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Abstract

Instance shadow detection aims to find shadow instances

paired with the objects that cast the shadows. The previous

work adopts a two-stage framework to first predict shadow

instances, object instances, and shadow-object associations

from the region proposals, then leverage a post-processing

to match the predictions to form the final shadow-object

pairs. In this paper, we present a new single-stage fully-

convolutional network architecture with a bidirectional re-

lation learning module to directly learn the relations of

shadow and object instances in an end-to-end manner.

Compared with the prior work, our method actively ex-

plores the internal relationship between shadows and ob-

jects to learn a better pairing between them, thus improving

the overall performance for instance shadow detection. We

evaluate our method on the benchmark dataset for instance

shadow detection, both quantitatively and visually. The ex-

perimental results demonstrate that our method clearly out-

performs the state-of-the-art method.

1. Introduction

Research on shadows has been a fundamental prob-

lem in computer vision. Prior works focus mainly on the

shadow detection and shadow removal tasks, while a recent

work [54] proposes a new task called instance shadow de-

tection, which aims to detect shadow instances paired with

the associated objects that cast the shadows. Overall, in-

stance shadow detection benefits many vision applications,

such as light direction estimation and photo editing.

To approach instance shadow detection, Wang and Hu et

al. [54] built a dataset called SOBA, each with labeled

masks for shadow instances, object instances, and shadow-

object associations. To detect the shadow instances to-

gether with their associated objects, they designed a two-

∗Joint first authors
†Corresponding author (xwhu@cse.cuhk.edu.hk)

(a) Input image (b) LISA [54]

(c) Our learned paired locations (d) Ours

Figure 1: Instance shadow detection results produced by (b)

LISA [54] and (d) our method, where LISA mismatches the

large shadow with another horse. Our method learns the

paired locations (c) for a better shadow-object pairing.

stage framework to first generate region proposals that have

high probabilities of containing shadow instances, object in-

stances, and shadow-object associations. Then, in the sec-

ond stage, for each proposal, regions-of-interest (ROIs) are

cropped from the feature maps, and the two-stage frame-

work makes predictions of the masks and boxes of the

shadow instances, object instances, and shadow-object as-

sociations from each ROI. Lastly, they formulate a strategy

to pair up the shadow and object instances with the shadow-

object associations predicted from a deep network.

After revisiting the task, we identified various limitations

in [54]. First, it considers the shadow-object association

as a single category and predicts a bounding box for each

shadow-object association. However, the appearance of

shadow and object instances are very different, so shadow-

object associations could easily be missed; see Figure 1

(b) for an example. Second, this method generates region
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proposals for shadow/object instances and shadow-object

associations using two separate branches, and leverages a

post-processing to produce the final shadow-object associa-

tions. Errors could accumulate through the two-stage deep

network and the post-processing, thus leading to large per-

formance degradation. Third, the ROIs employed in [54]

represent feature regions using rectangular shapes, but the

shapes of the shadow instances and shadow-object associa-

tions are usually irregular, and the cropped ROIs of rectan-

gular shapes could include many irrelevant image contents,

such as other object and shadow instances.

In this paper, we present a single-stage deep network

for instance shadow detection by directly learning to find

the relation between shadow instances and object instances

in an end-to-end manner. Our new approach includes

only fully convolutional operations and is able to handle

shadow/object instances and shadow-object associations of

arbitrary shape. Specifically, we jointly optimize our net-

work model to find shadow instances, object instances,

and shadow-object associations, thereby enabling us to ef-

ficiently explore the internal relationship between shadows

and objects. Importantly, we design the bidirectional rela-

tion learning module to explore the shadow-object associa-

tion pairs, in which we learn an offset vector from the center

of each shadow instance to the center of its associated ob-

ject instance, as well as the other way around; see Figure 1

(c) for the learned locations of paired shadow and object

instances. To facilitate the learning process, we adopt class

vectors to indicate the learning directions (shadow → object

or object → shadow) and use the segmentation loss and off-

set loss to optimize the network. These new techniques help

the network to learn a better pairing between shadow and

object instances, thus improving the overall performance of

instance shadow detection; see Figures 1 (b) & (d) for the

visual comparison results. Below, we summarize the major

contributions of this work.

