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Abstract

Tracking by natural language specification is a new ris-

ing research topic that aims at locating the target object in

the video sequence based on its language description. Com-

pared with traditional bounding box (BBox) based tracking,

this setting guides object tracking with high-level seman-

tic information, addresses the ambiguity of BBox, and links

local and global search organically together. Those ben-

efits may bring more flexible, robust and accurate track-

ing performance in practical scenarios. However, exist-

ing natural language initialized trackers are developed and

compared on benchmark datasets proposed for tracking-

by-BBox, which can’t reflect the true power of tracking-

by-language. In this work, we propose a new benchmark

specifically dedicated to the tracking-by-language, includ-

ing a large scale dataset, strong and diverse baseline meth-

ods. Specifically, we collect 2k video sequences (contains

a total of 1,244,340 frames, 663 words) and split 1300/700

for the train/testing respectively. We densely annotate one

sentence in English and corresponding bounding boxes of

the target object for each video. We also introduce two new

challenges into TNL2K for the object tracking task, i.e., ad-

versarial samples and modality switch. A strong baseline

method based on an adaptive local-global-search scheme

is proposed for future works to compare. We believe this

benchmark will greatly boost related researches on natural

language guided tracking.
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tianyh}@pcl.ac.cn, zhangzhipeng2017@ia.ac.cn, jiangbo@ahu.edu.cn,

fengwu@ustc.edu.cn.

1. Introduction

Single object tracking is one of the most important tasks

in computer vision and it has been widely used in many

applications such as video surveillance, robotics, and au-

tonomous vehicles. Usually, they initialize the target object

in the first frame with a bounding box (BBox), as shown in

Fig. 1 (a), and adjust the BBox along with the movement of

the target object. Most of the existing single object track-

ers [20–22, 53, 55, 66] are developed based on this setting1,

and many benchmark datasets [15, 23, 37, 42, 50, 57, 58] are

proposed for this task.

Although these trackers have been adopted in many ap-

plications, however, the setting of tracking-by-BBox still

suffers from the following issues. (1) The target object in

the first frame with a BBox is inconvenient to initialize in

practical scenarios. In another word, the initialization limits

the wide applications of existing BBox initialized trackers.

(2) The initialized BBox may be not optimal for the repre-

sentation of target object which may lead to ambiguity. As

shown in Fig. 1 (a), the tracker may be confused to track

the bike or lower body of the pedestrian. Similar views can

also be found in [17, 36, 54, 64]. (3) Current BBox-based

trackers may perform poorly when facing abrupt appear-

ance variation of the target object, like face/cloth changing

or species variation in Fig. 1 (b). Because the appearance

feature initialized in the first frame and the object in the

tracking procedure are vastly different. Only one sample

initialized in the first frame is not enough to handle these

challenging scenarios. These observations all inspire us to

begin to think about how can we conduct tracking in a more

applicable and accurate way?

1https : / / github . com / wangxiao5791509 / Single _

Object_Tracking_Paper_List
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Figure 1. Comparison between the task of tracking-by-BBox and

tracking-by-language. We can find that tracking-by-NL can spec-

ify target object more accurate and flexibly, and is also good at

describing the appearance/species variation.

Recently, some researchers attempt to introduce the nat-

ural language description instead of the BBox for tracking

[17, 36, 54, 64], termed tracking by natural language. This

setting allows for a new type of human-machine interaction

in object tracking. For example, it can enhance existing

BBox based trackers by helping them against model drift,

or simultaneous multiple-video tracking as noted in [36].

More importantly, natural language is more convenient and

intuitive to express for human beings compared with BBox.

It can provide a more precise expression of the target object

from spatial location to high-level semantic information like

attributes, category, shape, properties, and structural rela-

tionship with other objects, etc. This information will be

beneficial to address the ambiguity issue of BBox and the

vast appearance variation of the target object. Meanwhile,

the language can also specify target objects more flexibly,

for example, “The player who controls the ball” in Fig. 1

(c). The intelligent tracker should focus on target players

even the ball passed to different persons, without having

to re-initialize the target person like the standard setup of

visual tracking. However, this research topic has received

far less attention than standard target tracking. Only a few

works [16, 17, 36, 54, 64] are developed and compared on

tracking benchmark datasets specially designed for BBox

based tracking. These benchmarks may fail to nicely reflect

the true power of tracking-by-language, and this inspires us

to design a new and large-scale benchmark for this task.

