consequently, See-

saw Loss will significantly reduce punishments on all fore-

ground categories. As a result, the classifier tends to mis-

classify more backgrounds as foregrounds and harms the

performance. To tackle this problem, we decouple the two

functionalities of the classifier in an object detecter. Specif-

ically, apart from the classifier with C classes, we adopt an

extra objectness branch to distinguish the foregrounds and

backgrounds. The objectness branch adopts the normal-

ized linear activation to predict logits of two classes, i.e.,

foreground and background, and is trained by cross-entropy

loss. During inference, both the classification logit zclassi of

category i ∈ C and logit of objectness zobj are activated

with a softmax function. The final detection probability

σdet
i for a bounding box of category i is σdet

i = σclass
i ·σobj .

Normalized Mask Predication. Inspired by normalized

linear activation, we further present a normalized mask pre-

diction to alleviate the biased training process in mask head.

In Mask R-CNN [15], a 1x1 convolution layer is applied in

the end of the mask head, and the predicted logits are acti-

vated by a sigmoid function. We normalize the weights W
of the 1x1 convolution layer and the input features X with

L2 normalization. Note that the spatial size of X is H×W ,

we denote the feature at (y, x) as Xy,x. The formula of

normalized mask prediction is z = τW̃ ∗ X̃ + b, where
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W̃i =
Wi

‖Wi‖2

, i ∈ C, X̃y,x =
Xy,x

‖Xy,x‖2

, y ∈ H,x ∈ W and τ

is a temperature factor.

4. Experiments

4.1. Experimental Settings

Datasets. We perform experiments on the challenging LVIS

v1 dataset [12]. LVIS is a large vocabulary instance seg-

mentation dataset containing 1203 categories with high-

quality instance mask annotations. LVIS v1 provides a train

split with 100k images, a val split with 19.8k images and a

test-dev split with 19.8k images. According to the numbers

of images that each category appears in the train split, the

categories are divided into three groups: rare (1-10 images),

common (11-100 images) and frequent (>100 images).

Evaluation metrics. The results of instance segmentation

are evaluated with AP of mask prediction, which is aver-

aged at different IoU thresholds (from 0.5 to 0.95) across

categories. The AP for rare, common and frequent cate-

gories are denoted as APr, APc and APf . The AP for de-

tection boxes is denoted as APbox.

Implementation Details. We implement our method with

mmdetection [4] and train Mask R-CNN [15], Cascade

Mask R-CNN [1] using the 2x training schedule [4, 11].

The model is trained with batch size of 16 for 24 epochs.

The learning rate is 0.02, and it will decrease by 0.1 after 16

and 22 epochs, respectively. ResNet-50 [16] with FPN [24]

backbone is adopted if not further specified. Following the

practice in mmdetection [4], we adopt multi-scale with hor-

izontally flip augmentation during training. Specifically, we

randomly resize the shorter edge of the image within {640,

672, 704, 736, 768, 800} pixels and keep the longer edge

smaller than 1333 pixels without changing the aspect ratio.

In inference, we adopt single-scale testing with image size

of 1333 × 800 pixels and score thresholds of 10−3 without

bells and whistles.

Apart from the standard random sampler that samples

images in train split randomly, the repeat factor sampler

(RFS) [12, 30] is also evaluated in experiments. RFS over-

samples categories that appear in less than 0.1% of the total

images and is effective to improve the overall AP. The ab-

lation study is conducted with RFS if not further specified.

We adopt Seesaw Loss in the box classification branch of

Mask R-CNN [15] with hyper-parameter p = 0.8, q = 2,

and τ = 20. In Cascade Mask R-CNN [1], Seesaw Loss

is adopted in box classification branches of all three stages

with the same hyper-parameters as that in Mask R-CNN.

