
Transformer Meets Tracker:

Exploiting Temporal Context for Robust Visual Tracking

Ning Wang1 Wengang Zhou1,2 Jie Wang1,2 Houqiang Li1,2

1CAS Key Laboratory of GIPAS, EEIS Department, University of Science and Technology of China (USTC)
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

wn6149@mail.ustc.edu.cn, {zhwg,jiewangx,lihq}@ustc.edu.cn

Abstract

In video object tracking, there exist rich temporal con-

texts among successive frames, which have been largely

overlooked in existing trackers. In this work, we bridge the

individual video frames and explore the temporal contexts

across them via a transformer architecture for robust object

tracking. Different from classic usage of the transformer in

natural language processing tasks, we separate its encoder

and decoder into two parallel branches and carefully design

them within the Siamese-like tracking pipelines. The trans-

former encoder promotes the target templates via attention-

based feature reinforcement, which benefits the high-quality

tracking model generation. The transformer decoder prop-

agates the tracking cues from previous templates to the cur-

rent frame, which facilitates the object searching process.

Our transformer-assisted tracking framework is neat and

trained in an end-to-end manner. With the proposed trans-

former, a simple Siamese matching approach is able to out-

perform the current top-performing trackers. By combin-

ing our transformer with the recent discriminative track-

ing pipeline, our method sets several new state-of-the-art

records on prevalent tracking benchmarks.

1. Introduction

Visual object tracking is a basic task in computer vision.

Despite the recent progress, it remains a challenging task

due to factors such as occlusion, deformation, and appear-

ance changes. With the temporal error accumulation, these

challenges are further amplified in the online process.

It is well recognized that the rich temporal information

in the video flow is of vital importance for visual track-

ing. However, most tracking paradigms [28, 27, 48] handle

this task by per-frame object detection, where the tempo-

*Corresponding Author: Wengang Zhou and Houqiang Li.

†Source code, pretrained model, and raw tracking results are available

at https://github.com/594422814/TransformerTrack.

Transformer

Decoder
Conv

CNN

CNN

Template Set

Search Patch

Transformer

Response

Backbone

Tracking

Model

Weight Sharing

Transformer

Encoder

Figure 1. An overview of our transformer-assisted tracking frame-

work. The transformer encoder and decoder are assigned to two

parallel branches in a Siamese-like tracking pipeline. Thanks to

the encoder-decoder structure, isolated frames are tightly bridged

to convey rich temporal information in the video flow.

ral relationships among successive frames have been largely

overlooked. Take the popular Siamese tracker as an exam-

ple, only the initial target is considered for template match-

ing [1, 44, 19, 28]. The merely used temporal information

is the motion prior (e.g., cosine window) by assuming the

target moves smoothly, which is widely adopted in visual

trackers. In other tracking frameworks with update mech-

anisms [20, 39, 8, 58, 60, 3], previous prediction results

are collected to incrementally update the tracking model.

Despite the historical frames considered in the above ap-

proaches, the video frames are still considered as indepen-

dent counterparts without mutual reasoning. In real-world

videos, some frames inevitably contain noisy contents such

as occluded or blurred objects. These imperfect frames will

hurt the model update when serving as the templates and

will challenge the tracking process when performing as the

search frames. Therefore, it is a non-trivial issue to convey

rich information across temporal frames to mutually rein-

force them. We argue that the video frames should not be

treated in isolation and the performance potential is largely

restricted due to the overlook of frame-wise relationship.

To bridge the isolated video frames and convey the rich

temporal cues across them, in this work, we introduce the

transformer architecture [46] to the visual tracking commu-

nity. Different from the traditional usage of the transformer

1571

https://github.com/594422814/TransformerTrack

Template Features

Transformer

Encoder

Transformer

Decoder

Template Patches

Search Patch

Encoded Features Masks

Search Feature

Te
m

p
la

te
 B

ra
n

ch
S

e
a

rc
h

 B
ra

n
ch

Feature and Mask

Propagation

Decoded

Feature

Figure 2. Top: the transformer encoder receives multiple template

features to mutually aggregate representations. Bottom: the trans-

former decoder propagates the template features and their assigned

masks to the search patch feature for representation enhancement.

in language modeling and machine translation [46, 12], we

leverage it to handle the context propagation in the tempo-

ral domain. By carefully modifying the classic transformer

architecture, we show that its transformation characteristic

naturally fits the tracking scenario. Its core component, i.e.,

attention mechanism [46, 55], is ready to establish the pixel-

wise correspondence across frames and freely convey vari-

ous signals in the temporal domain.

Generally, most tracking methods [1, 45, 28, 42, 7, 3] can

be formulated into a Siamese-like framework, where the top

branch learns a tracking model using template features, and

the bottom branch classifies the current search patch. As

shown in Figure 1, we separate the transformer encoder and

decoder into two branches within such a general Siamese-

like structure. In the top branch, a set of template patches

are fed to the transformer encoder to generate high-quality

encoded features. In the bottom branch, the search feature

as well as the previous template contents are fed to the trans-

former decoder, where the search patch retrieves and aggre-

gates informative target cues (e.g., spatial masks and target

features) from history templates to reinforce itself.

The proposed transformer facilitates visual tracking via:

• Transformer Encoder. It enables individual template

features to mutually reinforce to acquire more compact

target representations, as shown in Figure 2. These en-

coded high-quality features further benefit the tracking

model generation.

• Transformer Decoder. It conveys valuable temporal

information across frames. As shown in Figure 2, our

decoder simultaneously transfers features and spatial

masks. Propagating the features from previous frames

to the current patch smooths the appearance changes

and remedies the context noises while transforming the

spatial attentions highlights the potential object loca-

tion. These manifold target representations and spatial

cues make the object search much easier.

Finally, we track the target in the decoded search patch. To

verify the generalization of our designed transformer, we

integrate it into two popular tracking frameworks includ-

ing a Siamese formulation [1] and a discriminative corre-

lation filter (DCF) based tracking paradigm [3]. With our

designed transformer, a simple Siamese matching pipeline

is able to outperform the current top-performing trackers.

