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Abstract

Unsupervised contrastive learning has achieved out-

standing success, while the mechanism of contrastive loss

has been less studied. In this paper, we concentrate on

the understanding of the behaviours of unsupervised con-

trastive loss. We will show that the contrastive loss is a

hardness-aware loss function, and the temperature τ con-

trols the strength of penalties on hard negative samples. The

previous study has shown that uniformity is a key property

of contrastive learning. We build relations between the uni-

formity and the temperature τ . We will show that uniformity

helps the contrastive learning to learn separable features,

however excessive pursuit to the uniformity makes the con-

trastive loss not tolerant to semantically similar samples,

which may break the underlying semantic structure and be

harmful to the formation of features useful for downstream

tasks. This is caused by the inherent defect of the instance

discrimination objective. Specifically, instance discrimina-

tion objective tries to push all different instances apart, ig-

noring the underlying relations between samples. Pushing

semantically consistent samples apart has no positive effect

for acquiring a prior informative to general downstream

tasks. A well-designed contrastive loss should have some

extents of tolerance to the closeness of semantically sim-

ilar samples. Therefore, we find that the contrastive loss

meets a uniformity-tolerance dilemma, and a good choice

of temperature can compromise these two properties prop-

erly to both learn separable features and tolerant to seman-

tically similar samples, improving the feature qualities and

the downstream performances.

1. Introduction

Deep neural networks have undergone dramatic progress

since the large scale human-annotated datasets such as Im-

ageNet [6] and Places [36]. Such progress is heavily de-

pendent on manual labelling, which is costly and time-

†Corresponding author.

Hypersphere

Exchange

(a)

xi

xj

xk
xl

Hypersphere

(b)

xi

xk

xj
xl

Figure 1. We display two embedding distributions with four in-

stances on a hypersphere. From the figure, we observe that ex-

changing xj and xk, as well as their corresponding augmentations,

will not change the value of contrastive loss. However, the embed-

ding distribution of (a) is much more useful for downstream tasks

because it captures the semantical relations between instances.

consuming. Unsupervised learning gives us the promise to

learn transferable representations without human supervi-

sion. Recently, unsupervised learning methods based on the

contrastive loss [33, 20, 1, 10, 5, 4, 14, 37] have achieved

outstanding success and received increasing attention. Con-

trastive learning methods aim to learn a general feature

function which maps the raw pixel into features residing

on a hypersphere space. They try to learn representations

invariant to different views of the same instance by making

positive pairs attracted and negative pairs separated. With

the help of heavy augmentations and strong abstraction abil-

ity of convolutional neural networks [16, 26, 12], the unsu-

pervised contrastive models can learn some extents of se-

mantic structures. For example, in Fig 1, a good contrastive

learning model tends to produce the embedding distribution

likes Fig 1 (a) instead of the situation of Fig 1 (b), though

the losses of Fig 1 (a) and Fig 1 (b) are the same.

Contrastive learning methods share a common design of

the loss function which is a softmax function of the feature

similarities with a temperature τ to help discriminate pos-

itive and negative samples. The contrastive loss is signifi-

cant to the success of unsupervised contrastive learning. In

this paper, we focus on analyzing the properties of the con-
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trastive loss using the temperature as a proxy. We find that

the contrastive loss is a hardness-aware loss function which

automatically concentrates on optimizing the hard nega-

tive samples, giving penalties to them according to their

hardness. The temperature plays a role in controlling the

strength of penalties on the hard negative samples. Specif-

ically, contrastive loss with small temperature tends to pe-

nalize much more on the hardest negative samples such that

the local structure of each sample tends to be more sep-

arated, and the embedding distribution is likely to be more

uniform. On the other hand, contrastive loss with large tem-

perature is less sensitive to the hard negative samples, and

the hardness-aware property disappears as the temperature

approaches +∞. The hardness-aware property is signifi-

cant to the success of the softmax-based contrastive loss,

with an explicit hard negative sampling strategy, a very sim-

ple form of contrastive loss works pretty well and achieves

competitive downstream performances.

