
Unsupervised Degradation Representation Learning for Blind Super-Resolution

Longguang Wang1, Yingqian Wang1, Xiaoyu Dong2,3, Qingyu Xu1, Jungang Yang1, Wei An1, Yulan Guo1∗

1National University of Defense Technology 2The University of Tokyo 3RIKEN AIP

{wanglongguang15,yulan.guo}@nudt.edu.cn

Abstract

Most existing CNN-based super-resolution (SR) methods

are developed based on an assumption that the degradation

is fixed and known (e.g., bicubic downsampling). However,

these methods suffer a severe performance drop when the

real degradation is different from their assumption. To han-

dle various unknown degradations in real-world applica-

tions, previous methods rely on degradation estimation to

reconstruct the SR image. Nevertheless, degradation esti-

mation methods are usually time-consuming and may lead

to SR failure due to large estimation errors. In this pa-

per, we propose an unsupervised degradation representa-

tion learning scheme for blind SR without explicit degrada-

tion estimation. Specifically, we learn abstract representa-

tions to distinguish various degradations in the representa-

tion space rather than explicit estimation in the pixel space.

Moreover, we introduce a Degradation-Aware SR (DASR)

network with flexible adaption to various degradations

based on the learned representations. It is demonstrated

that our degradation representation learning scheme can

extract discriminative representations to obtain accurate

degradation information. Experiments on both synthetic

and real images show that our network achieves state-of-

the-art performance for the blind SR task. Code is avail-

able at: https://github.com/LongguangWang/

DASR.

1. Introduction

Single image super-resolution (SR) aims at recovering

a high-resolution (HR) image from a low-resolution (LR)

observation. Recently, CNN-based methods [9, 22, 24, 2,

32] have dominated the research of SR due to the powerful

feature representation capability of deep neural networks.

As a typical inverse problem, SR is highly coupled with the

degradation model [3]. Most existing CNN-based methods

are developed based on an assumption that the degradation

is known and fixed (e.g., bicubic downsampling). However,

these methods suffer a severe performance drop when the

real degradation differs from their assumption [12].
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Figure 1. An illustration of our unsupervised degradation repre-

sentation learning scheme.

To handle various degradations in real-world applica-

tions, several methods [42, 33, 40, 34] have been proposed

to investigate the non-blind SR problem. Specifically, these

methods use a set of degradations (e.g., different combi-

nations of Gaussian blurs, motion blurs and noises) for

training and assume the degradation of the test LR image

is known at the inference time. These non-blind methods

produce promising SR results when the true degradation is

known in priori.

To super-resolve real images with unknown degrada-

tions, degradation estimation [28, 3] needs to be performed

to provide degradation information for non-blind SR net-

works [42, 33, 40, 34]. However, these non-blind methods

are sensitive to degradation estimation. Consequently, the

estimation error can further be magnified by the SR net-

work, resulting in obvious artifacts [12]. To address this

problem, Gu et al. [12] proposed an iterative kernel cor-

rection (IKC) method to correct the estimated degradation

by observing previous SR results. By iteratively correcting

the degradation, artifact-free results can be gradually pro-

duced. Since numerous iterations are required at test time

by degradation estimation methods [28, 3] and IKC [12],

these methods are time-consuming.

Unlike the above methods that explicitly estimate the

degradation from an LR image, we investigate a different

approach by learning a degradation representation to distin-

guish the latent degradation from other ones. Motivated by

recent advances of contrastive learning [13, 10, 35, 17, 5],

a contrastive loss is used to conduct unsupervised degra-

dation representation learning by contrasting positive pairs

against negative pairs in the latent space (Fig. 1). The
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benefits of degradation representation learning are twofold:

First, compared to extracting full representations to esti-

mate degradations, it is easier to learn abstract representa-

tions to distinguish different degradations. Consequently,

we can obtain a discriminative degradation representation

to provide accurate degradation information at a single in-

ference. Second, degradation representation learning does

not require the supervision from groundtruth degradation.

Thus, it can be conducted in an unsupervised manner and

is more suitable for real-world applications with unknown

degradations.