We further evaluate the proposed Normalized Mask Predic-

tion and integrate it into the mask head of Mask R-CNN and

all the mask heads in Cascade Mask R-CNN. For simplicity,

Normalized Mask Prediction adopts the same temperature,

i.e. τ = 20. We use the train split for training and report

the performance on val split for ablation study. The perfor-

mance of our method is also reported on test-dev split.

4.2. Benchmark Results

To show the effectiveness of Seesaw Loss, we per-

form extensive experiments with different data samplers

and instance segmentation frameworks. We adopt Mask R-

CNN [15] with ResNet-101 [16] backbone with FPN [24]

and train the models with the random sampler or the repeat

factor sampler (RFS) by 2x schedule.

As shown in Table 1, Seesaw Loss significantly outper-

forms Cross-Entropy (CE) loss by 6.0% AP with random

sampler and 2.1% AP on the stronger baseline with RFS.

The improvements on APr, APc, and APf with both sam-

plers reveals the effectiveness of Seesaw Loss on categories

with different frequency. We further integrate the proposed

Normalized Mask Prediction (Norm Mask) into Mask R-

CNN [15] with Seesaw Loss. Without extra cost, the overall

AP is improved from 26.6% to 27.1 % and 27.6% to 28.1%

with random sampler and RFS, respectively.

Apart from the CE loss baseline, we further compare

Seesaw Loss with recent designs for long-tailed instance

segmentation, i.e., Equalization Loss (EQL) [38] and Bal-

anced Group Softmax (BAGS) [23], in Table 1. Seesaw

Loss outperforms EQL by 3.9% AP and 1.4% AP, and out-

performs BAGS by 1.0% AP and 1.8% AP with random

sampler and RFS, respectively. Seesaw Loss also achieves

higher APr, APc and APf than the two methods consis-

tently. Notably, EQL and BAGS achieve lower APf than the

CE baseline while Seesaw Loss does not. This phenomenon

indicates that these two methods improve the performance

of rare and common categories while sacrificing frequent

categories.

We further compare Seesaw Loss with previous meth-

ods [23, 38] with both random sampler and RFS on Cas-

cade Mask R-CNN [1]. It’s a representative framework of

cascade methods [3, 1] that outperforms Mask R-CNN [15].

As shown in Table 1, Seesaw Loss performs much supe-

rior to previous works [23, 38] on Cascade Mask R-CNN.

Specifically, Seesaw Loss improves the baseline by 6.4%

AP and 2.3% AP with random sampler and RFS, respec-

tively. With Normalized Mask Prediction, Cascade Mask-

RCNN with Seesaw Loss finally achieves 29.6% AP and

30.1% AP with the two samplers, respectively. Moreover,

Seesaw Loss is also evaluated on test-dev split and consis-

tently obtains significant gains over the CE baseline.

4.3. Ablation study

We conduct a comprehensive ablation study to verify the

effectiveness of each design choice in the proposed method.

Components in Seesaw Loss. There are three components

in Seesaw Loss: mitigation factor, compensation factor, and

normalized linear activation. We evaluated each compo-

nent on Mask R-CNN with RFS (Table 2). The mitigation
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Table 1: Performance comparison of Mask R-CNN [15] and Cascade Mask R-CNN [1] with Cross-Entropy (CE) Loss, Equalization Loss

(EQL) [38], Balanced Group Softmax (BAGS) [23], and Seesaw Loss on LVIS v1 dataset [12]. The ResNet-101 [16] w/ FPN [24] is

adopted as backbone. All models are trained with random sampler or repeat factor sampler (RFS) [12] by 2x schedule in an end-to-end

pipeline. Norm Mask indicates the proposed Normalized Mask Prediction in Sec. 3.3.