In this work, we collect a large-scale dataset that contains

2, 000 video sequences, named TNL2K. These videos are

collected from YouTube2, surveillance cameras, and mo-

2https://www.youtube.com/

bile. For each video, we densely annotate the location infor-

mation of the target object for each frame and one sentence

in English for the whole video. Specifically, we describe the

category, shape, attributes, properties, and spatial location

of the target object which will provide rich fine-grained ap-

pearance information and high-level semantic information

for tracking. We select 1, 300 videos for training and the

rest 700 videos for evaluation. Our videos also reflect two

attributes for the tracking task, i.e., the adversarial samples

and modality switch between RGB and thermal data. To

provide a baseline method for other researchers to compare,

we design a simple but strong algorithm based on an adap-

tive local-global-search scheme. Specifically, three kinds

of baseline results are provided, i.e., Tracking-by-BBox,

Tracking-by-Language, Tracking-by-BBox and Language.

The contributions of this paper can be summarized in the

following three aspects:

• We propose the TNL2K dataset for the natural

language-based tracking which consists of 2, 000 video se-

quences. It aims at offering a dedicated platform for the de-

velopment and assessment of natural language-based track-

ing algorithms.

• We propose a simple but strong baseline approach

(termed AdaSwitcher) for future works to compare, which

can switch between the local tracking algorithm and global

grounding module adaptively.

• To provide extensive baselines for the comparison on

TNL2K dataset, we also evaluate more than 40 represen-

tative BBox-based trackers and analyze their performance

using different evaluation metrics.

2. Related Work

Tracking by Bounding Box The standard trackers be-

gin their tracking procedure based on an initialized BBox in

the first frame, including classification based [19,26,44,45],

Siamese network based [9, 10, 30, 53, 59], correlation filter

based [11, 12, 22, 40], and regression-based [21]. Inspired

by the success of neural networks on image classification,

most of the recent trackers are developed based on deep

learning. Specifically, the Siamese network based trackers

achieve state-of-the-art performance on multiple tracking

benchmarks. Previous Siamese trackers simply measure the

similarity between the static target template with extracted

proposals and treat the best-scored proposal as their track-

ing results. Recently, some researchers begin to collect the

tracking results which can be used to dynamically update

the target template and attain better results [62, 67]. In ad-

dition to learn powerful feature representation and conduct

a local search for tracking, some trackers attempt to achieve

robust tracking by global search [18, 24, 51, 52, 55, 61].

For more related works on standard visual tracking, please

check the following survey papers [33, 35, 41, 48, 65].

Tracking by Natural Language Due to it is a new
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rising topic, only a few algorithms are developed and the

authors of [36] first validated the effectiveness of natural

language for the tracking task by designing three modules

(i.e. Lingual Specification Only; Lingual First, then Visual

Specification; Lingual and Visual Specification). Wang [54]

and Feng [17] also propose to use the language informa-

tion to generate global proposals for tracking. Yang et al.

propose the GTI [64] which decomposes the tracking prob-

lem into three sub-tasks, i.e., grounding, tracking and inte-

gration, and these modules operate simultaneously and pre-

dict the box sequence frame-by-frame. These methods are

evaluated on datasets specifically designed for tracking-by-

BBox which may fail to reflect the feature of tracking-by-

language. To the best of our knowledge, there is still no

public benchmark specifically dedicated to the tracking-by-

language task. We believe our benchmark will greatly boost

the researches on natural language related object tracking.

Benchmarks for Tracking Existing benchmarks for vi-

sual tracking can be concluded into two main categories

according to whether contains training data. As shown in

Table 1, previous benchmarks [27–29, 34, 34, 37, 57, 58]

provide test videos only before deep trackers occurred. It

is worthy to note that OTB-2013 [57] and OTB-2015 [58]

are the first public benchmarks for visual tracking which

contain 50 and 100 video sequences, respectively. In the

deep learning era, several large scale tracking benchmarks

are proposed for the training of deep trackers. For exam-

ple, GOT-10k [23] contains 10, 000 videos which can be

categorized into 563 classes. TrackingNet [43] is a subset

(31K sequences selected) of video object detection bench-

mark YT-BB [46] and the ground truth is manually labeled

at 1 FPS. OxUvA [50] and LaSOT [15] are two long-term

tracking benchmark which consists of 366 and 1400 video

sequences respectively.