By combining with the recent discriminative approach [3],

our transformer-assisted tracker shows outstanding results

on seven prevalent tracking benchmarks including LaSOT

[13], TrackingNet [38], GOT-10k [23], UAV123 [36], NfS

[24], OTB-2015 [56], and VOT2018 [26] and sets several

new state-of-the-art records.

In summary, we make three-fold contributions:

• We present a neat and novel transformer-assisted track-

ing framework. To our best knowledge, this is the first

attempt to involve the transformer in visual tracking.

• We simultaneously consider the feature and attention

transformations to better explore the potential of the

transformer. We also modify the classic transformer to

make it better suit the tracking task.

• To verify the generalization, we integrate our designed

transformer into two popular tracking pipelines. Our

trackers exhibit encouraging results on 7 benchmarks.

2. Related Work

Visual Tracking. Given the initial target in the first frame,

visual tracking aims to localize it in successive frames.

In recent years, the Siamese network has gained signifi-

cant popularity, which deals with the tracking task by tem-

plate matching [1, 44, 19]. By introducing the region pro-

posal network (RPN), Siamese trackers obtain superior ef-

ficiency and more accurate target scale estimation [28, 63].

The recent improvements upon Siamese trackers include at-

tention mechanism [54], reinforcement learning [22, 51],

target-aware model fine-tuning [30], unsupervised training

[50, 52], sophisticated backbone networks [27, 61], cas-

caded frameworks [14, 49], and model update mechanisms

[16, 17, 58, 60].

Discriminative correlation filter (DCF) tackles the visual

tracking by solving the ridge regression in Fourier domain,

which exhibits attractive efficiency [20, 35, 34, 15, 37, 53,

11, 8]. The recent advances show that the ridge regression

can be solved in the deep learning frameworks [42, 32, 7, 3],

which avoids the boundary effect in classic DCF trackers.

These methods learn a discriminative CNN kernel to con-

volve with the search area for response generation. In re-

cent works, the residual terms [42] and shrinkage loss [32]

are incorporated into the deep DCF formulation. To accel-

erate the kernel learning process, ATOM [7] exploits the

conjugate gradient algorithm. The recent DiMP tracker [3]

enhances the discriminative capability of the learned CNN

kernel in an end-to-end manner, which is further promoted

by the probabilistic regression framework [9].

Despite the impressive performance, most existing meth-

1572

ods [39, 1, 28, 7, 3, 33, 48] generally regard the tracking task

as the per-frame object detection problem, failing to ade-

quately exploit the temporal characteristic of the tracking

task. Some previous works explore the temporal informa-

tion using graph neural network [16], spatial-temporal regu-

larization [29], optical flow [64], etc. Differently, we lever-

age the transformer to model the frame-wise relationship

and propagate the temporal cues, which is neat and ready to

integrate with the modern deep trackers.

Transformer. Transformer is first proposed in [46] as a

new paradigm for machine translation. The basic block in a

transformer is the attention module, which aggregates infor-

mation from the entire input sequence. Due to the parallel

computations and unique memory mechanism, transformer

architecture is more competitive than RNNs in process-

ing long sequences and has gained increasing popularity in

many natural language processing (NLP) tasks [12, 41, 43].

Similarly, non-local neural network [55] also introduces a

self-attention block to acquire global representations, which

has been adopted in many vision tasks including visual ob-

ject tracking [59]. Nevertheless, how to take advantage of

the compact transformer encoder-decoder structure for vi-

sual tracking has been rarely studied.

Recently, transformer architecture has been introduced

to computer vision such as image generation [40]. Trans-

former based object detection approach is proposed in [5],

which views the object detection task as a direct set pre-

diction problem. However, the above techniques leverage

the transformer in the image-level tasks. In this paper, we

show that the transformer structure serves as a good fit for

video-related scenarios by transferring temporal informa-

tion across frames. To bridge the domain gap between vi-

sual tracking and NLP tasks, we carefully modify the classic

transformer to better suit the tracking scenario.

3. Revisting Tracking Frameworks

Before elaborating our transformer for object tracking,

we briefly review the recent popular tracking approaches

for the sake of completeness. As shown in Figure 3, the

mainstream tracking methods such as Siamese network [1]

or discriminative correlation filter (DCF) [45, 7, 3] can be

formulated into the Siamese-like pipeline, where the top

branch learns the tracking model using templates and the

bottom branch focuses on the target localization.

Siamese matching architecture [1] takes an exemplar

patch z and a search patch x as inputs, where z represents

the target object while x is a large searching area in sub-

sequent video frames. Both of them are fed to the weight-

sharing CNN network Ψ(·). Their output feature maps are

cross-correlated as follows to generate the response map:

r(z,x) = Ψ(z) ∗Ψ(x) + b · ✶, (1)

where ∗ is the cross-correlation and b · ✶ denotes a bias

CNN

Template Patch

Search Patch
Weight Sharing

CNN Crop DCF

Tracking

Model

Tracking

Model

ConvConv
Result Result

Feature Extraction Siamese Pipeline DCF Pipeline

Different Tracking Options

Figure 3. The simplified pipelines of Siamese [1] and DCF [7, 3]

based trackers. These tracking approaches can be formulated into

a Siamese-like pipeline, where the top branch is responsible for

the model generation and the bottom branch localizes the target.

term. Siamese trackers rely on the target model, i.e., convo-

lutional kernel Ψ(z), for template matching.

As another popular framework, deep learning based DCF

method optimizes the tracking model f under a ridge re-

gression formulation [42, 7, 3] as follows:

min
f

‖f ∗Ψ(z⋆)− y‖2
2
+ λ‖f‖2

2
, (2)

where y is the Gaussian-shaped ground-truth label of tem-

plate patch z⋆, and λ controls the regularization term to

avoid overfitting. Note that z⋆ is much larger than the exem-

plar patch z in Siamese trackers. Therefore, DCF formula-

tion simultaneously considers the target matching and back-

ground discrimination. After obtaining the tracking model

f , the response is generated via r = f ∗Ψ(x).
The traditional DCF methods [20, 10] solve ridge regres-

sion using circularly generated samples via the closed-form

solution in the Fourier domain. In contrast, the recent deep

learning based DCF methods solve Eq. 2 using stochastic

gradient descent [42, 32] or conjugate gradient approach

[7] to avoid the boundary effect. The recent DiMP [3] op-

timizes the above ridge regression via a meta-learner in an

end-to-end manner, showing state-of-the-art performance.