The uniformity of the embedding distribution in unsu-

pervised contrastive learning is important to learn separable

features [31]. We connect the relation between the tempera-

ture and the embedding uniformity. With the temperature as

a proxy, we find that although the uniformity is a key indica-

tor to the performance of contrastive models, the excessive

pursuit to the uniformity may break the underlying semantic

structure. This is caused by the inherent defect of the pop-

ular unsupervised contrastive objective. Specifically, most

contrastive learning methods aim to learn an instance dis-

crimination task, by maximizing the similarities of different

augmentations sampling from the same instances and min-

imizing the similarities of all different instances. This kind

of objective actually contains no information about seman-

tical relations. Pushing the semantically consistent samples

away is harmful to generate useful features. If the con-

trastive loss is equipped with very small temperature, the

loss function will give very large penalties to the nearest

neighbours which are very likely to share similar semanti-

cal contents with the anchor point. From Fig 2, we observe

that embeddings trained with τ = 0.07 are more uniformly

distributed, however the embeddings trained with τ = 0.2
present a more reasonable distribution which is locally clus-

tered and globally separated. We recognize that there exists

a uniformity-tolerance dilemma in unsupervised contrastive

learning. On the one hand, we hope the features are dis-

tributed uniformly enough to be more separable. On the

other hand, we hope the contrastive loss can be more toler-

ant to the semantically similar samples. A good contrastive

loss should make a compromise to satisfy both the two prop-

erties properly.

Overall, the contributions can be summarized as follows:

• We analyze the behaviours of the contrastive loss and

show that contrastive loss is a hardness-aware loss. We

validate that the hardness-aware property is significant

τ = 0.07 τ = 0.2

Figure 2. T-SNE [29] visualization of the embedding distribution.

The two models are trained on CIFAR10. The temperature is set

to 0.07 and 0.2 respectively. Small temperature tends to generate

more uniform distribution and be less tolerant to similar samples.

to the success of contrastive loss.

• With a gradient analysis, we show that the temperature

is a key parameter to control the strength of penalties

on hard negative samples. Quantitative and qualitative

experiments are conducted to validate the perspective.

• We show that there exists a uniformity-tolerance

dilemma in contrastive learning, a good choice of tem-

perature can compromise the two properties and im-

prove the feature quality remarkably.

2. Related Work

Unsupervised learning methods have achieved great

progress. Previous works focus on the design of novel

pretext tasks, such as context prediction [7], jigsaw puz-

zle [19], colorization [34, 17], rotation [8], context en-

coder [21], split brain [35], deep cluster [2, 3] etc. The

core idea of the above self-supervised methods is to cap-

ture some common priors between the pretext task and the

downstream tasks. They assume that finishing the well-

designed pretext tasks requires knowledge useful for down-

stream tasks such as classification [16], detection [9, 23],

segmentation [24, 11] etc. Recently, unsupervised meth-

ods based on contrastive learning have drawn increasing at-

tentions due to the excellent performances. Wu et al [33]

propose an instance discrimination method, which first in-

corporates a contrastive loss (called NCE loss) to help dis-

criminate different instances. CPC [20, 13] tries to learn

context-invariant representations, and give a perspective of

maximizing mutual information between different levels of

features. CMC [27] is proposed to learn representations

by maximizing the mutual information between different

color channel views. SimCLR [4] simplifies the contrastive

learning by only using different augmentations as different

views, and tries to maximize the agreement between views.

Besides, some methods try to maximize the agreement be-

tween different instances which may share similar semantic

contents to learn instance-invariant representations, such as

nearest neighbours discovery [14], local aggregation [37],
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invariance propagation [30], etc. On the other hand, con-

trastive loss requires many negative samples to help boost

the performances. Instance discrimination [33] first pro-

poses to use a memory bank to save the calculated features

as the exponential moving average of the historical features.

MoCo [10, 5] proposes to use a momentum queue to im-

prove the consistency of the saved features.