The aforementioned tracking benchmarks are all mainly

designed for tracking by BBox, although the LaSOT in-

deed provides the language specification of the target ob-

ject. However, they only describe the appearance of the tar-

get object but ignore the relative location which may limit

the integration of natural language. In another word, their

benchmark is suitable for natural language assisted tracking

but is not for the task of language initialized tracking. An-

other issue of the existing benchmark is that these videos

do not contain videos with significant appearance varia-

tions, such as clothing change for a pedestrian. This also

limits the application of existing trackers in practical sce-

narios. Besides, these benchmarks also ignore the adver-

sarial samples which limit the development of adversarial

learning-based trackers [25, 38, 56, 60]. By contrast, our

proposed TNL2K is specifically designed for tracking by

natural language specification and contains multiple videos

with significant appearance variation and adversarial sam-

ples. It also contains natural videos, animation videos, in-

frared videos, virtual game videos, which are suitable for

the evaluation of domain adaptation of current trackers. We

also provide baseline results of three kinds of settings which

will be beneficial for future trackers to compare.

3. Tracking by Natural Language

3.1. TNL2K Dataset

Data Collection and Annotation The proposed TNL2K

dataset contains 2, 000 video sequences, and most of them

are downloaded and clipped from YouTube, intelligent

surveillance cameras, and mobile phones. We invite seven

people for the annotation of these videos. Specifically,

we annotate one sentence in English for each video and

also one bounding box for each frame in this video. The

left corner point (x1, y1), width w and height h of the

target’s bounding box are used as the ground truth, i.e.,

[x1, y1, w, h]. The annotated natural language description

indicates the spatial position, relative location with other

objects, attribute, category and property of target object in

the first frame. We also annotate the absent label for each

frame to enrich the information that is available for more

accurate tracking. To construct a rich and heterogeneous

benchmark, we also borrow some thermal videos from ex-

isting datasets [31, 39] and re-annotate the target object we

want to track if necessary. Example sequences and annota-

tions are illustrated in Fig. 2.

Attribute Definition Following popular tracking bench-

marks [15,23,58], we also define multiple attributes of each

video sequence for the evaluation under each challenging

factors. As shown in Table 2, our proposed TNL2K dataset

has the following 17 attributes: CM (Camera Motion), ROT

(Rotate Of Target), DEF (DEFormation), FOC (Fully OC-

cluded), IV (Illumination Variation), OV (Out of View),

POC (Partially OCcluded), VC (Viewpoint Change), SV

(Scale Variation), BC (Background Clutter), MB (Motion

Blur), ARC (Aspect Ratio Change), LR (Low Resolution),

FM (Fast Motion), AS (Adversarial Sample), TC (Thermal

Crossover), MS (Modality Switch). It is worthy to note that

our dataset contains some thermal videos with challeng-

ing factors like TC (target object shares similar intensity

with background), MS (the video contains both thermal and

RGB images). To provide a good platform for the study of

adversarial attack and defense of neural network for track-

ing, we also generate 100 videos contain adversarial sam-

ples as part of the testing subset using attack toolkit [25].

Therefore, these videos contain additional challenging fac-

tor, i.e., AS (influence of Adversarial Samples). It is worthy

to note that the AS and MS are two new attributes for track-

ing community first proposed in this work. A more detailed

distribution of each challenge is shown in Fig. 3 (c).

Statistical Analysis Our proposed TNL2K contains 663

English words and focuses on expressing the attributes, spa-
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Table 1. Comparison of current datasets for object tracking. # denotes the number of corresponding item. Lang-A and Lang-I denote

the dataset can be used for language assisted and initialized tracking task. SAV denotes the dataset contains many videos with significant

appearance variation. Adv means the dataset contains adversarial samples (i.e., malicious attacks). DA is short for domain adaptation.