4. Transformer for Visual Tracking

As discussed in Section 3, mainstream tracking methods

can be formulated into a Siamese-like pipeline. We aim to

improve such a general tracking framework by frame-wise

relationship modeling and temporal context propagation,

without modifying their original tracking manners such as

template matching.

4.1. Transformer Overview

An overview of our transformer is shown in Figure 4.

Similar to the classic transformer architecture [46], the en-

coder leverages self-attention block to mutually reinforce

multiple template features. In the decoding process, cross-

attention block bridges template and search branches to

propagate temporal contexts (e.g., feature and attention).

1573

Self-Attention

Add & Ins. Norm

Add & Ins. Norm

Add & Ins. Norm

Cross-Attention

Mul & Ins. Norm

Cross-Attention

V K Q

V V

V K

K K

Q

Q Q

M

M

Add & Ins. Norm

Self-Attention

Encoded

Template Feature

Decoded Search Feature

Feature Transformation Mask Transformation

Encoder

Decoder

Template Feature Search Feature

Weight Sharing

Element-wise Production M Template Feature Mask

Figure 4. An overview of the proposed transformer architecture.

To suit the visual tracking task, we modify the classic

transformer in the following aspects: (1) Encoder-decoder

Separation. Instead of cascading the encoder and decoder

in NLP tasks [46, 12], as shown in Figure 1, we separate the

encoder and decoder into two branches to fit the Siamese-

like tracking methods. (2) Block Weight-sharing. The self-

attention blocks in the encoder and decoder (yellow boxes

in Figure 4) share weights, which transform the template

and search embeddings in the same feature space to facil-

itate the further cross-attention computation. (3) Instance

Normalization. In NLP tasks [46], the word embeddings

are individually normalized using the layer normalization.

Since our transformer receives image feature embeddings,

we jointly normalize these embeddings in the instance (im-

age patch) level to retain the valuable image amplitude in-

formation. (4) Slimming Design. Efficiency is crucial for

visual tracking scenarios. To achieve a good balance of

speed and performance, we slim the classic transformer by

omitting the fully-connected feed-forward layers and main-

taining the lightweight single-head attention.

4.2. Transformer Encoder

The basic block in a classic transformer is the attention

mechanism, which receives the query Q ∈ R
Nq×C , key

K ∈ R
Nk×C , and value V ∈ R

Nk×C as the inputs. In our

approach, following [46], we also adopt the dot-product to

compute the similarity matrix AK→Q ∈ R
Nq×Nk between

the query and key as follows:

AK→Q = Atten(Q,K) = Softmaxcol(Q̄K̄T/τ), (3)

where Q̄ and K̄ are ℓ2-normalized features of Q and K

across the channel dimension, and τ is a temperature param-

eter controlling the Softmax distribution, which is inspired

by the model distillation [21] and contrastive learning [6]

techniques. With the propagation matrix AK→Q from key to

query, we can transform the value via AK→QV ∈ R
Nq×C .

In our framework, the transformer encoder receives a

set of template features Ti ∈ R
C×H×W with a spatial

size of H × W and dimensionality C, which are further

concatenated to form the template feature ensemble T =
Concat(T1, · · · ,Tn) ∈ R

n×C×H×W . To facilitate the at-

tention computation, we reshape T to T
′

∈ R
NT×C , where

NT = n × H × W . As shown in Figure 4, the main op-

eration in the transformer encoder is self-attention, which

aims to mutually reinforce the features from multiple tem-

plates. To this end, we first compute the self-attention map

AT→T = Atten
(

ϕ(T
′

), ϕ(T
′

)
)

∈ R
NT×NT , where ϕ(·)

is a 1× 1 linear transformation that reduces the embedding

channel from C to C/4.

Based on the self-similarity matrix AT→T, we transform

the template feature through AT→TT
′

, which is added to

the original feature T
′

as a residual term as follows:

T̂ = Ins. Norm
(

AT→TT
′

+T
′
)

, (4)

where T̂ ∈ R
NT×C is the encoded template feature and

Ins. Norm(·) denotes the instance normalization that jointly

ℓ2-normalizes all the embeddings from an image patch, i.e.,

feature map level (Ti ∈ R
C×H×W) normalization.

Thanks to the self-attention, multiple temporally diverse

template features aggregate each other to generate high-

quality T̂, which is further fed to the decoder block to rein-

force the search patch feature. Besides, this encoded tem-

plate representation T̂ is also reshaped back to Tencoded ∈
R

n×C×H×W for tracking model generation, e.g., the DCF

model in Section 4.4.

4.3. Transformer Decoder

Transformer decoder takes the search patch feature S ∈
R

C×H×W as its input. Similar to the encoder, we first re-

shape this feature to S
′

∈ R
NS×C , where NS = H × W .

Then, S
′

is fed to the self-attention block as follows:

Ŝ = Ins. Norm
(

AS→SS
′

+ S
′
)

, (5)

where AS→S = Atten
(

ϕ(S
′

), ϕ(S
′

)
)

∈ R
NS×NS is the

self-attention matrix of the search feature.

Mask Transformation. Based on the search feature Ŝ

in Eq. 5 and aforementioned encoded template feature T̂

in Eq. 4, we compute the cross-attention matrix between

them via AT→S = Atten
(

φ(Ŝ), φ(T̂)
)

∈ R
NS×NT , where

1574

φ(·) is a 1 × 1 linear transformation block similar to ϕ(·).
This cross-attention map AT→S establishes the pixel-to-

pixel correspondence between frames, which supports the

temporal context propagation.