There are also some works that try to understand the

contrastive learning. Arora et al [25] present a theoreti-

cal framework for analyzing the contrastive learning by in-

troducing latent classes and connect the relation between

the unsupervised contrastive learning tasks and the down-

stream performances. Purushwalkam et al [22] try to de-

mystify the unsupervised contrastive learning by focusing

on the relation of data augmentation and the correspond-

ing invariances. Tian et al [28] study the task-dependent

optimal views of contrastive learning by a perspective of

mutual information. Wu et al [32] give a systematical anal-

ysis to the relations between different contrastive learning

methods and the corresponding forms of mutual informa-

tion. Wang et al [31] try to understand the contrastive learn-

ing by two key properties, the alignment and uniformity.

Different from the above works, we focus mainly on the

inherent properties of the contrastive loss function. We em-

phasize the significance of the temperature τ , and use it as a

proxy to analyze some intriguing phenomenons of the con-

trastive learning.

3. Hardness-aware Property

Given an unlabeled training set X = {x1, ..., xN}, the

contrastive loss is formulated as:

L(xi) = −log

[

exp(si,i/τ)
∑

k 6=i exp(si,k/τ) + exp(si,i/τ)

]

(1)

where si,j = f(xi)
T g(xj). f(·) is a feature extractor which

maps the images from pixel space to a hypersphere space.

g(·) is a function which can be same as f [4], or comes from

a memory bank [33], momentum queue [10], etc. For con-

venience, we define the probability of xi being recognized

as xj as:

Pi,j =
exp(si,j/τ)

∑

k 6=i exp(si,k/τ) + exp(si,i/τ)
(2)

The contrastive loss tries to make the positive pairs at-

tracted and the negative samples separated, i.e., the positive

alignment and negative separation. This objective can also

be achieved by using a more simple contrastive loss as:

Lsimple(xi) = −si,i + λ
∑

i 6=j

si,j (3)

However, we find that the above loss function performs

much worse than the softmax-based contrastive loss of Eq

1.00.50.00.51.00

50
×10 3

 = 0.07
 = 0.20
 = 0.30
 = 1.00

Figure 3. The gradient ratio ri,j with respect to different si,j . We

sample the si,j from a uniform distribution in [−1, 1]. As we can

see, with lower temperature, the contrastive loss tends to punish

more on the hard negative samples.

1. In the following parts, we will show that different with

Lsimple, the softmax-based contrastive loss is a hardness-

aware loss function, which automatically concentrates on

separating more informative negative samples to make the

embedding distribution more uniform. Besides, we also find

that the Lsimple is a special case by approaching the temper-

ature τ to +∞. Next, we will start with a gradient analysis

to explain the properties of the contrastive loss.

3.1. Gradients Analysis.

We analyze the gradients with respect to positive sam-

ples and different negative samples. We will show that the

magnitude of positive gradient is equal to the sum of nega-

tive gradients. The temperature controls the distribution of

negative gradients. Smaller temperature tends to concen-

trate more on the nearest neighbours of the anchor point,

which plays a role in controlling the hardness-aware sensi-

tivity. Specifically, the gradients with respect to the positive

similarity si,i and the negative similarity si,j (j 6= i) are

formulated as:

∂L(xi)

∂si,i
= −

1

τ

∑

k 6=i

Pi,k,
∂L(xi)

∂si,j
=

1

τ
Pi,j (4)

From Eq 4, we have the following observations: (1) The

gradients with respect to negative samples is proportional

to the exponential term exp(si,j/τ), indicating that the con-

trastive loss is a hardness-aware loss function, which is dif-

ferent with the loss of Eq 3 that gives all negative similar-

ities the same magnitude of gradients. (2) The magnitude

of gradient with respect to positive sample is equal to the

sum of gradients with respect to all negative samples, i.e.,

(
∑

k 6=i |
∂L(xi)
∂si,k

|)/|∂L(xi)
∂si,i

| = 1, which can define a proba-

bilistic distribution to help understand the role of tempera-

ture τ .