In this paper, we introduce an unsupervised degradation

representation learning scheme for blind SR. Specifically,

we assume the degradation is the same in an image but can

vary for different images, which is the general case widely

used in literature [42, 3, 40]. Consequently, an image patch

should be similar to other patches in the same image (i.e.,

with the same degradation) and dissimilar to patches from

other images (i.e., with different degradations) in the degra-

dation representation space, as illustrated in Fig. 1. More-

over, we propose a degradation-aware SR (DASR) network

with flexible adaption to different degradations based on

the learned representations. Specifically, our DASR incor-

porates degradation information to perform feature adap-

tion by predicting convolutional kernels and channel-wise

modulation coefficients from the degradation representa-

tion. Experimental results show that our network can handle

various degradations and produce promising results on both

synthetic and real-world images under blind settings.

2. Related Work

In this section, we briefly review several major works for

CNN-based single image SR and recent advances of con-

trastive learning.

2.1. Single Image Super­Resolution

SR with Single Degradation. As a pioneer work, a three-

layer network is used in SRCNN [9] to learn the LR-

HR mapping for single image SR. Since then, CNN-based

methods have dominated the research of SR due to their

promising performance. Kim et al. [21] proposed a 20-

layer network with a residual learning strategy. Lim et

al. [24] followed the idea of residual learning and modi-

fied residual blocks to build a very deep and wide network,

namely EDSR. Zhang et al. [45] then combined residual

learning and dense connection to construct a residual dense

network (RDN) with over 100 layers. Haris et al. [14] intro-

duced multiple up-sampling/down-sampling layers to pro-

vide an error feedback mechanism and used self-corrected

features to produce superior results. Recently, channel at-

tention and second-order channel attention are further in-

troduced by RCAN [44] and SAN [7] to exploit feature cor-

relation for improved performance.

SR with Multiple Degradations. Although important ad-

vances have been achieved by the above SR methods, they

are tailored to a fixed bicubic degradation and suffer se-

vere performance drop when the real degradation differs

from the bicubic one [12]. To handle various degradations,

several efforts [42, 38, 40, 20] have been made to investi-

gate the non-blind SR problem. Specifically, degradation

is first used as an additional input in SRMD [42] to super-

resolve LR images under different degradations. Later, dy-

namic convolutions are further incorporated in UDVD [38]

to achieve better performance than SRMD. Recently, Zhang

et al. [40] developed an unfolding SR network (USRnet) to

handle different degradations by alternately solving a data

sub-problem and a prior sub-problem. Hussein et al. [20]

introduced a closed-form correction filter to transform an

LR image to match the one generated by bicubic degrada-

tion. Then, existing networks trained for bicubic degrada-

tion can be used to super-resolve the transformed LR image.

Zero-shot methods have also been investigated to

achieve SR with multiple degradations. In ZSSR [33],

training is conducted at test time using a degradation and

an LR image as its input. Consequently, the network can

be adapted to the given degradation. However, ZSSR re-

quires thousands of iterations to converge and is quite time-

consuming. To address this limitation, optimization-based

meta-learning is used in MZSR [34] to make the network

adaptive to a specific degradation within a few iterations

during inference.

Since degradation is used as an input for these aforemen-

tioned methods, they highly rely on degradation estimation

methods [28, 3] for blind SR. Therefore, degradation esti-

mation errors can ultimately introduce undesired artifacts

to the SR results [12]. To address this problem, Gu et al.

[12] proposed an iterative kernel correction (IKC) method

to correct the estimated degradation by observing previous

SR results. Luo et al. [25] developed a deep alternating net-

work (DAN) by iteratively estimating the degradation and

restoring an SR image.

2.2. Contrastive Learning

Contrastive learning has demonstrated its effectiveness

in unsupervised representation learning. Previous meth-

ods [8, 43, 29, 11] usually conduct representation learn-

ing by minimizing the difference between the output and a

fixed target (e.g., the input itself for auto-encoders). Instead

of using a pre-defined and fixed target, contrastive learn-

ing maximizes the mutual information in a representation

space. Specifically, the representation of a query sample

should attract positive counterparts while repelling negative

counterparts. The positive counterparts can be transformed

versions of the input [37, 5, 17], multiple views of the input

[35] and neighboring patches in the same image [30, 18]. In

this paper, image patches generated with the same degrada-
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tion are considered as positive counterparts and contrastive

learning is conducted to obtain content-invariant degrada-

tion representations, as shown in Fig. 1.