Framework Sampler Loss Split AP APr APc APf AP box

Mask R-CNN [15] Random

Cross-Entropy (CE)

val

20.6 0.8 19.3 30.7 21.7

Equalization Loss (EQL) [38] 22.7 3.7 23.3 30.4 24.0

Balanced Group Softmax (BAGS) [23] 25.6 17.3 25.0 30.1 26.4

Seesaw Loss 26.6 18.1 25.8 31.2 27.4

Seesaw Loss + Norm Mask 27.1 18.7 26.3 31.7 27.4

Mask R-CNN [15] RFS [12]

Cross-Entropy (CE)

val

25.5 16.6 24.5 30.6 26.6

Equalization Loss (EQL) [38] 26.2 17.0 26.2 30.2 27.6

Balanced Group Softmax (BAGS) [23] 25.8 16.5 25.7 30.1 26.5

Seesaw Loss (Ours) 27.6 20.6 27.3 31.1 28.9

Seesaw Loss + Norm Mask (Ours) 28.1 20.0 28.0 31.8 28.9

Cascade Mask R-CNN [1] Random

Cross-Entropy (CE)

val

22.6 2.4 22 32.2 25.5

Equalization Loss (EQL) [38] 24.3 5.1 25.3 31.7 27.3

Balanced Group Softmax (BAGS) [23] 27.9 19.6 27.7 31.6 31.5

Seesaw Loss (Ours) 29.0 21.1 28.6 33.0 32.8

Seesaw Loss + Norm Mask (Ours) 29.6 20.3 29.3 34.0 32.7

Cascade Mask R-CNN [1] RFS [12]

Cross-Entropy (CE)

val

27.0 16.6 26.7 32.0 30.3

Equalization Loss (EQL) [38] 27.1 17.0 27.2 31.4 30.4

Balanced Group Softmax (BAGS) [23] 27.0 16.9 26.9 31.7 30.2

Seesaw Loss (Ours) 29.3 21.7 29.2 32.8 32.8

Seesaw Loss + Norm Mask (Ours) 30.1 21.4 30.0 33.9 32.8

Mask R-CNN [15] RFS [12]
Cross-Entropy (CE)

test-dev
25.1 13.0 24.8 30.8 -

Seesaw Loss + Norm Mask (Ours) 27.9 20.3 27.1 32.2 -

Cascade Mask R-CNN [1] RFS [12]
Cross-Entropy (CE)

test-dev
26.4 15.5 25.5 32.3 -

Seesaw Loss + Norm Mask (Ours) 30.0 23.0 29.3 34.1 -

Table 2: Ablation study of each design in Seesaw Loss with Mask

R-CNN w/ R-50 FPN backbone and repeat factor sampler. MF,

CF, NLA indicate mitigation factor, compensation factor, and nor-

malized linear activation, respectively.

MF CF NLA AP APr APc APf AP box

23.7 13.5 22.8 29.3 24.7

X 25.1 16.7 24.5 29.4 26.2

X 24.1 13.2 23.5 29.5 25.1

X X 25.7 19.1 25.0 29.4 26.8

X 24.7 15.0 24.1 29.6 25.6

X X X 26.4 19.6 26.1 29.8 27.4

factor that mitigates the overwhelming punishments on rare

classes leads to a significant improvement from 23.7% AP

to 25.1% AP. Notably, it improves the APr of rare classes

by 2.8% AP. The compensation factor increases the pun-

ishments of a class when it observes false positives on that

class to reduce misclassification. It improves the baseline

by 0.4% AP. The combination of the mitigation and the

compensation factors achieves 25.7% AP, outperforming

the performance of mitigation factor by 0.6% AP. It reveals

the effectiveness of instance-wise compensation to avoid

misclassification. The normalized linear activation is an-

other important component in Seesaw Loss, which reduces

the scale invariance of weights and features across differ-

Table 3: The effectiveness of the normalized linear activation in

different methods. EQL and BAGS indicates Equalization Loss

and Balanced Group Softmax Loss, respectively.