3.2. The Role of temperature

The temperature plays a role in controlling the strength

of penalties on hard negative samples. Specifically, we de-

fine ri(si,j) = |∂L(xi)
∂si,j

|/|∂L(xi)
∂si,i

|, representing the relative
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penalty on negative sample xj . We have:

ri(si,j) =
exp(si,j/τ)

∑

k 6=i exp(si,k/τ)
, i 6= j (5)

which obeys the Boltzman distribution. As the temperature

τ decreases, the entropy of the distribution H(ri) decreases

strictly (the proof is in supplementary material). The dis-

tribution of ri becomes more sharp on the large similarity

region, which gives large penalties to the samples closed

to xi. Fig 3 shows the relation of ri and si. From Fig 3,

we observe that the relative penalty concentrates more on

the high similarity region as the temperature decreases, and

the relative penalty distribution tends to be more uniform

as the temperature increases, which tends to give all nega-

tive samples the same magnitude of penalties. Besides, the

effective penalty interval become narrowed as the tempera-

ture decreases. Extremely small temperatures will cause the

contrastive loss only concentrate on the nearest one or two

samples, which will heavily degenerate the performance. In

this paper, we keep the temperatures in a reasonable interval

to avoid this situation.

Let us consider two extreme cases: τ → 0+ and τ →
+∞. When τ → 0+, we have the following approximation:

lim
τ→0+

−log

[

exp(si,i/τ)
∑

k 6=i exp(si,k/τ) + exp(si,i/τ)

]

= lim
τ→0+

+log



1 +
∑

k 6=i

exp((si,k − si,i)/τ)





= lim
τ→0+

+log



1 +

k
∑

si,k>si,i

exp((si,k − si,i)/τ)





= lim
τ→0+

1

τ
max[smax − si,i, 0]

(6)

where smax is the maximum of the negative similarities.

This shows that when τ → 0+ the contrastive loss becomes

a triplet loss with the margin of 0, which only focuses on the

nearest negative sample. When τ → +∞, we approximate

the contrastive learning as following:

lim
τ→+∞

−log

[

exp(si,i/τ)
∑

k 6=i exp(si,k/τ) + exp(si,i/τ)

]

= lim
τ→+∞

−
1

τ
si,i + log

∑

k

exp(si,k/τ)

= lim
τ→+∞

−
1

τ
si,i +

1

N

∑

k

exp(si,k/τ)− 1 + logN

= lim
τ→+∞

−
N − 1

Nτ
si,i +

1

Nτ

∑

k 6=i

si,k + logN

(7)

We use the Taylor expansion of log(1 + x) and exp(x) and

omit the second or higher order infinitesimal terms. The

above approximation of contrastive loss is equivalent to the

simple contrastive loss Lsimple, which shows that the sim-

ple contrastive loss is a special case of the softmax-based

contrastive loss by approaching the temperature to +∞.

We also conduct experiments to study the behaviours of

the two extreme cases. Specifically, using the objective of

Eq 6, the model can not learn any useful information. Us-

ing Eq 7 as the objective, the performances on downstream

tasks are inferior to the models trained with the ordinary

contrastive loss by a relative large margin. However, com-

bining the loss of Eq 7 with an explicit hard negative sam-

pling strategy, the model will achieve competitive down-

stream results, which shows the importance of the hardness-

aware property of the contrastive loss.

3.3. Explicit Hard Negative Sampling

In this subsection, we study a more straightforward hard

negative sampling strategy which truncates the gradients

with respect to the uninformative negative samples. Specif-

ically, given an upper α quantile s
(i)
α for the anchor sample

xi, we define the informative interval as [s
(i)
α , 1.0], and the

uninformative interval as [−1.0, s
(i)
α ]. We force the gradient

ratio of si,j which resides in the uninformative interval to 0,

i.e., ri(si,j) = 0 for si,j < s
(i)
α , and the gradient ratio of xl

residing in the informative interval as:

ri(si,l) =
exp(si,l/τ)

∑

si,k>s
(i)
α

exp(si,k/τ)
, l 6= i (8)

The above operation squeezes the negative gradients from

the uninformative interval to the informative interval. The

corresponding hard contrastive loss is:

Lhard(xi) = −log
exp(si,i/τ)

∑

si,k>s
(i)
α

exp(si,k/τ) + exp(si,i/τ)

(9)