In visual tracking, we are aware of the target positions

in the templates. To propagate the temporal motion pri-

ors, we construct the Gaussian-shaped masks of the tem-

plate features through m(y) = exp
(

−‖y−c‖2

2σ2

)

, where c is

the ground-truth target position. Similar to the feature en-

semble T, we also concatenate these masks mi ∈ R
H×W

to form the mask ensemble M = Concat(m1, · · · ,mn) ∈
R

n×H×W , which is further flattened into M
′

∈ R
NT×1.

Based on the cross attention map AT→S, we can easily prop-

agate previous masks to the search patch via AT→SM
′

∈
R

NS×1. The transformed mask is qualified to serve as the

attention weight for the search feature Ŝ as follows:

Ŝmask = Ins. Norm
(

AT→SM
′

⊗ Ŝ
)

, (6)

where ⊗ is the broadcasting element-wise multiplication.

By virtue of the spatial attention, the reinforced search fea-

ture Ŝmask better highlights the potential target area.

Feature Transformation. Except for the spatial attention,

it is also feasible to propagate the context information from

template feature T̂ to the search feature Ŝ. It is beneficial to

convey target representations while the background scenes

tend to change drastically in a video, which is unreasonable

to temporally propagate. As a consequence, before feature

transformation, we first mask the template feature through

T̂ ⊗ M
′

to suppress the background area. Then, with the

cross-attention matrix AT→S, the transformed feature can

be computed via AT→S(T̂⊗M
′

) ∈ R
NS×C , which is added

to Ŝ as a residual term:

Ŝfeat = Ins. Norm
(

AT→S(T̂⊗M
′

) + Ŝ
)

. (7)

Compared with original Ŝ, feature-level enhanced Ŝfeat ag-

gregates temporally diverse target representations from a se-

ries of template features T̂ to promote itself.

Finally, we equally combine the aforementioned spa-

tially masked feature Ŝmask and feature-level enhanced fea-

ture Ŝfeat, and further normalize them as follows:

Ŝfinal = Ins. Norm
(

Ŝfeat + Ŝmask

)

. (8)

The final output feature Ŝfinal ∈ R
NS×C is reshaped back to

the original size for visual tracking. We denote the reshaped

version of Ŝfinal as Sdecoded ∈ R
C×H×W .

4.4. Tracking with Transformer­enhanced Features

Transformer structure facilitates the tracking process by

generating high-quality template feature Tencoded and search

feature Sdecoded. We learn the tracking model using Tencoded

following two popular paradigms:

Search Region w/o Transformer w/ Transformer

Figure 5. Tracking response maps of the DiMP baseline [3] with-

out (second column) and with (third column) our designed trans-

former architecture. With the proposed transformer, the confi-

dences of the distracting objects are effectively suppressed.

• Siamese Pipeline. In this setting, we simply crop the

target feature in Tencoded as the template CNN kernel to

convolve with Sdecoded for response generation, which

is identical to the cross-correlation in SiamFC [1].

• DCF Pipeline. Following the end-to-end DCF opti-

mization in DiMP approach [3], we generate a discrim-

inative CNN kernel using Tencoded to convolve with

Sdecoded for response generation.

After obtaining the tracking response, we utilize the classi-

fication loss proposed in DiMP [3] to jointly train the back-

bone network, our transformer, and the tracking model in

an end-to-end manner. Please refer to [3] for more details.

In the online tracking process, to better exploit the tem-

poral cues and adapt to the target appearance changes, we

dynamically update the template ensemble T. To be spe-

cific, we drop the oldest template in T and add the current

collected template feature to T every 5 frames. The fea-

ture ensemble maintains a maximal size of 20 templates.

Once the template ensemble T is updated, we compute the

new encoded feature Tencoded via our transformer encoder.

While the transformer encoder is sparsely utilized (i.e., ev-

ery 5 frames), the transformer decoder is leveraged in each

frame, which generates per-frame Sdecoded by propagating

the representations and attention cues from previous tem-

plates to the current search patch.

It is widely recognized that DCF formulation in DiMP

[3] is superior to the simple cross-correlation in Siamese

trackers [1, 27]. Nevertheless, in the experiments, we show

that with the help of our transformer architecture, a clas-

sic Siamese pipeline is able to perform against the recent

DiMP. Meanwhile, with our transformer, the DiMP tracker

acquires further performance improvements. As shown in

1575

Figure 5, even though the strong baseline DiMP [3] already

shows impressive distractor discrimination capability, our

designed transformer further assists it to restrain the back-

ground confidence for robust tracking.

5. Experiments

5.1. Implementation Details

Based on the Siamese matching and DiMP based track-

ing frameworks, in the following experiments, we denote

our Transformer-assisted trackers as TrSiam and TrDiMP,

respectively. In these two versions, the backbone model is

ResNet-50 [18] for feature extraction. Before the encoder

and decoder, we additionally add one convolutional layer

(3×3 Conv + BN) to reduce the backbone feature channel

from 1024 to 512. The input template and search patches

are 6 times of the target size and further resized to 352×352.

The temperature τ in Eq. 3 is set to 1/30. The parameter

sigma σ in the feature mask is set to 0.1. Similar to the

previous works [7, 3, 9, 2], we utilize the training splits of

LaSOT [13], TrackingNet [38], GOT-10k [23], and COCO

[31] for offline training. The proposed transformer network

is jointly trained with the original tracking parts (e.g., track-

ing optimization model [3] and IoUNet [9]) in an end-to-

end manner. Our framework is trained for 50 epochs with

1500 iterations per epoch and 36 image pairs per batch. The

ADAM optimizer [25] is employed with an initial learning

rate of 0.01 and a decay factor of 0.2 for every 15 epochs.

In the online tracking stage, the main difference between

TrSiam and TrDiMP lies in the tracking model generation

manner. After predicting the response map for target local-

ization, they all adopt the recent probabilistic IoUNet [9]

for target scale estimation. Our trackers are implemented in

Python using PyTorch. TrSiam and TrDiMP operate about

35 and 26 frames per second (FPS) on a single Nvidia GTX

1080Ti GPU, respectively.