Datasets #Videos #Min #Mean #Max #Total #FR #Attributes Aim Absent Lang-A Lang-I SAV Adv DA

OTB50 [57] 51 71 578 3,872 29K 30 fps 11 Eval

OTB100 [58] 100 71 590 3,872 59K 30 fps 11 Eval

TC-128 [37] 128 71 429 3,872 55K 30 fps 11 Eval

VOT-2017 [28] 60 41 356 1,500 21K 30 fps - Eval

NUS-PRO [29] 365 146 371 5040 135K 30 fps - Eval

UAV123 [42] 123 109 915 3085 113K 30 fps 12 Eval

UAV20L [42] 20 1717 2934 5527 59K 30 fps 12 Eval

NfS [27] 100 169 3830 20665 383K 240 fps 9 Eval

TrackingNet [43] 30,643 - 480 - 14.43M 30 fps 15 Train/Eval

OxUvA [50] 366 900 4260 37440 1.55M 30 fps 6 Train/Eval

GOT-10k [23] 10,000 29 149 1,418 1.5M 10 fps 6 Train/Eval ✓

LaSOT [15] 1,400 1000 2506 11397 3.52M 30 fps 14 Train/Eval ✓ ✓

TNL2K (Ours) 2,000 21 622 18488 1.24M 30 fps 17 Train/Eval ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Description of 17 attributes in our TNL2K dataset.

Attributes Definition

01. CM Abrupt motion of the camera

02. ROT Target object rotates in the video

03. DEF The target is deformable

04. FOC Target is fully occluded

05. IV Illumination variation

06. OV The target completely leaves the video sequence

07. POC Partially occluded

08. VC Viewpoint change

09. SV Scale variation

10. BC Background clutter

11. MB Motion blur

12. ARC The ratio of bounding box aspect ratio is outside the range [0.5, 2]

13. LR Low resolution

14. FM The motion of the target is larger than the size of its bounding box

15. AS Influence of adversarial samples

16. TC Two targets with similar intensity cross each other

17. MS Video contain both color and thermal images

Figure 2. Example sequences and annotations in TNL2K dataset.

tial location of target objects, as shown in Fig. 3 (a). For

the distribution of length of all videos, we can see from

Fig. 3 (b) that the TNL2K contains [648, 479, 415, 139,

319] videos for the category of 1-300, 300-500, 500-800,

800-1000, and larger than 1000. More details, the number

of these five segments for train and evaluation set are [488,

304, 258, 75, 175] and [160, 175, 157, 64, 144] respectively.

We can find that our test set contains 144 long-term videos

(larger than 1000 frames for each video) which will be suit-

able for the evaluation of long-term trackers. From Fig. 3

(c), we can find that our TNL2K contains many videos with

challenging attributes like background clutter, scale varia-

tion, view change, partially occlusion, out-of-view and ro-

tate. The videos with these challenging factors will provide

a good platform for the evaluation of current trackers.

Figure 3. (a) Some words in our language description; (b, c) Dis-

tribution of sequences in each attribute and length in our TNL2K.

Best viewed by zooming in.

3.2. Our Proposed Approach

In this paper, we propose the adaptive tracking and

grounding switch framework for tracking by natural lan-

guage specification, as shown in Fig. 4. We will first in-

troduce the visual grounding and visual tracking module,

then, we will focus on our AdaSwitcher module.

Visual Grounding Module In the tracking by natural

language task, we need to first locate the target object only

Figure 4. An overview of our proposed adaptive tracking and

grounding switch framework. AdaSwitcher is highlighted in blue.
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depends on the language description S = [w1, w2, ..., wT ].
It is a standard visual grounding task and we follow the al-

gorithm [63] proposed by Yang et al. due to its good perfor-

mance and efficiency.

As shown in Fig. 4, the visual grounding module takes

video frame and natural language description as input. We

use the backbone CNN to obtain the deep feature repre-

sentation of the i-th video frame Fi. For the natural lan-

guage, we first embed the words into feature representations

E = [e1, e2, ..., eT ] using a pre-trained BERT [13] which is

a widely used word embedding model in natural language

related tasks. Then, this feature is fed into two fully con-

nected layers for further fine tuning. Following [63], we

also duplicate this feature vector into feature maps and con-

catenate them with visual features of video frame. Another

important information for visual grounding is the spatial co-

ordinates encoding due to the spatial configurations are usu-

ally adopted to refer to target object. Therefore, the spatial

feature for each position is also explicitly encoded in this

work by following [63].