The Lhard only penalizes the informative hard negative

samples. The hard contrastive loss acts on hard negative

samples in two ways: an explicit way that chooses the top

K nearest negative samples and an implicit way by the

hardness-aware property. Using the same temperature with

the contrastive loss of Eq 1, the hard contrastive loss usu-

ally generate more uniform embedding distribution, and it

is beneficial to choose relative large temperatures. Besides,

with this explicit hard negative sampling strategy, we show

that the current popular contrastive loss of Eq 1 can be re-

placed by the simple form of Eq 3, with similar or even

better performances on downstream tasks. Note that we are

not the first to propose the idea of the above hard contrastive

loss. LocalAggregation proposed by Zhuang et al[37] have

used the above hard negative mining strategy. In this pa-

per, we will concentrate on analyzing the behaviour of this

contrastive loss.
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Figure 4. Uniformity of embedding distribution trained with dif-

ferent temperature on CIFAR10, CIFAR100 and SVHN. The

x axis represents different temperature, and y axis represents

−Luniformity. Large value means the distribution is more uniform.
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Figure 5. Measurement of tolerance on models trained on CI-

FAR10, CIFAR100 and SVHN. The x axis represents different

temperatures, and y axis represents the tolerance to samples with

the same category. Large value means the model is more tolerant

to semantically consistent samples.

4. Uniformity-Tolerance Dilemma

In this section, we study two properties: uniformity of

the embedding distribution and the tolerance to semanti-

cally similar samples. The two properties are both impor-

tant to the feature quality.

4.1. Embedding Uniformity

In [31], the authors find that the uniformity is a signif-

icant property in contrastive learning. The contrastive loss

can be distangled to two parts, which encourages the pos-

itive features to be aligned and the embeddings to match

a uniform distribution in a hypersphere. In this part, we

will explore the relation between the local separation and

the uniformity of embeddings. To this end, we incorporate

the uniformity metric proposed by [31], which is based on

a gaussian potential kernel:

Luniformity(f ; t) = log E
x,y∼pdata

[

e−t||f(x)−f(y)||22

]

(10)

We calculate Luniformity on models trained with differ-

ent temperatures to control different levels of local sep-

aration. We trained different models on CIFAR10, CI-

FAR100, SVHN and ImageNet100. Fig 4 shows the ten-

dency. As the temperature increases, the embedding distri-

bution tends to be less uniform (In Fig 4, the y-axis repre-

sents the −Luniformity). And when τ is small, the embed-

ding distribution is closer to a uniform distribution. This

can be explained as follows: when the temperature is small,

the contrastive loss tends to separate the positive samples

close to the anchor sample, which makes the local distribu-

tion be sparse. With all samples are trained, the embedding

space tends to make the neighbour of each point be sparse,

and the distribution tends to be more uniform. For the hard

contrastive loss, the situation is illustrated in Fig 6. With

the hard contrastive loss as objective, the distribution tends

to be more uniform. Besides, the uniformity keeps relative

stable with the change of temperature compared with the

ordinary contrastive loss. The explicit hard negative sam-

pling weakened the effect of the temperature to control the

hardness-aware property.

4.2. Tolerance to Potential Positive Samples

The objective of contrastive learning is to learn the aug-

mentation alignment and instance discriminative embed-

ding. The contrastive loss has no constraint to the distri-

bution of the negative samples. However, with the help of

heavy augmentation and strong abstraction ability of deep

convolutional neural networks, the negative distribution re-

flects some extent of semantics, which is illustrated in Fig

1 (a). However, from the above section we have recog-

nized that when the temperature τ is very small, the penal-

ties to the nearest neighbours will be strengthened, which

will push the semantically similar samples strongly to break

the semantic structure of the embedding distribution. To ex-

plain the phenomenon in a quantitative manner, we measure

the tolerance to the semantically consistent samples using

the mean similarities of samples belong to the same class,

which is formulated as:

T = E
x,y∼pdata

[

(f(x)T f(y)) · Il(x)=l(y)

]

(11)

where l(x) represents the supervised label of image x.

Il(x)=l(y) is an indicator function, having the value of 1

for l(x) = l(y) and the value of 0 for l(x) 6= l(y). Fig

5 shows the tolerance with respect to different temperatures

on CIFAR10 and CIFAR100. We could see that the toler-

ance is positively related to the temperature τ . However,

the tolerance can not directly reflect the feature quality. For

example, when all the samples reside in a single point of

the hypersphere, then the tolerance is maximized, while the

feature quality is bad. The tolerance reflects the local den-

sity of semantically related samples. An ideal model should

be both locally clustered and globally uniform.