• First, we design a single-stage instance shadow de-

tection network with only fully convolutional opera-

tions to predict shadow instances, object instances, and

shadow-object associations in an end-to-end manner.

• Second, we formulate the bidirectional relation learn-

ing module in a deep network to learn the relation be-

tween shadow instances and object instances.

• Third, we compare our method with the previous

state-of-the-art method on the benchmark dataset for

instance shadow detection. Results show that our

method outperforms the state-of-the-art with an im-

provement of over 29% in accuracy.

2. Related Work

Shadow detection. Generic shadow detection aims to

produce a binary mask to mark the shadow regions in

the input image. Early methods explored spectral prop-

erties [42, 45] or built illumination models [37] to de-

tect shadows. Later, learning-based approaches were intro-

duced to detect shadows by exploring various hand-crafted

features, e.g., T-junction [23], texture [65, 49, 12, 51],

color [23, 49, 12, 51], and edge [23, 65, 20]. However,

methods based on hand-crafted features have limited rep-

resentation capabilities and may fail to detect shadows in

complex environments.

In recent years, deep-learning-based methods show re-

markable performance on shadow detection. Khan et

al. [21] presented the first work that detects shadows by au-

tomatically learning features through a convolutional neu-

ral network (CNN). Shen et al. [43] and Hou & Vicente et

al. [15, 52] formulated a structured learning framework

and a stacked-CNN, respectively, for shadow detection.

Nguyen et al. [36] used an adjustable parameter in a condi-

tional generative adversarial network to balance the weights

of shadow and non-shadow regions. Wang et al. [53] se-

quentially detected and removed shadows by leveraging

two conditional generative adversarial networks. Hu et

al. [16, 19] formulated an attention mechanism in a spa-

tial recurrent network to learn the direction-aware spatial

context for shadow detection. Le et al. [26] used gener-

ated adversarial training samples to train a shadow detec-

tion network, in which the training samples were generated

by a shadow attenuation network. Zhu et al. [66] designed a

bidirectional feature pyramid network with recurrent atten-

tion residual modules to detect shadows. Zheng et al. [62]

formulated a distraction-aware shadow detection network

by revisiting the predicted false negatives and false posi-

tives. Ding et al. [8] detected and removed shadows in a re-

current manner through an attentive recurrent generative ad-

versarial network. Later, Hu et al. [18] built a new dataset to

support shadow detection in a complex world and designed

a fast shadow detection network. Chen et al. [4] presented

a semi-supervised shadow detection algorithm by explor-

ing the knowledge from unlabeled data through a multi-task

mean teacher framework.

Apart from generic shadow detection, various recent

works explored deep learning to remove shadows in natural

images [22, 41, 17, 8, 24, 5, 60, 25] and in document im-

ages [31], to generate shadows in augmented reality [32],

and to manipulate portrait shadows [61]. Very recently,

Wang and Hu et al. [54] proposed a new shadow detection

task called instance shadow detection. This is the most re-

lated work to ours. It designed a two-stage framework and

adopted a post-processing to predict the paired shadow and

object instances. In contrast, in this work, we formulate the

bidirectional relation learning module in a fully convolu-

tional network to directly learn the relation between shadow

instances and object instances in an end-to-end manner.
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Figure 2: The schematic illustration of our single-stage instance shadow detection network (SSIS). The mask feature and the

outputs of the box tower and class tower are used to formulate the bidirectional relation learning module; see Figure 3. Note

that each head has its own box head and class head, and the filter parameters among these heads are sharing.

Instance segmentation. One category of methods for in-

stance segmentation predicts region proposals in the input

images and then generates an instance mask for each pro-

posal, e.g., MNC [6], DeepMask [39], InstanceFCN [6],

and SharpMask [40], FCIS [28], BAIS [13], MaskLab [2],

Mask R-CNN [14], PANet [33], MegDet [38], and HTC [1].