3. Methodology

3.1. Problem Formulation

The degradation model of an LR image ILR can be for-

mulated as follows:

ILR = (IHR ⊗ k) ↓s +n, (1)

where IHR is the HR image, k is a blur kernel, ⊗ denotes

convolution operation, ↓s represents downsampling oper-

ation with scale factor s and n usually refers to additive

white Gaussian noise. Following [42, 12], we use bicubic

downsampler as the downsampling operation. In this pa-

per, we first investigate a noise-free degradation model with

isotropic Gaussian kernels and then a more general degra-

dation model with anisotropic Gaussian kernels and noises.

Finally, we test our network on real-world degradations.

3.2. Our Method

Our blind SR framework consists of a degradation en-

coder and a degradation-aware SR network, as illustrated in

Fig. 2. First, the LR image is fed to the degradation encoder

(Fig. 2(a)) to obtain a degradation representation. Then, this

representation is incorporated in the degradation-aware SR

network (Fig. 2(b)) to produce the SR result.

3.2.1 Degradation Representation Learning

The goal of degradation representation learning is to extract

a discriminative representation from the LR image in an

unsupervised manner. As shown in Fig. 1, we use a con-

trastive learning framework [17] for degradation represen-

tation learning. Note that, we assume the degradation is the

same in each image and varies for different images.

Formulation. Given an image patch (annotated with an or-

ange box in Fig. 1) as the query patch, other patches ex-

tracted from the same LR image (e.g., the patch annotated

with a red box) can be considered as positive samples. In

contrast, patches from other LR images (e.g., patches anno-

tated with blue boxes) can be referred to as negative sam-

ples. Then, we encode the query, positive and negative

patches into degradation representations using a convolu-

tional network with six layers (Fig. 2(a)). As suggested in

SimCLR [5] and MoCo v2 [6], the resulting representations

are further fed to a two-layer multi-layer perceptron (MLP)

projection head to obtain x, x+ and x−. x is encouraged to

be similar to x+ while being dissimilar to x−. Following

MoCo [17], an InfoNCE loss is used to measure the simi-

larity. That is,

Lx = −log
exp(x · x+/τ)

∑N

n=1
exp(x · x−

n /τ)
, (2)

where N is the number of negative samples, τ is a tem-

perature hyper-parameter and · represents the dot product

between two vectors.

As emphasized in existing contrastive learning methods

[5, 17, 31], a large dictionary covering a rich set of negative

samples is critical for good representation learning. To ob-

tain content-invariant degradation representations, a queue

containing samples with various contents and degradations

is maintained. During training, B LR images (i.e., B dif-

ferent degradations) are first randomly selected and then

two patches are randomly cropped from each image. Next,

these 2B patches are encoded into {p1i , p
2
i ∈ R

256} using

our degradation encoder, where p1i is the embedding of the

first patch from the ith image. For the ith image, we refer

to p1i and p2i as query and positive samples. The overall loss

is defined as:

Ldegrad =

B∑

i=1

−log
exp(p1i · p

2
i /τ)∑Nqueue

j=1 exp(p1i · p
j
queue/τ)

, (3)

where Nqueue is the number of samples in the queue and

pjqueue represents the jth negative sample.

Discussion. Existing degradation estimation methods [28,

3, 12] aim at estimating the degradation (usually the blur

kernel) at pixel level. That is, these methods learn to extract

full representations of the degradation. However, they are

time-consuming as numerous iterations are required dur-

ing inference. For example, KernelGAN conducts network

training during test and takes over 60 seconds for a single

image [3]. Different from these methods, we aim at learn-

ing a “good” abstract representation to distinguish a specific

degradation from others rather than explicitly estimating the

degradation. It is demonstrated in Sec. 4.2 that our degrada-

tion representation learning scheme is effective yet efficient

and can obtain discriminative representations at a single in-

ference. Moreover, our scheme does not require the super-

vision from groundtruth degradation and can be conducted

in an unsupervised manner.

3.2.2 Degradation-Aware SR Network

With degradation representation learning, a degradation-

aware SR (DASR) network is proposed to super-resolve the

LR image using the resultant representation, as shown in

Fig. 2(b).

Network Architecture. Figure 2(b) illustrates the architec-

ture of our DASR network. Degradation-aware block (DA

block) is used as the building block and the high-level struc-

ture of RCAN [44] is employed. Our DASR network con-
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Figure 2. An overview of our blind SR framework.

sists of 5 residual groups, with each group comprising of 5

DA blocks.