The visual feature maps of global frame, duplicated lan-

guage feature, and the spatial coordinates are concatenated

together and fed into convolutional layers with kernel size

1 × 1 for information fusion. The output feature map is

then sent into the grounding module, which will output the

predicted location of target object. We treat such visual

grounding as a global search procedure for tracking by nat-

ural language, which plays an important role at the begin-

ning of the video and when we need to re-detection the tar-

get object in tracking procedure. The integration of visual

grounding and tracker SiamRPN++ [30] is termed Ours-I in

Table 3. Besides, we also explore the target-aware attention

(termed TANet) proposed in [54, 55], i.e., Ours-II in Table

3. The TANet takes the feature maps of target object and

video image as input, and output corresponding global at-

tention using de-convolutional network which can be used

for search target object from global view. We refer the read-

ers to check [54, 55] for further understanding of this mod-

ule.

Visual Tracking Module Aforementioned visual

grounding can help detect the target object at the beginning,

however, only grounding is not enough for high perfor-

mance tracking, since it is easily influenced by background

clutter. In this work, we initialize a visual tracker for

target object location in a local search manner based on the

predicted bounding box from visual grounding in the first

frame. The SiamRPN++ [30] is adopted in our experiments

due to its good performance.

AdaSwitcher Module Given the visual grounding and

visual tracking module, we can capture the target object

from global and local view, respectively. One thorny issue

that still exists is when we use visual grounding for global

search (or visual tracking for local search). One intuitive

Figure 5. Illustration of current trackers with high response score

but low IoU values (take the SiamRPN++ [30] as an example).

approach is to conduct such switch based on the confidence

of tracker, however, the confidence score is not always re-

liable especially in the challenging scenarios. For example,

as shown in Fig. 5, the confidence score is very high (larger

than 0.9) in some frames, but the model actually locates

wrong object. Inspired by anomaly detection (also called

outlier detection) whose target is the identification of rare

items, events or observations which raise suspicions by dif-

fering significantly from the majority of the data. In this

work, we take the failure of visual tracking as a kind of

anomaly detection and propose a novel AdaSwitcher mod-

ule to detect such failure. Once the anomaly is detected (the

prediction from AdaSwitcher is larger than a pre-defined

threshold), we can switch the candidate search regions from

visual tracking to visual grounding for more robust and ac-

curate tracking.

In this paper, confidence score (1-D), BBox (4-D), result

image ((30 ∗ 30 ∗ 3)-D), response map ((23 ∗ 23)-D) and

language embedding (512-D) are exploited in this work as

the input of our AdaSwitcher. This information can be col-

lected from visual tracker easily for each frame. And the

historical information of past video frames can also con-

tribute to current anomaly detection. Assume we use the

history of past N frames, then, the dimension of these in-

put are N × 1, N × 4, N × (23 ∗ 23), N × (30 ∗ 30 ∗ 3),
and N × 512, respectively. We use multiple parallel fully

connected layers to encode this information and embed

them into fixed feature vectors, specifically, we have F =
[Fs, Fb, Fimg, Fmap, Femb], whose dimension are N × 10,

N×10, N×512, N×512, and N×512, respectively. Then,

these features are concatenated and fed into a bi-directional

GRUs [6] to learn the temporal information.

Inspired by the fact that various frames may contribute

differently, we introduce attention mechanism to encode the

inputs differently. The attention weights αi(i = 1, ..., N)
can be obtained by the multilayer perceptron (MLP):

{α1, α2, ..., αN} = MLP ([Fs, Fb, Fimg, Fmap, Femb]) (1)

where [, ] denotes concatenate operation. The attention

weights αi(i = 1, ..., N) are stacked into feature vectors
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α̂i(i = 1, ..., N) which have same dimension with feature

representation F i(i = 1, ..., N) of each frame i. Therefore,

the attended feature representations can be obtained by:

[F̄ 1, F̄ 2, ..., F̄N ] = [α̂1 ∗ F
1
, α̂2 ∗ F

2
, ..., α̂N ∗ FN ] (2)

After that, two fully connected layers are used to determine

whether we should switch the candidate search regions from

current tracking result to grounding result.

3.3. Implementation Details

Training Phase In our experiments, we directly use the

pre-trained weights of baseline tracker for visual tracking.