5.2. Ablation Study

To verify the effectiveness of our designed transformer

structure, we choose the GOT-10k test set [23] with 180

videos to validate our TrSiam and TrDiMP methods1. GOT-

10k hides the ground-truth labels of the test set to avoid the

overly hyper-parameter fine-tuning. It is worth mentioning

that there is no overlap in object classes between the train

and test sets of GOT-10k, which also verifies the general-

ization of our trackers to unseen object classes.

In Table 1, based on the Siamese and DiMP baselines,

we validate each component in our transformer:

Transformer Encoder. First, without any decoder block,

we merely utilize encoder to promote the feature fusion of

1With the probabilistic IoUNet [9] and a larger search area, our base-

line performance is better than the standard DiMP [3]. Note that all the

experiments (Figure 6 and Table 1) are based on the same baseline for fair.

5 10 15 20 25 30 35 40 45 50

Epoch

0.05

0.1

0.15

0.2

0.25

0.3

Lo
ss

Training Loss of Siamese Pipeline

w/o Transformer (Baseline)
Only Feature Transf.
Only Mask Transf.
Both Feature & Mask Transf.

5 10 15 20 25 30 35 40 45 50

Epoch

0.05

0.1

0.15

0.2

Lo
ss

Training Loss of DiMP Pipeline
w/o Transformer (Baseline)
Only Feature Transf.
Only Mask Transf.
Both Feature & Mask Transf.

Figure 6. Training loss plots of the Siamese pipeline (left) and

DCF pipeline (right). By combining both feature and mask trans-

formations, our approach significantly reduces the training losses.

Table 1. Ablative experiments of our transformer for the Siamese

and DiMP pipelines i.e., TrSiam and TrDiMP trackers. The per-

formance is evaluated on the GOT-10k test set [23] in terms of

average overlap (AO).

Different Tracking Variations Siamese (AO) DiMP (AO)

Baseline Performance 62.0 66.7

Only Encoder (w/o Any Decoder) 63.81.8%↑ 67.30.6%↑

Encoder + Decoder (Only Feature Transf.) 66.34.3%↑ 68.11.4%↑

Encoder + Decoder (Only Mask Transf.) 67.15.1%↑ 67.81.1%↑

Encoder + Decoder (Feature & Mask Transf.) 67.35.3%↑ 68.82.1%↑

Table 2. Ablative study of our transformer architecture. The base-

line tracker is TrSiam. The evaluation metric is average overlap

(AO) score on the GOT-10k test set.

Baseline Weight-sharing Feed-forward Head Number

w/o w/ w/o w/ 1 2 4

AO (%) 62.0 63.4 67.3 67.3 67.0 67.3 67.2 67.6

Speed (FPS) 40 35 35 35 22 35 31 25

multiple templates, which slightly improves two baselines.

Transformer Decoder. Our decoder consists of feature and

mask transformations, and we independently verify them:

(1) Feature Propagation. With the feature transformation,

as shown in Table 1, the Siamese pipeline obtains a notable

performance gain of 4.3% in AO and the strong DiMP base-

line still acquires an improvement of 1.4% in AO on the

GOT-10k test set. From the training perspective, we can

observe that this block effectively reduces the losses of two

baselines as shown in Figure 6.

(2) Mask Propagation. This mechanism propagates tempo-

rally collected spatial attentions to highlight the target area.

Similar to the feature transformation, our mask transforma-

tion alone also steadily improves the tracking performance

(Table 1) and consistently reduces the training errors of both

two pipelines (Figure 6).

Complete Transformer. With the complete transformer, as

shown in Table 1, the Siamese and DiMP baselines obtain

notable performance gains of 5.3% and 2.1% in AO, respec-

tively. The transformer also significantly reduces their train-

ing losses (Figure 6). It is worth mentioning that DiMP al-

ready achieves outstanding results while our approach con-

sistently improves such a strong baseline. With our trans-

former, the performance gap between Siamese and DiMP

1576

Table 3. Comparison with state-of-the-art trackers on the TrackingNet test set [38] in terms of precision (Prec.), normalized precision (N.

Prec.), and success (AUC score). Our TrDiMP and TrSiam exhibit promising results.

SiamFC MDNet SPM C-RPN SiamRPN++ ATOM DiMP-50 SiamFC++ D3S Retain-MAML PrDiMP-50 DCFST KYS Siam-RCNN TrSiam TrDiMP

[1] [39] [49] [14] [27] [7] [3] [57] [33] [48] [9] [62] [2] [47]

Prec. (%) 53.3 56.5 66.1 61.9 69.4 64.8 68.7 70.5 66.4 - 70.4 70.0 68.8 80.0 72.7 73.1

N. Prec. (%) 66.3 70.5 77.8 74.6 80.0 77.1 80.1 80.0 76.8 82.2 81.6 80.9 80.0 85.4 82.9 83.3

Success (%) 57.1 60.6 71.2 66.9 73.3 70.3 74.0 75.4 72.8 75.7 75.8 75.2 74.0 81.2 78.1 78.4

Table 4. Comparison results on the GOT-10k test set [23] in terms of average overlap (AO), and success rates (SR) at overlap thresholds

0.5 and 0.75. We show the tracking results without (w/o) and with (w/) additional training data (LTC: LaSOT, TrackingNet, and COCO).

SiamFC SiamFCv2 SiamRPN SPM ATOM DiMP-50 SiamFC++ D3S PrDiMP-50 DCFST KYS Siam-RCNN TrSiam TrDiMP

[1] [45] [28] [49] [7] [3] [57] [33] [9] [62] [2] [47] w/o LTC w/ LTC w/o LTC w/ LTC

SR0.5(%) 35.3 40.4 54.9 59.3 63.4 71.7 69.5 67.6 73.8 75.3 75.1 - 76.6 78.7 77.7 80.5

SR0.75(%) 9.8 14.4 25.3 35.9 40.2 49.2 47.9 46.2 54.3 49.8 51.5 - 57.1 58.6 58.3 59.7

AO (%) 34.8 37.4 46.3 51.3 55.6 61.1 59.5 59.7 63.4 63.8 63.6 64.9 66.0 67.3 67.1 68.8

baselines has been largely narrowed (from 4.7% to 1.5% in

AO), which reveals the strong tracking potential of a simple

pipeline by adequately exploring the temporal information.