Among these works, Mask R-CNN simultaneously pre-

dicted the category label, bounding box, and segmenta-

tion mask for each region proposal and achieved great suc-

cess for instance segmentation. The other category directly

predicts the instance masks and the corresponding cate-

gories in the whole images, e.g., TensorMask [3], SSAP [9],

SOLO [55], EmbedMask [58], SOLOv2 [56], Center-

Mask [27], and CondInst [47]. Among them, CondInst

developed a dynamic instance-aware network that learns

to generate different network parameters for different in-

stances and achieved comparable performance with Mask

R-CNN. CondInst serves as the basic network, on which we

further formulate our bidirectional relation learning module

to learn the relation between shadow and object instances in

a fully convolutional manner.

Visual relation detection. This task aims to find the ob-

jects and their relationships from the images. Newell and

Deng [35] identified the objects and their relations in a CNN

as a graph. Zhang et al. [59] embedded objects and rela-

tions into two vector spaces. Though the relation between

shadow and object in an image can be regarded as a type

of visual relation, works on visual relation detection mainly

focus on detecting relations that are single direction, while

our method simultaneously learns a bidirectional relation

between shadows and objects in a single network.

3. Methodology

3.1. Overall Network Architecture

Figure 2 shows the overview architecture of our single-

stage instance shadow detection network (SSIS) that em-

ploys the bidirectional relation learning module. Given the

input image, we adopt a convolutional neural network to

extract the feature maps in different resolutions, and build

a feature pyramid network [29] with multiple feature levels

(from P3 to P7). Then, we adopt multiple heads at differ-

ent levels and add four convolutional layers in a class tower

to predict the classification scores and another four convo-

lutional layers in a box tower to generate other predictions.

In summary, we obtain a set of predictions for each head:

(i) classification scores, which are used to indicate the

categories of shadow, object, and background;

(ii) offset vector, which are the image-space vectors from

the centers of the shadow instances to the centers of

the corresponding object instance, and vice versa;

(iii) controller and paired controller, which learn two sets

of filter parameters used in the mask head to predict

the masks for shadow/object instances. Note that each

instance has its individual filter parameters to predict

mask; see [47] for detail. In our framework, if the

controller generates the filter parameters for a shadow

instance, the paired controller will generate the filter

parameters for the corresponding object instance, and

vice versa; and
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Figure 3: The schematic illustration of the bidirectional relation learning module in our SSIS network. The left part (Object

→ Shadow) shows how to find the associated shadow instance from the location of the paired object instance while the right

part (Shadow → Object) shows how to find the associated object instance from the location of the paired shadow instance.

(iv) regression and centerness, where regression predicts

the bounding box for each shadow and object instance

while centerness is used to regularize the prediction by

reducing the number of low-quality predicted bound-

ing boxes that are far from the center of a target

shadow/object; see [48] for detail.

Next, we formulate a mask branch, which takes the fea-

ture map at P3 as input and generates the mask feature. We

copy and append the mask feature with two relative coor-

dinate (Rel. Coord.) maps, where one relative coordinate

map indicates the centers of the object/shadow instances,

while another relative coordinate is obtained by first multi-

plying the offset vectors with a class vector then added the

results with the coordinate to represent the centers of the

corresponding shadow/object instances. Note that the class

vector is generated from the classification score, where −1
indicates the direction from object to shadow, 1 indicates

the direction from shadow to object, and the relative co-

ordinate map is computed from the predicted locations of

shadow/object instances. Finally, we use the learned filter

parameters from the controller and paired controller to per-

form convolutional operations on the concatenated feature

mask and relative coordinate, and predict the masks for the

shadow/object instances and the paired object/shadow in-

stances.

In the following subsections, we will elaborate on how to

learn the relation between shadow instances and object in-

stances in Section 3.2 and introduce the training and testing

strategies of our approach in Section 3.3.

3.2. Bidirectional Relation Learning

Architecture. Figure 3 shows the detailed structure of the

proposed bidirectional relation learning module used in our

SSIS network. Figure 3 (a) illustrates how to learn the

paired shadow instance from the object instance while Fig-

ure 3 (b) illustrates this strategy in the opposite direction.