Within each DA block, two DA convolutional layers are

used to adapt the features based on the degradation repre-

sentation, as shown in Fig. 2(c). Motivated by the obser-

vation that convolutional kernels of models trained for dif-

ferent restoration levels share similar patterns but have dif-

ferent statistics [15], our DA convolutional layer learns to

predict the kernel of a depth-wise convolution conditioned

on the degradation representation. Specifically, the degra-

dation representation R is fed to two full-connected (FC)

layers and a reshape layer to produce a convolutional ker-

nel w ∈ R
C×1×3×3. Then, the input feature F is pro-

cessed with a 3 × 3 depth-wise convolution (using w) and

a 1 × 1 convolution to produce F1. Moreover, inspired by

CResMD [16] (that uses controlling variables to rescale dif-

ferent channels to handle multiple degradations), our DA

convolutional layer also learns to generate modulation coef-

ficients based on the degradation representation to perform

channel-wise feature adaption. Specifically, R is passed to

another two FC layers and a sigmoid activation layer to gen-

erate channel-wise modulation coefficients v. Then, v is

used to rescale different channel components in F , result-

ing in F2. Finally, F1 is summed up with F2 and fed to the

subsequent layers to produce the output feature Fout.

Discussion. Existing SR networks [42, 38] for multiple

degradations commonly concatenate degradation represen-

tations with image features and feed them to CNNs to ex-

ploit degradation information. However, due to the do-

main gap between degradation representations and image

features, directly processing them as a whole using convo-

lution will introduce interference [12]. Different from these

networks, by learning to predict convolutional kernels and

modulation coefficients based on the degradation represen-

tations, our DASR can well exploit degradation informa-

tion to adapt to specific degradations. It is demonstrated

in Sec. 4.2 that our DASR benefits from DA convolution to

achieve flexible adaption to various degradations with better

SR performance.

4. Experiments

4.1. Datasets and Implementation Details

We synthesized LR images according to Eq. 1 for train-

ing and test. Following [12], we used 800 training images

in DIV2K [1] and 2650 training images in Flickr2K [36] as

the training set, and included four benchmark datasets (Set5

[4], Set14 [39], B100 [27] and Urban100 [19]) for evalua-

tion. The size of the Gaussian kernel was fixed to 21 × 21
following [12]. We first trained our network on noise-free

degradations with isotropic Gaussian kernels only. The

ranges of kernel width σ were set to [0.2,2.0], [0.2,3.0] and

[0.2,4.0] for ×2/3/4 SR, respectively. Then, our network

was trained on more general degradations with anisotropic

Gaussian kernels and noises. Anisotropic Gaussian kernels

characterized by a Gaussian probability density function

N(0,Σ) (with zero mean and varying covariance matrix Σ)

were considered. The covariance matrix Σ was determined

by two random eigenvalues λ1, λ2 ∼ U(0.2, 4) and a ran-

dom rotation angle θ ∼ U(0, π). The range of noise level

was set to [0, 25].

During training, 32 HR images were randomly selected

and data augmentation was performed through random ro-

tation and flipping. Then, we randomly chose 32 Gaus-

sian kernels from the above ranges to generate LR images.

For general degradations, Gaussian noises were also added

to the resultant LR images. Next, 64 LR patches of size

48 × 48 (two patches from each LR image as illustrated in

10584



Table 1. PSNR results achieved on Set14 for ×4 SR. *: SRMDNF is a version of SRMD trained with noise-free samples.