The contrastive loss meets a uniformity-tolerance

dilemma. On the one hand, we hope to decrease the temper-

ature τ to increase the uniformity of the embedding distribu-

tion, on the other hand, we hope to increase the temperature
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Figure 6. Uniformity of embedding distribution trained with hard

contrastive loss Lhard on the three datasets. The x axis represents

different temperature, and y axis represents −Luniformity. Large

value means the distribution is more uniform.
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Figure 7. Measurement of tolerance on models trained on the three

datasets with hard contrastive loss Lhard. The x axis represents

different temperatures, and y axis represents the tolerance to sam-

ples with the same category. Large value means the model is more

tolerant to semantically consistent samples.

to make the embedding space tolerant to the similar sam-

ples. For the ordinary contrastive loss, it is a compromise to

choose the appropriate temperature to balance both the em-

bedding uniformity and the tolerance to semantically simi-

lar samples. The dilemma is caused by the inherent defect

of unsupervised contrastive loss that it pushes all different

instances ignoring their semantical relations.

Fig 6 and Fig 7 show the measurement of the embed-

ding uniformity and the tolerance to samples in the same

categories. We will see that the embedding distribution pro-

duced by hard contrastive loss is more uniform than the

ordinary contrastive loss. This is caused by the increased

gradients on the informative samples. Correspondingly, the

tolerance to potential positive samples is decreased com-

pared with the ordinary contrastive loss. However, the de-

crease of tolerance is caused by the increased uniformity,

i.e., similarities with the samples in different categories are

also decreased.

The hard contrastive loss deals better with the

uniformity-tolerance dilemma. As we can see from Fig 6

and Fig 7, the uniformity keeps relative stable compared

with the ordinary contrastive loss (from Fig 4). Relative

large temperature can help be more tolerant to the poten-

tial positive samples without decreasing too much unifor-

mity. We consider this is because the explicit hard negative

sampling strategy is very effective for generating uniform

embedding distribution.

5. Results

5.1. Experiment Details

Pretraining. We conduct experiments on CIFAR10, CI-

FAR100 [15], SVHN [18] and ImageNet100 [6]. The la-

bels of the ImageNet100 are listed in the supplementary

material. For the pretraining stage, we use resnet18 [12]

with a minor modification (change the size of the first con-

volutional kernel as 3 × 3 to adapt to 32 × 32 input) as

the backbone on CIFAR10, CIFAR100 and SVHN, and we

use resnet50 [12] as the backbone on ImageNet100. For

CIFAR10, CIFAR100 and SVHN, the augmentations fol-

low [33]: a 32 × 32 pixel crop is taken from a randomly

resized image, and then undergoes random color jittering,

random horizontal flip, and random gray scale conversion.

For ImageNet-100, we follows [4] to add a random gaus-

sian blur operation. To save the negative features, we follow

[33] to create a memory bank which records the exponential

moving average of the learned features. We use SGD as our

optimizer. The SGD weight decay is 5e-4 for CIFAR10, CI-

FAR100 and SVHN, and 1e-4 for ImageNet100. The SGD

momentum is set to 0.9. For the hard contrastive loss, the

α is set to 0.0819, 0.0819, 0.0315 and 0.034 for CIFAR10,

CIFAR100, SVHN, and ImageNet100 (4095 negative sam-

ples). We train all models for 200 epochs with the learning

rate multiplied by 0.1 at 160 and 190 epochs. We set an

initial learning rate as 0.03, with a mini-batch size of 128.

Evaluation. We validate the performance of the pre-

trained models on linear classification models. Specifically,

we train the linear layer for 100 epochs, with all convolu-

tional layers frozen. We set an initial learning rate of 30.0,

which is multiplied by 0.2 at 40, 60 and 80 epochs, and use

SGD optimizer with weight decay of 0.