As shown in the top left corner, after obtaining the original

location Lm of the m-th object instance, we append the lo-

cation with the mask feature and adopt the m-th mask head

to predict the segmentation mask of this instance. Note that

the filter parameters in the mask head are produced from the

controller and the filter parameters vary in different mask

heads; see “Controller” in Figure 2.

Then, we compute the associated location Am to indi-

cate the center of the paired shadow instance by using the

learned offset vector Om and class vector −1:

Am = Lm + Om
× −1 , (1)

where the offset vector is learned from box tower and

it represents the distance between the center of the ob-

ject instance and the center of the paired shadow instance;

the class vector is generated from the classification scores

and we adopt −1 to represent the direction from object to

shadow and use 1 to represent the direction from shadow

to object. Next, we concatenate the associated location Am

and mask feature, and use the m-th associated mask head to

generate the mask for the shadow instance, and the filter pa-

rameters of the associated mask head are learned from the

paired controller automatically, as shown in Figure 2.
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Similarly, taking the original location Ln of the shadow

instance as the input, we compute the associated location

An of the paired object instance by:

An = Ln + On
× 1 , (2)

where On denotes the n-th offset vector and 1 represents the

learning direction is from shadow to object. Also, we adopt

the mask head and the associated mask head to generate

the segmentation masks for the paired shadow and object

instances, as shown in the right part of Figure 3.

Note that the location maps (Lm, Am, Ln, An) shown in

Figure 3 are the visualization results of the learned loca-

tions, demonstrating that our network can successfully learn

the locations for shadow and object pairs.

Loss function. We define the overall loss function Lall of

our SISS network as:

Lall = Lcls + Lcenter + Lbox + ϕLoffset

+ λLmask + λLassociated
mask ,

(3)

where classification loss Lcls, centerness loss Lcenter, box

regression loss Lbox are same as the losses used in [48].

We adopted the dice loss [34] to compute the losses of the

output instance masks Lmask and output associated instance

mask Lassociated
mask ; see Figure 2 for the predictions. The offset

loss Loffset has the format of the smooth L1 loss [10] and it

is used to optimize the offset vectors:

Loffset (u, v) =
∑

i∈{x,y}

{

0.5 (ui − vi)
2
, if |ui − vi| < 1;

|ui − vi|− 0.5 , otherwise ,

(4)

where ui is the product of the predicted offset vector and

class vector:

ui = Oi × Ci , (5)

and vi denotes the ground truth offset vector:

vi = L̃i − Li , (6)

where L̃i and Li are the ground truth location of

shadow/object instance and the predicted location of the

paired object/shadow instance, respectively. The hyper-

parameters λ and ϕ are empirically set as one and 0.1 to

balance the weights of different losses. Note that except

for the offset loss Loffset, the mask loss of the associated

instance mask Lassociated
mask also propagates the gradient to off-

set vectors, which helps to optimize the network during the

training process.

3.3. Training and Testing Strategies

Training parameters. We trained our SSIS network by

following the training strategies of CondInst [47] and Ade-

laiDet [46]. First, we adopted the weights of ResNeXt-101-

BiFPN [57, 44] trained on ImageNet [7] to initialize the pa-

rameters of the backbone network, set the mini-batch size

as two, and optimized our network on two NVIDIA TITAN

Xp GPUs (one image per GPU). Second, we set the base

learning rate as 1e − 3, adopted a warm-up [11] strategy

to linearly increase the learning rate from 1e − 4 to 1e − 3
in the first 1, 000 iterations, and dropped the learning rate

to 1e − 4 at 40, 000 iterations, and stopped the learning

after 45, 000 iterations. Third, we re-scaled the input im-

ages, such that the longer side was less than 1, 333 and the

shorter side was less than 640 without changing the image

aspect ratio. Lastly, we randomly and horizontally flipped

the images for data augmentation.