Method
Degradation

Representation Learning

DA Conv Oracle

Degradation
Time

Kernel Width σ

Kernel Modulation 0.2 1.0 1.8 2.6 3.4

SRMDNF* [42] - - - ✓ 3ms 28.44 28.50 28.49 28.31 27.55

SRMDNF [42] + KernelGAN [3] - - - ✗ 3ms+190s 26.62 26.74 26.62 26.88 26.66

SRMDNF [42] + Predictor [12] - - - ✗ 3ms+2ms 26.13 26.15 26.19 26.20 26.18

Model 1 ✗ ✓ ✓ ✗ 70ms 28.46 28.40 28.30 27.77 26.79

Model 2 ✓ ✗ ✗ ✗ 51ms 28.49 28.38 27.99 27.54 26.72

Model 3 ✓ ✓ ✗ ✗ 67ms 28.42 28.30 28.21 27.97 27.33

Model 4 (Ours) ✓ ✓ ✓ ✗ 70ms 28.50 28.45 28.40 28.16 27.58

Model 5 - ✓ ✓ ✓ 61ms 28.60 28.67 28.69 28.48 27.90

Sec. 3.2.1) and their corresponding HR patches were ran-

domly cropped. In our experiments, we set τ and Nqueue

in Eq. 3 to 0.07 and 8192, respectively. The Adam method

[23] with β1 = 0.9 and β2 = 0.999 was used for optimiza-

tion. We first trained the degradation encoder by optimizing

Ldegrad for 100 epochs. The initial learning rate was set to

1× 10−3 and decreased to 1× 10−4 after 60 epochs. Then,

we trained the whole network for 500 epochs. The initial

learning rate was set 1 × 10−4 and decreased to half after

every 125 epochs. The overall loss function is defined as

L = LSR+Ldegrad, where LSR is the L1 loss between SR

results and HR images.

4.2. Experiments on Noise­Free Degradations with
Isotropic Gaussian Kernels

We first conduct ablation experiments on noise-free

degradations with only isotropic Gaussian kernels. Then,

we compare our DASR to several recent SR networks, in-

cluding RCAN [44], SRMD [42], MZSR [33] and IKC [12].

RCAN is a state-of-the-art PSNR-oriented SR method for

bicubic degradation. MZSR is a non-blind zero-shot SR

method for degradations with isotorpic/anisotropic Gaus-

sian kernels. SRMD is a non-blind SR method for degra-

dations with isotropic/anisotropic Gaussian kernels and

noises. IKC is a blind SR method that only considers degra-

dations with isotropic Gaussian kernels. Note that, we do

not include DAN [25], USRnet [40] and correction filter

[20] for comparison since their degradation model is dif-

ferent from ours. These methods use s-fold downsampler1

rather than bicubic downsampler as the downsampling oper-

ation in Eq. 1. To achieve fair comparison with [25, 40, 20],

we re-trained our DASR using their degradation model and

provide the results in the supplemental material.

Degradation Representation Learning. Degradation rep-

resentation learning is used to produce discriminative rep-

resentations to provide degradation information. To demon-

strate its effectiveness, we introduced a network variant

(Model 1) by removing degradation representation learning.

Specifically, Ldegrad was excluded during training without

changing the network. Besides, the separate training of

degradation encoder was removed and the whole network

was directly trained for 500 epochs.

1Extract upper-left pixel within each s× s patch.

(a) (b)

Figure 3. Visualization of representations for degradations with

different kernel widths σ. (a) illustrates representations generated

by our DASR w/o degradation representation learning (Model 1).

(b) illustrates representations generated by our DASR (Model 4).

We first compare the degradation representations learned

by models 1 and 4. Specifically, we used B100 to gen-

erate LR images with different degradations and fed them

to models 1 and 4 to produce degradation representations.

Then, these representations are visualized using the T-SNE

method [26]. It can be observed in Fig. 3(b) that our degra-

dation representation learning scheme can generate discrim-

inative clusters. Without degradation representation learn-

ing, degradations with various kernel widths cannot be well

distinguished, as shown in Fig. 3(a). This demonstrates that

degradation representation learning facilitates our degrada-

tion encoder to learn discriminative representations to pro-

vide accurate degradation information. We further com-

pare the SR performance of models 1 and 4 in Table 1.

If degradation representation learning is removed, model

1 cannot handle multiple degradations well and produces

lower PSNR values, especially for large kernel widths. In

contrast, model 4 benefits from accurate degradation infor-

mation provided by degradation representation learning to

achieve better SR performance.

Degradation-Aware Convolutions. With degradation en-

coder, the extracted degradation representation is incorpo-

rated by DA convolutions to achieve flexible adaption to

different degradations by predicting convolutional kernels

and channel-wise modulation coefficients. To demonstrate

the effectiveness of these two key components, we first in-

troduced a variant (Model 2) by replacing DA convolutions

with vanilla ones. Specifically, degradation representations

are stretched and concatenated with image features as in

[42] before being fed to vanilla convolutions. Then, we de-
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Table 2. PSNR results achieved on noise-free degradations with isotropic Gaussian kernels. Note that, the degradation becomes bicubic

degradation when kernel width is set to 0. Running time is averaged on Set14.