Structure Modifications. Finally, we discuss some archi-

tecture details of our transformer: (1) Shared-weight Self-

attention. Since our transformer is separated into two par-

allel Siamese tracking braches, the performance obviously

drops without the weight-sharing mechanism as shown in

Table 2. Due to this weight-sharing design, we also do

not stack multiple encoder/decoder layers like the classic

transformer [46], which will divide the template and search

representations into different feature subspaces. (2) Feed-

forward Network. Feed-forward network is a basic block in

the classic transformer [46], which consists of two heavy-

weight fully-connected layers. In the tracking scenario, we

observe that this block potentially causes the overfitting is-

sue due to its overmany parameters, which does not bring

performance gains and hurts the efficiency. (3) Head Num-

ber. Classic transformer adopts multi-head attentions (e.g.,

8 heads) to learn diverse representations [46]. In the experi-

ments, we observe that increasing the head number slightly

improves the accuracy but hinders the tracking efficiency

from real-time. We thus choose the single-head attention to

achieve a good balance of performance and efficiency.

5.3. State­of­the­art Comparisons

We compare our proposed TrSiam and TrDiMP track-

ers with the recent state-of-the-art trackers on seven track-

ing benchmarks including TrackingNet [38], GOT-10k [23],

LaSOT [13], VOT2018 [26], Need for Speed [24], UAV123

[36], and OTB-2015 [56].

TrackingNet [38]. TrackingNet is a recently released large-

scale benchmark. We evaluate our methods on the test set of

TrackingNet, which consists of 511 videos. In this bench-

mark, we compare our approaches with the state-of-the-art

trackers such as DiMP-50 [3], D3S [33], SiamFC++ [57],

Retain-MAML [48], DCFST [62], PrDiMP-50 [9], KYS

[2], and Siam-RCNN [47]. As shown in Table 3, the pro-

posed TrDiMP achieves a normalized precision score of

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

is
io

n

Precision plots of OPE on LaSOT Testing Set

[0.614] TrDiMP (Ours)
[0.600] TrSiam (Ours)
[0.565] PrDiMP50
[0.534] DiMP50
[0.530] PrDiMP18
[0.505] DiMP18
[0.479] ATOM
[0.467] SiamRPN++
[0.425] C-RPN
[0.370] MDNet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s

ra
te

Success plots of OPE on LaSOT Testing Set

[0.639] TrDiMP (Ours)
[0.624] TrSiam (Ours)
[0.593] PrDiMP50
[0.565] DiMP50
[0.563] PrDiMP18
[0.534] DiMP18
[0.514] ATOM
[0.496] SiamRPN++
[0.455] C-RPN
[0.397] MDNet

Figure 7. Precision and success plots on the LaSOT test set [13].

83.3% and a success score of 78.4%, surpassing previous

state-of-the-art trackers such as PrDiMP-50 and KYS. Note

that PrDiMP and KYS improve the DiMP tracker via prob-

abilistic regression and tracking scene exploration, repre-

senting the current leading algorithms on several datasets.

With our designed transformer, the simple Siamese match-

ing baseline (i.e., TrSiam) also shows outstanding perfor-

mance with a normalized precision score of 82.9% and a

success score of 78.1%.

GOT-10k [23]. GOT-10k is a large-scale dataset including

more than 10,000 videos. We test our methods on the test

set of GOT-10k with 180 sequences. The main character-

istic of GOT-10k is that the test set does not have overlap

in object classes with the train set, which is designed to as-

sess the generalization of the visual tracker. Following the

test protocol of GOT-10k, we further train our trackers with

only the GOT-10k training set. As shown in Table 4, in

a fair comparison scenario (i.e., without additional training

data), both our TrDiMP and TrSiam still outperform other

top-performing trackers such as SiamR-CNN [47], DCFST

[62], and KYS [2], verifying the strong generalization of

our methods to unseen objects.

LaSOT [13]. LaSOT is a recent large-scale tracking bench-

mark consisting of 1200 videos. The average video length

of this benchmark is about 2500 frames, which is more

challenging than the previous short-term tracking datasets.

Therefore, how to cope with the drastic target appearance

changes using temporal context is vital in this dataset. We

evaluate our approaches on the LaSOT test set with 280

1577

Table 5. State-of-the-art comparison on the NfS [24], UAV123 [36], and OTB-2015 [56] datasets in terms of AUC score. Both our TrDiMP

and TrSiam exhibit outstanding results on all benchmarks with competitive efficiency.

KCF SiamFC CFNet MDNet C-COT ECO ATOM UPDT SiamRPN++ DiMP-50 SiamR-CNN PrDiMP-50 DCFST KYS TrSiam TrDiMP

[20] [1] [45] [39] [11] [8] [7] [4] [27] [3] [47] [9] [62] [2]

NfS [24] 21.7 - - 42.9 48.8 46.6 58.4 53.7 50.2 62.0 63.9 63.5 64.1 63.5 65.8 66.5

UAV123 [36] 33.1 49.8 43.6 52.8 51.3 52.2 64.2 54.5 61.3 65.3 64.9 68.0 - - 67.4 67.5

OTB-2015 [56] 47.5 58.2 56.8 67.8 68.2 69.1 66.9 70.2 69.6 68.4 70.1 69.6 70.9 69.5 70.8 71.1

Speed (FPS) 270 86 75 1 0.3 8 35 <1 30 35 4.7 30 25 20 35 26

16111621263136414651566166
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

Figure 8. Expected average overlap (EAO) graph with trackers

ranked from right to left. Our TrDiMP and TrSiam trackers out-

perform all the participant trackers on the VOT2018 [26].

videos. The precision and success plots of the state-of-the-

art methods are shown in Figure 7, where the recently pro-

posed C-RPN [14], SiamRPN++ [27], ATOM [7], DiMP-50

[3], and PrDiMP-50 [9] are included for comparison. Our

TrSiam and TrDiMP outperform aforementioned methods

by a considerable margin. To the best of our knowledge,

SiamR-CNN [47] achieves the current best result on the La-

SOT. Overall, our TrDiMP (63.9% AUC and 26 FPS) ex-

hibits very competitive performance and efficiency in com-

parison with SiamR-CNN (64.8% AUC and 4.7 FPS).