5.2. Local Separation

In this subsection, we evaluate the effect of the tempera-

ture. First, we try to figure out if the temperature accurately

controls the strength of penalties on hard negative samples,

furthermore, the extent of local separation. Specifically, we

calculate si,j for all point xj given an anchor sample xi,

and then take an average over all anchor samples. We sort

the similarities in a descending order and observe the dis-

tribution of the positive similarities si,i and ten largest neg-

ative similarities that for all si,l ∈ Top10({si,j |∀j 6= i}).
We calculate these positive and negative similarities with

the models trained on CIFAR100 and display them in Fig

8 (It is the same pattern when we calculate them on other

datasets displayed in supplementary material). From Fig 8,
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Figure 8. We display the similarity distribution of positive samples and the top-10 nearest negative samples that are marked as ’pos’ and

’ni’ for the i-th nearest neighbour. All models are trained on CIFAR100. For models trained on other datasets, they present the same pattern

with the above figure, and we display them in the supplementary material.
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Figure 9. Performance comparison of models trained with different temperatures. For CIFAR10, CIFAR100 and SVHN, the backbone

network is ResNet-18, and for ImageNet, the backbone network is ResNet-50. After the pretraining stage, we freeze all convolutional

layers and add a linear layer. We report 1-crop top-1 accuracy for all models.

we observe that: (1) As the τ decreases, the gap between

positive samples and other confusing negative samples are

larger, i.e., the positive and negative samples are more sepa-

rable. (2) As τ increases, the positive similarities tend to be

closer to 1. Observation (1) shows that small temperature

indeed tends to push the hard negative samples more sig-

nificantly, as indicated in the Fig 3, that small temperature

makes the distribution of ri more sharply and concentrate

most the penalties on the hardest negative samples (near-

est neighbours). As the temperature increases, the positive

samples and some confusing negative samples are likely to

be less discriminative, and the relative penalties distribution

ri tends to be more uniform to concentrate less on the hard

negative samples. Observation (2) shows that as the temper-

ature increases, the positive samples are more aligned, and

the model tends to learn features more invariant to the data

augmentations. We explain that the observation (2) is also

caused by the role of temperature. For example, when the

temperature is small, the contrastive loss punishes the hard-

est samples which are likely to share the similar content as

the augmentations. Punishing these similar negative sam-

ples away significantly will make the objective of making

positive samples alignment puzzling.

5.3. Feature Quality

We evaluate the performance of the contrastive models

with different settings on cifar10, cifar100, SVHN and Im-

ageNet100. Fig 9 shows the performances of linear clas-

sification on the four datasets respectively. For the mod-

els trained with ordinary contrastive loss (Eq 1), the per-

formance tends to present a reverse-U shape. The mod-

els achieve the best performance when the temperature is

0.2 or 0.3. Models with small or large temperature achieve

suboptimal performances. The results indicate that it is a

compromise between uniformity and the tolerance. Mod-

els with small temperature tend to generate uniform embed-

ding distribution, while they break the underlying semantic

structure because they give large magnitudes of penalties to

the closeness of potential positive samples. It is harmful to

concentrate on the hardest negative samples due to they are

very likely to be the samples whose semantic properties are

very similar to the anchor point. On the other hand, mod-

els with large temperature tends to be more tolerant to the

semantically consistent samples, while they may generate

embeddings with not enough uniformity. Table 1 shows the

numerical results, from which we can see that although the

tolerance increases as the temperature increases, the unifor-

mity decreases. This indicates that the embeddings tend to
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Dataset Result
Contrastive