Method Scale Time Set5 Set14 B100 Urban100

Kernel Width 0 0.6 1.2 1.8 0 0.6 1.2 1.8 0 0.6 1.2 1.8 0 0.6 1.2 1.8

Bicubic

×2

- 33.66 32.30 29.28 27.07 30.24 29.21 27.13 25.47 29.56 28.76 26.93 25.51 26.88 26.13 24.46 23.06

RCAN [44] 170ms 38.27 35.91 31.20 28.50 34.12 32.31 28.48 26.33 32.41 31.16 28.04 26.26 33.34 29.80 25.38 23.44

SRMDNF [42] + Predictor [12] 9ms 34.94 34.77 34.13 33.80 31.48 31.35 30.78 30.18 30.77 30.33 29.89 29.20 29.05 28.42 27.43 27.12

MZSR [34] + Predictor [12] 90ms 35.96 35.66 35.22 32.32 31.97 31.33 30.85 29.17 30.64 29.82 29.41 28.72 29.49 29.01 28.43 26.39

DASR (Ours) 71ms 37.87 37.47 37.19 35.43 33.34 32.96 32.78 31.60 32.03 31.78 31.71 30.54 31.49 30.71 30.36 28.95

Kernel Width 0 0.8 1.6 2.4 0 0.8 1.6 2.4 0 0.8 1.6 2.4 0 0.8 1.6 2.4

Bicubic

×3

- 30.39 29.42 27.24 25.37 27.55 26.84 25.42 24.09 27.21 26.72 25.52 24.41 24.46 24.02 22.95 21.89

RCAN [44] 167ms 34.74 32.90 29.12 26.75 30.65 29.49 26.75 24.99 29.32 28.56 26.55 25.18 29.09 26.89 23.85 22.30

SRMDNF [42] + Predictor [12] 6ms 32.22 32.63 32.27 28.62 29.13 29.25 28.01 26.90 28.41 28.25 28.11 26.56 26.75 26.61 26.35 24.06

DASR (Ours) 70ms 34.11 34.08 33.57 32.15 30.13 29.99 28.66 28.42 28.96 28.90 28.62 28.13 27.65 27.36 26.86 25.95

Kernel Width 0 1.2 2.4 3.6 0 1.2 2.4 3.6 0 1.2 2.4 3.6 0 1.2 2.4 3.6

Bicubic

×4

- 28.42 27.30 25.12 23.40 26.00 25.24 23.83 22.57 25.96 25.42 24.20 23.15 23.14 22.68 21.62 20.65

RCAN [44] 165ms 32.63 30.26 26.72 24.66 28.87 27.48 24.93 23.41 27.72 26.89 25.09 23.93 26.61 24.71 22.25 20.99

SRMDNF [42] + Predictor [12] 5ms 30.61 29.35 29.27 28.65 27.74 26.15 26.20 26.17 27.15 26.15 26.15 26.14 25.06 24.11 24.10 24.08

IKC [12] 517ms 32.00 31.77 30.56 29.23 28.52 28.45 28.16 26.81 27.51 27.43 27.27 26.33 25.93 25.63 25.00 24.06

DASR (Ours) 70ms 31.99 31.92 31.75 30.59 28.50 28.45 28.28 27.45 27.51 27.52 27.43 26.83 25.82 25.69 25.44 24.66

veloped another variant (Model 3) by removing the channel-

wise modulation coefficient branch. Note that, we adjust the

number of channels in models 2 and 3 to ensure comparable

model sizes. From Table 1 we can see that our DASR ben-

efits from both dynamic convolutional kernels and channel-

wise modulation coefficients to produce better results for

various degradations.

Blind SR vs. Non-Blind SR. We further investigate the

upper-bound performance of our DASR network by pro-

viding groundtruth degradation. Specifically, we replaced

the degradation encoder with 5 FC layers to learn a repre-

sentation directly from the true degradation (i.e., blur ker-

nel). This network variant (Model 5) was then trained

from scratch for 500 epochs. When groundtruth degrada-

tion is provided, model 5 achieves improved performance

and outperforms SRMDNF by notable margins. Further,

SRMDNF is quite sensitive to degradation estimation er-

rors under blind settings, with PSNR values being decreased

if degradation is not accurately estimated (e.g., 27.55 vs.

26.66/26.18 for σ=3.4). In contrast, our DASR (Model 4)

benefits from degradation representation learning to achieve

better blind SR performance.