Method NLA AP APr APc APf AP box

EQL 25.1 17.4 24.8 28.8 26.1

EQL X 25.4 17.8 25.2 29.1 26.5

BAGS 24.7 15.6 24.4 28.9 25.2

BAGS X 25.5 19.2 25.0 28.9 25.8

Seesaw 25.7 19.1 25.0 29.4 26.8

Seesaw X 26.4 19.6 26.1 29.8 27.4

ent categories. It improves the baseline performance from

23.7% to 24.7% AP. Seesaw Loss combining all these three

components achieves 26.4% AP.

Normalized linear activation. We empirically find that

normalized linear activation (NLA) helps to improve the

performance of both CE Loss and Seesaw Loss. Therefore,

we further integrate NLA with equalization loss (EQL) and

balanced group softmax (BAGS) for fair comparisons. Re-

sults in Table 3 show that NLA improves the performance

of EQL and BAGS by 0.3% and 0.8% AP, respectively. It is

noteworthy that Seesaw Loss outperforms EQL and BAGS

no matter whether NLA is adopted.

Cumulative Sample Numbers. Different from previous

works [2, 38, 23] that rely on the pre-computed frequency

9700



Table 4: Comparison of different approaches to obtain sample

numbers of different categories in Seesaw Loss. From dataset in-

dicates to obtain the distribution of instance numbers directly from

the train split. Pre-Record indicates to load the cumulative sample

numbers from a model trained with Seesaw Loss. Online indicates

to accumulate the sample numbers during training.

Source AP APr APc APf AP box

From dataset 26.1 19.7 25.6 29.5 27.2

Pre-Record 26.3 19.6 25.8 29.8 27.4

Online 26.4 19.6 26.1 29.8 27.4

Table 5: Ablation study of the hyper-parameter p in
(

Nj

Ni

)p

of

mitigation factor. The normalized linear activation is not adopted

in this table. p = 0.8 is the default setting in other experiments.

p AP APr APc APf AP box

0.2 24.4 14.7 23.6 29.4 25.4

0.4 24.9 15.2 24.6 29.6 26.0

0.6 25.4 17.9 24.6 29.5 26.5

0.8 25.7 19.1 25.0 29.4 26.8

1.0 25.5 17.6 25.2 29.2 26.4

1.2 25.3 18.1 24.7 29.0 26.5

Table 6: Ablation study of the hyper-parameter q in
(

σj

σi

)q

of compensation factor. The normalized linear activation is not

adopted in this table. q = 2.0 is the default setting.

q AP APr APc APf AP box

0.5 25.4 17.6 25.0 29.4 26.3

1.0 25.5 17.5 25.1 29.4 26.6

1.5 25.5 17.8 25.1 29.3 26.8

2.0 25.7 19.1 25.0 29.4 26.8

2.5 25.6 17.7 25.2 29.4 26.5

3.0 25.4 17.3 24.9 29.5 26.4

distribution of categories in the dataset, Seesaw Loss accu-

mulates the sample numbers of each category during train-

ing. We compare different approaches to obtain the sample

numbers of categories for Seesaw Loss (Table 4). Directly

using the statistics of train split decreases the performance

of Seesaw Loss by 0.3% AP. The reason lies in that the data

sampler, e.g., repeat factor sampler, changes the frequency

distribution of categories during training. We also explore

loading the pre-recorded distribution of training samples

from a model trained with Seesaw Loss. It achieves a simi-

lar performance with accumulating the training samples on-

line (26.3% AP vs. 26.4% AP). These results verify the

effectiveness and simplicity of online accumulating.

Hyper-parameters. We study the hyper-parameters, i.e., p,

q, τ , adopted in different components of Seesaw Loss. The

normalized linear activation is not applied when studying

the mitigation and compensation factors (25.7% AP with

this setting). In Table 5, we explore p in
(

Nj

Ni

)p

of mitiga-

tion factor. p controls the magnitude to mitigate the pun-

ishments on rare classes. A higher value of p will reduce

punishments more, as well as increase the risk of inducing

Table 7: Ablation study of the temperature term τ in Normalized

Linear Activation. τ = 20 is the default setting.