For the visual grounding module, we train it on the training

subset of our TNL2K dataset which contains 1, 300 video

sequences for 40 epochs. The initial learning rate is 1e-4,

batchsize is 5. The YOLO loss function is used for this net-

work by following [47, 63]. For the AdaSwitcher, we first

collect the training data by running the baseline tracker on

the training subset of our TNL2K dataset. In this process,

we treat the video clips whose average IoU (Intersection

over Union) score larger than 0.7 as the positive data, and

less than 0.5 as the negative data. For the data with aver-

age IoU score range from 0.5 to 0.7, we directly discard

them due to it may bring confusion to our model. Similar

operations can also be found in [26]. The learning rate is

1e-5, batchsize is 1, the Adagrad [14] is adopted as opti-

mizer and trained for totally 30 epochs. We consider the

switch between visual tracking and grounding as a binary

classification problem, therefore, the BCE loss function is

selected for the training of AdaSwitcher.

Inference Phase In this benchmark, three kinds of base-

line methods are studied: 1). Tracking by Natural Language

only: In this setting, only the natural language is provided

for tracking, we need to first locate the target object using

visual grounding module. Then, we can conduct adaptive

tracking (SiamRPN++ [30] used in this setting) and ground-

ing for high performance object localization. 2). Tracking

by Natural Language and BBox: We take the natural lan-

guage as an external modality and conduct robust tracking

based on both language and BBox. SiamRPN++ [30] and

TANet [55] are used in this setting. 3). Tracking by BBox

only: To construct a comprehensive benchmark, we also

provide baseline results for tracking by BBox only, i.e., the

standard setting of visual object tracking. All the evaluated

trackers can be found in our supplementary materials.

4. Experiments

4.1. Datasets and Evaluation Protocols

In our experiments, the OTB-Lang [36, 58], LaSOT [15]

and our proposed TNL2K dataset are used for the evalua-

tion. The OTB-lang contains 99 videos released from [58],

then, the natural language specification is provided by Li et

al. [36]. The LaSOT is a recently released long-term track-

ing dataset that provides both bounding box and natural lan-

guage annotations. The test subset of LaSOT contains 280

video sequences.

Two popular metrics are adopted for the evaluation

of tracking performance, including Precision Plot and

Success Plot. Specifically, Precision Plot illustrates

the percentage of frames where the center location er-

ror between the object location and ground truth is

smaller than a pre-defined threshold (20-pixels thresh-

old is usually adopted). Success Plot demonstrates the

percentage of frames the IoU of the predicted and the

ground truth bounding boxes is higher than a given ra-

tio. The evaluation toolkit of this paper can be found

at: https://github.com/wangxiao5791509/

TNL2K_evaluation_toolkit.

4.2. Benchmark Results

Results of Tracking by Natural Language Only As

shown in Table 3, Li et al. [36] attain 0.29|0.25 on the

OTB-Lang dataset, while Feng et al. achieve 0.56|0.54 and

0.78|0.54 in [16] and [17] respectively. When we take the

result of visual grounding in the first frame as the initialized

bbox of visual tracker SiamRPN++, we achieve 0.24|0.19

on the OTB-Lang dataset. On the LaSOT and TNL2K

dataset, we attain 0.49|0.51 and 0.06|0.11|0.11 respectively.

We can find that our method is comparable with Li et al. on

the OTB-Lang dataset. On the larger dataset LaSOT, we

attain better results than Feng et al. [16]. These experimen-

tal results demonstrate that our baseline method can also

achieve good performance on existing LaSOT and our pro-

posed TNL2K dataset.

Results of Tracking by Bounding Box Only This set-

ting is most widely used in existing tracking algorithms,

and we provide the results of 43 representative trackers

from 2015 to 2021, as shown in Fig. 6. These trackers

contain Classification-based, SiameseNet-based, Correla-

tion filter-based, Reinforcement learning-based, Long-term-

based and Other trackers. More detailed introductions on

these trackers can be found in our supplementary materi-

als due to the limited space in this paper. From Fig. 6,

we can find that SiamRCNN [51] achieves the best per-

formance on our benchmark dataset, i.e., 0.528|0.523 on

the precision/success plot respectively. Other trackers also

attain good performance such as LTMU [7], KYS [18],

TACT [5], due to the use of joint local and global search

scheme. These experiments fully demonstrate the impor-

tance of joint local and global search for visual tracking.

We also find that Siamese network based trackers usually

achieve better results than other trackers like multi-domain

based trackers [26, 44, 45], regression based trackers [21],

and correlation filter based trackers [1,8,22]. We also notice

that GlobalTrack [24] which employs global search scheme
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Figure 6. Benchmark results of tracking-by-BBox on TNL2K

dataset. Best viewed by zooming in.

only, achieves comparable performance with local search

trackers [44, 69], but worse than state-of-the-art. This may

demonstrate that only global search is not enough for ro-

bust tracking. Overall, the aforementioned observations

demonstrate that the structure information mining of global

scene, and offline learning indeed contribute to the high-

performance visual tracking.