VOT2018 [26]. VOT2018 benchmark contains 60 challeng-

ing videos. The performance on this dataset is evaluated us-

ing the expected average overlap (EAO), which takes both

accuracy (average overlap over successful frames) and ro-

bustness (failure rate) into account. As shown in Figure 8,

our TrSiam and TrDiMP clearly outperform all the partici-

pant trackers on the VOT2018.

In Table 6, we further show the accuracy, robustness, and

EAO scores of the recent top-performing trackers including

SiamRPN++ [27], DiMP-50 [3], PrDiMP-50 [9], Retain-

MAML [48], KYS [2], and D3S [33]. Compared with these

recently proposed approaches, our TrDiMP approach still

exhibits satisfactory results. Among all the compared track-

ers, only D3S slightly outperforms our TrDiMP, which is

trained using additional data with segmentation annotations

for accurate mask prediction.

NfS [24]. NfS dataset contains 100 challenging videos with

fast-moving objects. We evaluate our TrSiam and TrDiMP

on the 30 FPS version of NfS. The AUC scores of compar-

ison approaches are shown in Table 5. Our approaches set

new state-of-the-art records on this benchmark. The pro-

posed TrDiMP surpasses previous top-performing trackers

such as DCFST [62] and SiamR-CNN [47]. Note that the

recent SimR-CNN utilizes a powerful ResNet-101 for ob-

Table 6. Comparison with recent state-of-the-art trackers on the

VOT2018 [26] in terms of accuracy (A), robustness (R), and ex-

pected average overlap (EAO).

SiamRPN DiMP-50 PrDiMP-50 Retain- KYS D3S TrDiMP

++ [27] [3] [9] MAML [48] [2] [33]

A (↑) 0.600 0.597 0.618 0.604 0.609 0.640 0.600

R (↓) 0.234 0.153 0.165 0.159 0.143 0.150 0.141

EAO (↑) 0.414 0.440 0.442 0.452 0.462 0.489 0.462

ject re-detection. Our simple TrSiam, without sophisticated

models or online optimization techniques, still outperforms

existing methods and operates in real-time.

UAV123 [36]. This benchmark includes 123 aerial videos

collected by the low-attitude UAV platform. The proposed

trackers also achieve promising results in comparison to the

recent remarkable approaches in Table 5. Specifically, our

TrDiMP performs on par with PrDiMP-50 [9], which rep-

resents the current best algorithm on this benchmark.

OTB-2015 [56]. OTB-2015 is a popular tracking bench-

mark with 100 challenging videos. As shown in Table 5,

on this dataset, our TrDiMP achieves an AUC score of

71.1%, surpassing the recently proposed SiamRPN++ [27],

PrDiMP-50 [9], SiamR-CNN [47], and KYS [2]. With the

proposed transformer, our Siamese matching based TrSiam

also performs favorably against existing state-of-the-art ap-

proaches with an AUC score of 70.8%.

6. Conclusion

In this work, we introduce the transformer structure to

the tracking frameworks, which bridges the isolated frames

in the video flow and conveys the rich temporal cues across

frames. We show that by carefully modifying the classic

transformer architecture, it favorably suits the tracking sce-

nario. With the proposed transformer, two popular trackers

gain consistent performance improvements and set several

new state-of-the-art records on prevalent tracking datasets.

To our best knowledge, this is the first attempt to exploit the

transformer in the tracking community, which preliminarily

unveils the tracking potential hidden in the frame-wise rela-

tionship. In the future, we intend to further explore the rich

temporal information among individual video frames.

Acknowledgements. This work was supported in part by the National

Natural Science Foundation of China under Contract 61836011, 61822208,

and 61836006, and in part by the Youth Innovation Promotion Association

CAS under Grant 2018497. It was also supported by the GPU cluster built

by MCC Lab of Information Science and Technology Institution, USTC.

1578

References

[1] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In ECCV Workshops, 2016.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Know your surroundings: Exploiting scene infor-

mation for object tracking. In ECCV, 2020.

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In ICCV, 2019.

[4] Goutam Bhat, Joakim Johnander, Martin Danelljan, Fa-

had Shahbaz Khan, and Michael Felsberg. Unveiling the

power of deep tracking. In ECCV, 2018.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In ECCV, 2020.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey E Hinton. A simple framework for contrastive learn-

ing of visual representations. arXiv: 2002.05709, 2020.

[7] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Atom: Accurate tracking by overlap max-

imization. In CVPR, 2019.

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Eco: Efficient convolution operators for

tracking. In CVPR, 2017.

[9] Martin Danelljan, Luc Van Gool, and Radu Timofte. Proba-

bilistic regression for visual tracking. In CVPR, 2020.

[10] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael

Felsberg. Accurate scale estimation for robust visual track-

ing. In BMVC, 2014.

[11] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In

ECCV, 2016.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[13] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

Lasot: A high-quality benchmark for large-scale single ob-

ject tracking. In CVPR, 2019.

[14] Heng Fan and Haibin Ling. Siamese cascaded region pro-

posal networks for real-time visual tracking. In CVPR, 2019.

[15] Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey.

Learning background-aware correlation filters for visual

tracking. In ICCV, 2017.

[16] Junyu Gao, Tianzhu Zhang, and Changsheng Xu. Graph con-

volutional tracking. In CVPR, 2019.