Simple
HardContrastive

HardSimple
0.07 0.3 0.7 1.0 0.07 0.3 0.7 1.0

CIFAR10

accuracy 79.75 83.27 82.69 82.21 74.83 79.2 83.63 84.19 84.19 84.84

uniformity 3.86 3.60 3.17 2.96 1.68 3.88 3.89 3.87 3.86 3.85

tolerance 0.04 0.178 0.333 0.372 0.61 0.034 0.0267 0.030 0.030 0.030

CIFAR100

accuracy 51.82 56.44 50.99 48.33 39.31 50.77 56.55 57.54 56.77 55.71

uniformity 3.86 3.60 3.18 2.96 2.12 3.87 3.88 3.87 3.86 3.86

tolerance 0.10 0.269 0.331 0.343 0.39 0.088 0.124 0.158 0.172 0.174

SVHN

accuracy 92.55 95.47 94.17 92.07 70.83 91.82 94.79 95.02 95.26 94.99

uniformity 3.88 3.65 3.27 3.05 1.50 3.89 3.91 3.90 3.88 3.85

tolerance 0.032 0.137 0.186 0.197 0.074 0.025 0.021 0.021 0.023 0.026

ImageNet100

accuracy 71.53 75.10 69.03 63.57 48.09 68.33 74.21 74.70 74.28 74.31

uniformity 3.917 3.693 3.323 3.08 1.742 3.929 3.932 3.927 3.923 3.917

tolerance 0.093 0.380 0.427 0.456 0.528 0.067 0.096 0.121 0.134 0.157

Table 1. We report the accuracy of linear classification on CIFAR10, CIFAR100 and SVHN, including models trained with the ordinary

contrastive loss, simple contrastive loss, hard contrastive loss and hard simple contrastive loss. For models trained on ordinary contrastive

loss and hard contrastive loss, we select several representative temperatures. More results are shown in the supplementary material.

reside in a crowd region on the hypersphere. For the mod-

els trained with the hard contrastive loss (Eq 9), the above

uniformity-tolerance dilemma is alleviated. From Fig 9,

we observe that the models trained with hard contrastive

loss achieve better results when the temperatures are large

enough. This is because the uniformity is guaranteed by the

explicit hard negative mining, which is reflected in Fig 6.

5.4. Uniformity and Tolerance

To measure the uniformity of embedding distribution and

the tolerance to the semantically similar samples, we use

Eq 10 and 11 as the measurement of those two properties.

The experiments are conducted on CIFAR10, CIFAR100,

SVHN and ImageNet100 respectively. Fig 4 and Fig 5 show

the uniformity and tolerance of models trained with ordi-

nary contrastive loss. Fig 6 and Fig 7 show the uniformity

and tolerance of models trained with the hard contrastive

loss. Detailed analysis is presented in Section 4. Concrete

numerical values are present in Table 1 for some representa-

tive models, all results are listed in supplementary material.

5.5. Substitution of Contrastive Loss

We have claimed that the hardness-aware property is a

key property to the success of contrastive loss. In this part,

we will show that with explicit hard negative sampling strat-

egy, the softmax-based contrastive loss of Eq 1 is not nec-

essary, and a simple contrastive loss of Eq 3 works pretty

well and achieve competitive results. Table 1 shows the

results. Concretely, we use the simple contrastive loss of

Eq 3 as objective, which is equivalent to the extreme case

as τ approaches +∞, and is marked as Simple in Table 1.

Besides, we also trained models with a hard simple con-

trastive loss, using the nearest 4095 features as negative

samples, which is marked as HardSimple in Table 1. With-

out the hardness-aware property, the learned models with

Lsimple perform much worse than models trained with or-

dinary contrastive loss (74.83 vs 83.27 on CIFAR10, 39.31

vs 56.44 on CIFAR100, 70.83 vs 95.47 on SVHN, 48.09 vs

75.10 on ImageNet100). However, when the negative sam-

ples of the Lsimple are drawn from the nearest neighbours,

the trained models achieve competitive results on all three

datasets. This shows that the hardness-aware property is the

core to the success of the contrastive loss.

6. Conclusion

In this paper, we try to understand the behaviour of the

unsupervised contrastive loss. We show that the contrastive

loss is a hardness-aware loss function, and the hardness-

aware property is significant to the success of the contrastive

loss. Besides, the temperature plays a key role in controlling

the local separation and global uniformity of the embed-

ding distributions. With the temperature as a proxy, we have

studied the uniformity-tolerance dilemma, which is a chal-

lenge met by the unsupervised contrastive learning. We be-

lieve the uniformity-tolerance dilemma can be addressed by

explicitly modeling the relation between different instances.

We hope our work can inspire researchers to explore such

algorithm to address the uniformity-tolerance dilemma.
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