Results of Tracking by Joint Language and BBox

As shown in Table 3, there are five trackers designed for

this setting [16, 17, 36, 54, 64]. Specifically, Li et al. [36]

achieve 0.72|0.55, while Feng et al. [16,17] attain 0.73|0.67,

0.79|0.61 on the OTB-Lang dataset respectively. GTI [64]

combine SiamRPN++ and visual grounding module, and

achieves 0.73|0.58, 0.47|0.47 on OTB-Lang and LaSOT

dataset. In contrast, we can achieve 0.88|0.68 on the

OTB-Lang, 0.55|0.51 on the LaSOT, 0.42|0.50|0.42 on the

TNL2K (Our-II in Table 3), which are significantly better

than GTI [64], Wang et al. [54] and Feng et al. [16]. All

the experiments on three benchmark datasets validate the

effectiveness and advantages of our tracker. Visualization

of related tracking results can be found in Fig. 8.

4.3. Ablation Study

In this section, we first analyse the effectiveness of main

components in our model. Then, we focus on validating the

contributions of each input for AdaSwitcher. Finally, we

give the parameter analysis, and attribute analysis.

Effectiveness of AdaSwitcher As shown in Table 5,

the baseline tracker SiamRPN++ [30] (AlexNet version)

achieves 0.344/0.353 on the precision and success plot,

respectively. When integrated with the AdaSwicher mod-

ule, the performance can be improved to 0.355/0.370.

This result is also better than naive fused method (i.e.

0.347/0.362), which fully demonstrates the effectiveness of

our adaptive switch mechanism for robust tracking.

Effectiveness of Frame Attention Due to different

frames may contribute differently to our AdaSwitcher, we

introduce the frame attention mechanism to achieve this

Table 3. Tracking results on the OTB-Lang, LaSOT, and TNL2K

dataset. [Prec.|Norm. Prec. |Succ. Plot] are reported respectively.

Algorithm Initialize OTB-Lang LaSOT TNL2K

SiamFC [2] BBox - 0.40|0.34 0.29|0.35|0.30
MDNet [44] BBox - 0.46|0.40 0.37|0.46|0.38
VITAL [49] BBox - 0.45|0.39 0.35|0.44|0.37
GradNet [32] BBox - 0.35|0.37 0.32|0.40|0.32
ATOM [9] BBox - 0.51|0.51 0.39|0.47|0.40
SiamDW [68] BBox - −|0.38 0.33|0.41|0.32
SiamRPN++ [30] BBox - 0.50|0.45 0.41|0.48|0.41
GlobalTrack [24] BBox - 0.53|0.52 0.39|0.46|0.41
SiamBAN [4] BBox - 0.60|0.51 0.42|0.49|0.41
Ocean [69] BBox - 0.57|0.56 0.38|0.45|0.38

Li et al. [36] NL 0.29|0.25 - -

Li et al. [36] NL+BBox 0.72|0.55 - -

Feng et al. [17] NL 0.56|0.54 - -

Feng et al. [17] NL+BBox 0.73|0.67 0.56|0.50 0.27|0.34|0.25
Feng et al. [16] NL 0.78|0.54 0.28|0.28 -

Feng et al. [16] NL+BBox 0.79|0.61 0.35|0.35 0.27|0.33|0.25
Wang et al. [54] NL+BBox 0.89|0.65 0.30|0.27 -

GTI [64] NL+BBox 0.73|0.58 0.47|0.47 -

Ours-I NL 0.24|0.19 0.49|0.51 0.06|0.11|0.11
Ours-II NL+BBox 0.88|0.68 0.55|0.51 0.42|0.50|0.42

goal. As shown in Table 4, with the help of frame attention,

the tracking results can be improved from 0.353/0.369 to

0.355/0.370. This fully demonstrates the important role of

frame attention in our proposed framework.

Effectiveness of Spatial Coordinates In our visual

grounding module, the spatial coordinates are introduced to

further improve the final results. As shown in Table 4, our

grounding module achieves 0.143/0.159 and 0.103/0.124,

respectively, with and without the help of spatial coordi-

nates. This result validates the important role of spatial co-

ordinates for visual grounding.