Inference. In testing, the mask heads in our SSIS network

produce the masks for shadow and object instances while

the associated mask heads generate the masks for the paired

object and shadow instances based on the learned offset vec-

tors; see Figure 3. Since we design a bidirectional relation

learning module in our network, for each pair of shadow and

object instances, we obtain two sets of predicted masks: (i)

if the main branch (the left branches in Figure 3 (a)&(b))

produces the mask of its shadow instance, the associated

branch (the right branches in Figure 3 (a)&(b)) will generate

the mask of its object instance; (ii) if the main branch pro-

duces the mask of its object instance, the associated branch

will generate the mask of its shadow instance. However, the

accuracy of mask predictions in the main branch is usually

better than the predictions in the associated branch, since

the associated branch needs to learn both tasks of mask

prediction and shadow-object relation, making the training

process difficult. Hence, we only adopt the predictions of

the associated branch to find the paired relation of shadow

and object instances, and take the masks predicted from the

main branch as the results. Finally, we adopt mask non-

maximum suppression (NMS) to refine the results.

Discussion. Our SSIS has strong ability to find shadow

and object locations, but it is infeasible to find instances in

some extreme scenarios, in which we cannot find another

set of masks, e.g., very small shadow regions. In our imple-

mentation, we ignore instances that contain only one set of

masks. In practice, this situation is very rare.

4. Experimental Results

4.1. Dataset and Evaluation Metrics

Benchmark dataset. SOBA [54], named after Shadow

OBject Association dataset, is a dataset used for instance

shadow detection, which contains 1, 000 images collected

from the ADE20K [63, 64], SBU [15, 50, 52], ISTD [53],

Microsoft COCO [30], and Internet. In this dataset, there

are 3, 623 shadow-object pairs with the labeled masks of

shadow instances, object instances, and shadow-object as-

sociations. The training set of SOBA includes 840 images

with 2, 999 shadow-object pairs and the testing set includes
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Table 1: Comparison with the previous state-of-the-art method (LISA) for instance shadow detection.

Network SOAPsegm SOAPbbox Association APsegm Association APbbox Instance APsegm Instance APbbox

LISA [54] 21.2 21.7 40.8 49.0 37.0 38.1

SSIS (ours) 27.4 (29.25%) 25.5 (17.51%) 50.5 (23.77%) 56.2 (14.69%) 40.3 (8.92%) 39.6 (3.94%)

(a) input images (b) LISA [54] (c) SSIS (ours) (d) paired locations learned in SSIS

Figure 4: Visual comparison of instance shadow detection results produced by different methods and our learned locations

for pairing shadow and object instances.

160 images with 624 shadow-object pairs. We adopt this

training set to train our method and evaluate the trained

model on the testing set.

Evaluation metrics. SOAP [54], named after Shadow-

Object Average Precision, is a metric to evaluate the per-

formance of instance shadow detection. It computes the av-

erage precision (AP) with the intersection over union (IoU)

and considers a sample as true positive when the IoU be-

tween the predicted and ground-truth shadow instances, ob-

ject instances, and shadow-object associations are all no less

than a threshold τ . By setting τ as 0.5 or 0.75, and the aver-

age over multiple τ [0.5:0.05:0.95], we can report SOAP50,

SOAP75, and SOAP. Except for SOAP, we further report

the average precision over the thresholds [0.5:0.05:0.95] for

shadow/object instances, and shadow-object associations,

respectively. Finally, we report the evaluation metrics in

terms of both bounding boxes and masks.

4.2. Comparison with the State-of-the-art Method

We compare our method with the previous state-of-the-

art method, i.e., LISA [54], named after Light-guided In-

stance Shadow-object Association framework. It adopts the

light direction as the guidance in a two-stage object de-

tector to predict the shadow/object instances and shadow-

object associations, and leverages a post-processing strat-
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SSIS (ours) LISA [54] SSIS (ours) SSIS (ours) LISA [54] SSIS (ours)

Figure 5: More visual comparison results on instance shadow detection, where our method generates higher quality masks

on the details of shadow and object instances.

Figure 6: More instance shadow detection results produced by our SSIS over a wide variety of objects and shadows.

egy to pair up the predicted instances and associations. For

a fair comparison, we downloaded the results of LISA from

the website, which are provided by the authors.

Table 1 reports the comparison results, where we can

see that our method clearly outperforms LISA for all the

evaluation metrics. Our method achieves a large improve-

ment compared with the previous state-of-the-art method,

where the improvements on SOAPsegm and SOAPbbox are

29.25% and 17.51%, respectively, showing the supervisory

of our method. Moreover, the improvements on Association

APs are obvious, demonstrating that our SSIS network can

successfully discover the relation between shadow instances

7



Table 2: Component analysis.