[17] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and

Song Wang. Learning dynamic siamese network for visual

object tracking. In ICCV, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[19] David Held, Sebastian Thrun, and Silvio Savarese. Learning

to track at 100 fps with deep regression networks. In ECCV,

2016.

[20] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. High-speed tracking with kernelized correlation fil-

ters. TPAMI, 37(3):583–596, 2015.

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[22] Chen Huang, Simon Lucey, and Deva Ramanan. Learning

policies for adaptive tracking with deep feature cascades. In

ICCV, 2017.

[23] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

large high-diversity benchmark for generic object tracking in

the wild. arXiv preprint arXiv:1810.11981, 2018.

[24] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A benchmark

for higher frame rate object tracking. In ICCV, 2017.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[26] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Fels-

berg, Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir,

Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al.

The sixth visual object tracking vot2018 challenge results. In

ECCV Workshops, 2018.

[27] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. Siamrpn++: Evolution of siamese visual

tracking with very deep networks. In CVPR, 2019.

[28] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In CVPR, 2018.

[29] Feng Li, Cheng Tian, Wangmeng Zuo, Lei Zhang, and Ming-

Hsuan Yang. Learning spatial-temporal regularized correla-

tion filters for visual tracking. In CVPR, 2018.

[30] Xin Li, Chao Ma, Baoyuan Wu, Zhenyu He, and Ming-

Hsuan Yang. Target-aware deep tracking. In CVPR, 2019.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014.

[32] Xiankai Lu, Chao Ma, Bingbing Ni, Xiaokang Yang, Ian

Reid, and Ming-Hsuan Yang. Deep regression tracking with

shrinkage loss. In ECCV, 2018.

[33] Alan Lukezic, Jiri Matas, and Matej Kristan. D3s-a discrim-

inative single shot segmentation tracker. In CVPR, 2020.

[34] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas,

and Matej Kristan. Discriminative correlation filter with

channel and spatial reliability. In CVPR, 2017.

[35] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan

Yang. Hierarchical convolutional features for visual tracking.

In ICCV, 2015.

[36] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for uav tracking. In ECCV, 2016.

[37] Matthias Mueller, Neil Smith, and Bernard Ghanem.

Context-aware correlation filter tracking. In CVPR, 2017.

1579

[38] Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-

Subaihi, and Bernard Ghanem. Trackingnet: A large-scale

dataset and benchmark for object tracking in the wild. In

ECCV, 2018.

[39] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In CVPR,

2016.

[40] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz

Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-

age transformer. In ICML, 2018.

[41] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are unsuper-

vised multitask learners. OpenAI blog, 2019.

[42] Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Rynson

Lau, and Ming-Hsuan Yang. Crest: Convolutional residual

learning for visual tracking. In ICCV, 2017.

[43] Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Edouard

Grave, Tatiana Likhomanenko, Vineel Pratap, Anuroop Sri-

ram, Vitaliy Liptchinsky, and Ronan Collobert. End-to-end

asr: from supervised to semi-supervised learning with mod-

ern architectures. arXiv preprint arXiv:1911.08460, 2019.

[44] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese instance search for tracking. In CVPR, 2016.

[45] Jack Valmadre, Luca Bertinetto, João F Henriques, Andrea

Vedaldi, and Philip HS Torr. End-to-end representation

learning for correlation filter based tracking. In CVPR, 2017.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017.

[47] Paul Voigtlaender, Jonathon Luiten, Philip H. S. Torr, and

Bastian Leibe. Siam r-cnn: Visual tracking by re-detection.

In CVPR, 2020.

[48] Guangting Wang, Chong Luo, Xiaoyan Sun, Zhiwei Xiong,

and Wenjun Zeng. Tracking by instance detection: A meta-

learning approach. In CVPR, 2020.

[49] Guangting Wang, Chong Luo, Zhiwei Xiong, and Wenjun

Zeng. Spm-tracker: Series-parallel matching for real-time

visual object tracking. In CVPR, 2019.

[50] Ning Wang, Yibing Song, Chao Ma, Wengang Zhou, Wei

Liu, and Houqiang Li. Unsupervised deep tracking. In

CVPR, 2019.

[51] Ning Wang, Wengang Zhou, Guojun Qi, and Houqiang Li.

Post: Policy-based switch tracking. In AAAI, 2020.

[52] Ning Wang, Wengang Zhou, Yibing Song, Chao Ma, Wei

Liu, and Houqiang Li. Unsupervised deep representation

learning for real-time tracking. IJCV, 129(2):400–418, 2021.

[53] Ning Wang, Wengang Zhou, Qi Tian, Richang Hong, Meng

Wang, and Houqiang Li. Multi-cue correlation filters for ro-

bust visual tracking. In CVPR, 2018.

[54] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming

Hu, and Stephen Maybank. Learning attentions: Residual

attentional siamese network for high performance online vi-

sual tracking. In CVPR, 2018.

[55] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018.

[56] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. TPAMI, 37(9):1834–1848, 2015.

[57] Yinda Xu, Zeyu Wang, Zuoxin Li, Yuan Ye, and Gang Yu.

Siamfc++: Towards robust and accurate visual tracking with

target estimation guidelines. In AAAI, 2020.

[58] Tianyu Yang and Antoni B Chan. Learning dynamic memory

networks for object tracking. In ECCV, 2018.

[59] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R.

Scott. Deformable siamese attention networks for visual ob-

ject tracking. In CVPR, 2020.

[60] Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer,

Martin Danelljan, and Fahad Shahbaz Khan. Learning the

model update for siamese trackers. In ICCV, 2019.

[61] Zhipeng Zhang and Houwen Peng. Deeper and wider

siamese networks for real-time visual tracking. In CVPR,

2019.

[62] Linyu Zheng, Ming Tang, Yingying Chen, Jinqiao Wang, and

Hanqing Lu. Learning feature embeddings for discriminant

model based tracking. In ECCV, 2020.

[63] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In ECCV, 2018.

[64] Zheng Zhu, Wei Wu, Wei Zou, and Junjie Yan. End-to-end

flow correlation tracking with spatial-temporal attention. In

CVPR, 2018.

1580