Table 4. Component analysis of our proposed tracking algorithm.

AS is short for AdaSwitcher, FA denotes frame attention in

AdaSwitcher, SC is spatial coordinates used in visual grounding.

Naive denotes switch method based on response score only.

Track Ground SC TANet Naive AS FA Results

✓ 0.344|0.353
✓ 0.103|0.124
✓ ✓ 0.143|0.159

✓ ✓ ✓ 0.347|0.362
✓ ✓ ✓ ✓ 0.355|0.370
✓ ✓ ✓ 0.353|0.369

Analysis on History Information Our AdaSwitcher

takes multiple inputs for the final decision, in this section,

we analyze their contributions by comparing corresponding

results in Table 5. Specifically speaking, when the BBox

is discarded, we find that the performance is dropped from

0.355/0.370 to 0.350/0.365, this demonstrates that the geo-

metric information of predicted BBox is an important clue

for our tracking. Similarly, we attain worse tracking results

when the resulting image (i.e. ResImg) is ignored, the re-

sults drop from 0.355/0.370 to 0.345/0.362. When all these

modules removed, it attains 0.344/0.353 only on the preci-

sion and success plot. This demonstrates that this informa-
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Figure 7. Tracking results under partial attributes of TNL2K dataset. Best viewed by zooming in.

tion are very important for the anomaly (or failure) detec-

tion in tracking procedure.

Table 5. Component analysis of history information.

BBox Score ResMap ResImg Lang Results

✓ ✓ ✓ ✓ ✓ 0.355|0.370
✗ ✓ ✓ ✓ ✓ 0.350|0.365
✓ ✗ ✓ ✓ ✓ 0.352|0.368
✓ ✓ ✗ ✓ ✓ 0.352|0.368
✓ ✓ ✓ ✗ ✓ 0.345|0.362
✓ ✓ ✓ ✓ ✗ 0.352|0.368
✗ ✗ ✗ ✗ ✗ 0.344|0.353

Parameter Analysis We report the tracking results with

different switch thresholds in Table 6. We can find that the

performance is better when switch threshold is set as 0.7.

Table 6. Results with different switch threshold.

Parameter 0.5 0.6 0.7 0.8 0.9 1.0 1.2

Prec. Plot 0.350 0.351 0.355 0.353 0.349 0.352 0.272

Succ. Plot 0.367 0.367 0.370 0.369 0.368 0.368 0.301

Figure 8. Visualization of tracking results on TNL2K dataset.

Attribute Analysis Evaluation under each challenging

factors is one of the most important metrics in visual track-

ing community. In this benchmark, we also report results

of evaluated trackers under all the defined 17 attributes.

However, due to limited space in this paper, we select 4

attributes, i.e., Adversarial Samples, Scale Variation, Back-

ground Clutter, and Full Occlusion, to demonstrate the abil-

ity of resistance of these trackers to these challenges. As

shown in Fig. 7, we can find that SiamRCNN [51] achieves

the best performance which are much better than the second

and third ones, i.e., DiMP [3] and LTMU [7] respectively.

Interestingly, it is easy to find that the RTAA [25] which

is designed for adversarial attack achieves worse results on

the challenging factor Adversarial Samples, even compared

with their baseline DaSiamRPN [70]. This demonstrates

that the detection of adversarial samples is important for

high performance tracking. More experimental results on

the attribute analysis can be found in our supplementary ma-

terials.

5. Conclusion and Future Works

In this paper, we revisit the tracking by natural language,

and propose a large-scale benchmark for this task. Spe-

cially, a large-scale dataset that contains 2,000 video se-

quences is proposed, named TNL2K. This dataset is densely

annotated with bounding box and natural language descrip-

tion of target object. To construct a sound benchmark, we

propose an adaptive switch based tracking algorithm as the

baseline approach, i.e., the AdaSwicher, and also test cur-

rent trackers according to following settings: tracking by

natural language only, tracking by bbox, and tracking by

joint bbox and language. We believe our benchmark will

be greatly boost related researches on the natural language

guided tracking. In our future works, we will consider to

further extend this benchmark by introducing more videos

and baseline trackers. Besides, we will focus on improving

the visual grounding module to achieve high performance

language initialized tracking.
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