Network SOAPsegm SOAPbbox Association APsegm Association APbbox Instance APsegm Instance APbbox

basic 25.5 24.4 47.4 53.7 38.4 38.7

+ offset 25.4 25.1 48.9 55.5 39.3 39.5

+ class 27.4 25.5 50.5 56.2 40.3 39.6

and object instances.

We further provide visual comparison results in Figure 4,

where (a) shows the input images, (b) and (c) show the

results produced by LISA and our SSIS, and (d) shows

the paired locations learned by our method to indicate the

paired shadow and object instances. From the results, we

can see that (i) our method can discover more shadow-

object association pairs, as shown in the first row; (ii) our

method can produce more accurate masks for shadow and

object instances, as shown in the second and third rows; (iii)

our method can successfully pair up the object and shadow

instances, but LISA may fail, as shown in the last row.

(iv) our method can learn the locations of shadow-object

pairs through our directional relation learning module, as

shown in (d). Figure 5 illustrates more visual comparison

results on instance shadow detection, where we can see that

comparing with LISA, our method generates higher qual-

ity masks on the details of shadow and object instances.

Please see Figure 6 for more instance shadow detection re-

sults produced by our SSIS on various types of objects and

shadows. The source code, trained model, and detection re-

sults are publicly available at https://github.com/

stevewongv/SSIS.

4.3. Evaluation on the Network Design

Component analysis. We perform an experiment to eval-

uate each component in our network design. Here, we con-

sider two baseline networks. “basic” is a network built by

removing the offset vectors and class vectors from our SSIS

network and adopting only the segmentation loss to opti-

mize the network. “+ offset” learns the offset vectors but

ignores the class vectors that use to indicate learning direc-

tions. “+ class” is our full pipeline, which further considers

the class vectors. Table 2 reports the comparison results,

showing that using offset vectors to learn the locations of

paired shadow and object instances gives obvious improve-

ments to the association APs. Moreover, considering the

class vectors to indicate learning directions can improve the

performance in terms of all the metrics.

Bidirectional learning strategy analysis. To evaluate the

effectiveness of the bidirectional learning strategy, we per-

form the experiments to learn the shadow-object pairs in

one direction. As shown in Table 3, for “object → shadow”,

we use the architecture in Figure 3 (a) to predict the masks

of object instances from the mask heads in the main branch,

and to predict the masks of shadow instances from the asso-

Table 3: Evaluation on the bidirectional learning strategy.

Network SOAPsegm SOAPbbox

object → shadow 20.8 19.3

shadow → object 23.9 21.4

main + associated 21.1 22.3

SSIS 27.4 25.5

ciated heads. “shadow → object” leverages the architecture

in Figure 3 (b) for the mask prediction. “main + associ-

ated” means that we use the masks predicted from the main

branch and the corresponding associated branch without us-

ing the strategy in Section 3.3-Inference. From the results,

we can see that learning the relations of shadows and objects

from two directions with our inference strategy achieves the

best performance for instance shadow detection.

5. Conclusion

This paper presents a new single-stage fully-

convolutional network with a bidirectional relation

learning module for instance shadow detection. Our key

idea is to directly learn the relation between shadow

instances and object instances by optimizing the network

in an end-to-end manner. To achieve this, we formulate

the bidirectional relation learning module, by which we

learn offset vectors to indicate the relative locations from

shadows to objects and from objects to shadows. Moreover,

we design a class vector to indicate the learning directions,

and present the offset loss and segmentation loss to jointly

optimize the network. In the end, we evaluate our method

on the benchmark SOBA dataset, compare it with the

best existing method for instance shadow detection, and

show the superiority of our method, both qualitatively

and quantitatively. In the future, we plan to improve the

performance of our network by exploring the knowledge

from the existing data prepared for other vision tasks, e.g.,

shadow detection and instance segmentation, from the

synthetic data generated by computer graphic techniques,

and from the unlabeled data downloaded from the Internet.
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