τ AP APr APc APf AP box

10 24.7 16.7 24.1 28.8 25.7

15 26.0 19.0 25.5 29.6 27.0

20 26.4 19.6 26.1 29.8 27.4

25 26.2 19.2 25.7 29.9 27.4

30 25.9 16.4 26.2 29.8 27.0

Table 8: Ablation study of the objectness branch in CE loss

baseline and Seesaw Loss. OBJ indicates whether the objectness

branch is adopted.

Method OBJ AP APr APc APf AP box

CE 24.0 14.0 23.4 29.0 24.9

CE X 23.7 13.5 22.8 29.3 24.7

Seesaw 25.3 16.0 25.1 29.4 26.5

Seesaw X 26.4 19.6 26.1 29.8 27.4

false positives of tail classes. Therefore, it is critical to find

a suitable p. Results show that p = 0.8 achieves the best

performance. In Table 6, we explore q in
(

σj

σi

)q

of the com-

pensation factor. q controls the magnitude to compensate

the reduced punishments on tail classes when false positives

are observed. We study the effectiveness of different q and

find q = 2.0 achieves the best performance. Notably, q is

robust across different values as the best value is only 0.3%

AP better than the worst value. In Table 7, we study the

temperature τ in normalized linear activation (NLA). τ de-

termines the variance of the classifier’s predicted logit z. If

τ is too small, the variance of z is insufficient to distinguish

positive and negative samples. However, if τ is too big,

the target of balancing the variance in weights and features

between different categories will be sacrificed. We choose

τ = 20 in the NLA as it achieves the best performance.

Objectness Branch. In a common practice of object detec-

tion, the classifier predicts C + 1 scores for C foregrounds

categories and one background category. Due to the ex-

tremely imbalanced distribution between foregrounds and

backgrounds, Seesaw Loss will tend to misclassify more

backgrounds as foregrounds with this design. Thus, we

adopt an extra objectness branch as described in Sec. 3.3.

The results in Table 8 shows that the objectness branch does

not improve the Coss-Entropy loss baseline but is critical

to Seesaw Loss. The objectness branch helps to avoid re-

ducing the backgrounds’ punishments on C foreground cat-

egories. As a result, the objectness branch brings gains on

Seesaw Loss across categories with different frequency, and

improves the overall AP from 25.3% to 26.4%.

Training Pipeline. Apart from the end-to-end training

pipeline, we further explore the popular decoupling train-

ing pipeline [20, 23] on Mask R-CNN. Specifically, we pre-

train the Mask R-CNN with Cross-Entropy loss using ei-

ther random sampler or repeat factor sampler for 2x sched-
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Table 9: Explorations of decouple training pipelines [20, 23] for

instance segmentation. Mask R-CNN with different classification

loss is finetuned for 1x schedule with RFS sampler. We adopt

pre-trained models with random (P-Rand) or repeat factor sampler

(P-RFS) for 2x schedule. ‘DE-’ indicates the model is trained with

decoupling training pipelines.

Loss P-Rand P-RFS AP APr APc APf AP box

EQL 25.1 17.4 24.8 28.8 26.1

BAGS 24.7 15.6 24.4 28.9 25.2

Seesaw 26.4 19.6 26.1 29.8 27.4

DE-EQL X 23.9 12.9 23.7 28.9 25.4

DE-EQL X 25.2 15.9 25.5 28.9 26.5

DE-BAGS X 25.4 16.3 25.1 29.7 26.3

DE-BAGS X 25.6 17.0 25.3 29.8 26.6

DE-Seesaw X 25.1 16.6 24.6 29.5 26.2

DE-Seesaw X 25.8 18.7 25.3 29.6 26.9

ule. Then we finetune the final fully-connected layer of the

classifier with all other components fixed. The 1x sched-

ule and repeat factor sampler is adopted during finetuning.

As shown in Table 9, Seesaw Loss with the pre-trained

model on repeat factor sampler (P-RFS) achieves 25.8%

AP, outperforming other methods with decoupling training

pipeline. Notably, Seesaw Loss performs better with the

end-to-end training pipeline than with the decoupling train-

ing pipeline. It indicates Seesaw Loss provides a simpler

and more effective solution to long-tailed instance segmen-

tation without relying on complex training pipelines.

4.4. Long­Tailed Image Classification

To show the versatility of Seesaw Loss, we apply it for

long-tailed image classification task on ImageNet-LT [28]

dataset. ImageNet-LT [28] is generated from the ImageNet-

2012 [37] dataset with long-tailed distributed categories in

training set. There are 115.8k images of 1000 categories

with a maximum number of 1280 images and a minimum

number of 5 images. The performance is evaluated with

top-1 accuracy on all categories and the accuracies for Many

Shot (> 100 images), Medium Shot (20∼100 images) and

Few Shot (< 20 images) categories are also reported.

We adopt two training pipelines: end-to-end training and

decoupling training[20]. We use ResNeXt-50 [49] back-

bone and SGD optimizer with momentum of 0.9, initial

learning rate of 0.2, batch size of 512, and cosine learn-

ing rate [29] following [20]. For the end-to-end training

pipeline, the model is trained for 90 epochs. For decouple

training pipeline [20], we load the pre-trained ResNeXt-

50 [49] with Cross-Entropy Loss (CE), and finetune the

classifier with class-balanced sampler while fixing all other

layers for 10 epochs. Seesaw Loss in image classification

mostly follows the hyper-parameters on the instance seg-

mentation task except for q in the compensation factor. We

adopt q = 1 for ImageNet-LT dataset. The study of q for

ImageNet-LT dataset is shown in Table 11.

Table 10: Comparison of different methods on ImageNet-LT [28]

test set. ResNeXt-50 [49] backbone is adopted in experiments.

Decouple means using decouple training pipeline [20].

Method Decouple Overall Many Medium Few

CE 44.4 65.9 37.5 7.7

Focal Loss [25] 43.3 64.5 36.3 7.8

CB-Focal [6] 45.3 60.4 40.6 19.2

EQL [6] 46.0 61.7 42.5 13.8

NCM [20] X 47.3 56.6 45.3 28.1

cRT [20] X 49.6 61.8 46.2 27.4

τ -norm [20] X 49.4 59.1 46.9 30.7

LWS [20] X 49.9 60.2 47.2 30.3

Seesaw X 49.7 60.7 46.8 28.9

Seesaw 50.4 67.1 45.2 21.4

Table 11: Comparison of hyper-parameter q in the compensation

factor
(

σj

σi

)q

on ImageNet-LT [28].

q Overal Many Medium Few

0.5 49.6 66.2 44.4 20.9

1.0 50.4 67.1 45.2 21.4

1.5 49.6 66.4 44.3 20.7

2.0 49.4 66.5 44.0 20.3

2.5 48.4 65.8 42.9 18.7

We report the performance of Seesaw Loss in Table 10.

Seesaw Loss improves top-1 accuracies of CE from 44.4%

to 49.7% and 50.4% with the decoupling training and the

end-to-end training pipeline, respectively. Similar to our

observations on the instance segmentation task, Seesaw

Loss performs better with the end-to-end training pipeline

on image classification. The performance achieved by See-

saw Loss with the end-to-end pipeline is competitive among

previous methods on ImageNet-LT [28].

5. Conclusion

In this paper, we propose Seesaw Loss for long-tailed in-

stance segmentation. Seesaw Loss dynamically re-balances

gradients of positive and negative samples for each category

with two complementary factors. The mitigation factor re-

duces punishments to tail categories w.r.t. the ratio of cu-

mulative training instances between categories. Meanwhile,

the compensation factor increases the penalty of misclassi-

fied instances to avoid false positives. Experimental results

demonstrate that Seesaw Loss provides a simpler and more

effective solution to long-tailed instance segmentation with-

out relying on complex training pipelines.
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