Study of Degradation Representations. Our degradation

representations aim at extracting content-invariant degrada-

tion information from LR images. To demonstrate this, we

conduct experiments to study the effect of different image

contents to our degradation representations. Specifically,

given an HR image, we first generated an LR image I1 using

a Gaussian kernel k. Then, we randomly selected another

9 HR images to generate LR images (Ii(i = 2, 3, ...10))
using k. Next, degradation representations were extracted

from Ii(i = 1, 2, ...10) to super-resolve I1. Note that,

Ii(i = 2, 3, ...10) and I1 share the same degradation but

have different image contents. From Fig. 4 we can see that

our network achieves relatively stable performance with

σ=0.2
σ=1.8
σ=3.4P

S
N
R

Images

28.60

28.40

28.20

28.00

27.80

27.60

27.40 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8 𝐼9 𝐼10
Figure 4. PSNR results achieved on Set14 using degradation rep-

resentations learned from different image contents.

degradation representations learned from different image

contents. This demonstrates that our degradation represen-

tations are robust to image content variations.

Comparison to Previous Networks. We compare DASR

to RCAN, SRMD, MZSR and IKC. Pre-trained models of

these networks are used for evaluation following their de-

fault settings. Quantitative results are shown in Table 2,

while visualization results are provided in Fig. 5. Note that,

MZSR2/IKC are only tested for ×2/4 SR since their pre-

trained models for other scale factors are unavailable. For

non-blind SR methods (SRMD and MZSR), we first per-

formed degradation estimation to provide degradation in-

formation. Since KernelGAN is quite time-consuming (Ta-

ble 1), the predictor sub-network in IKC was used to esti-

mate degradations.

It can be observed from Table 2 that RCAN produces the

highest PSNR results on bicubic degradation (i.e., kernel

width 0) while suffering relatively low performance when

the test degradations are different from the bicubic one. Al-

though SRMDNF and MZSR can adapt to the estimated

2Pre-trained ×4 model of MZSR is based on s-fold downsampler.
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LR Image GT Bicubic RCAN SRMDNF IKC DASR (Ours)

Figure 5. Visual comparison achieved on Urban100 for ×4 SR. The blur kernels are illustrated with red boxes.

degradations, these methods are sensitive to degradation es-

timation, as demonstrated in Table 1. Therefore, degrada-

tion estimation errors can be magnified by SRMDNF and

MZSR, resulting in limited SR performance. Since an it-

erative correction scheme is used to correct the estimated

degradation, IKC outperforms SRMDNF with higher PSNR

values being achieved. However, IKC is time-consuming

due to its iterations. Compared to IKC, our DASR network

achieves better performance for different degradations with

shorter running time. That is because, our degradation rep-

resentation learning scheme can extract “good” representa-

tions to distinguish different degradations at a single infer-

ence.

Visualization results achieved by different methods are

shown in Fig. 5. Since RCAN is trained on the fixed bicubic

degradation, it cannot reliably recover missing details when

the real degradation differs from the bicubic one. Although

SRMDNF can handle multiple degradations, failures can be

caused by the degradation estimation error. By iteratively

correcting the estimated degradations, IKC achieves better

performance than SRMDNF. Compared to other methods,

our DASR produces results with much clearer details and

higher perceptual quality.

4.3. Experiments on General Degradations with
Anisotropic Gaussian Kernels and Noises

We further conduct experiments on general degradations

with anisotropic Gaussian kernels and noises. We first ana-

lyze the representations learned from general degradations

and then compare the performance of our DASR to RCAN,

SRMDNF and IKC under blind settings.

Study of Degradation Representations. Experiments are

conducted to investigate the effect of two different compo-

nents (i.e., blur kernels and noises) to our degradation repre-

sentations. We first visualize the representations for noise-

free degradations with various blur kernels in Fig. 6(a).

Then, we randomly select a blur kernel and visualize the

representations for degradations with different noise levels

in Fig. 6(b). It can be observed that our degradation encoder

can easily cluster degradations with different noise levels

into discriminative groups and roughly distinguish various

(a) (b)

Figure 6. Visualization of representations for degradations with

different blur kernels (a) and noise levels (b).

blur kernels.

Comparison to Previous Networks. We use 9 typical blur

kernels and different noise levels for performance evalu-

ation. To super-resolve noisy LR images using RCAN,

SRMDNF and IKC, we first denoise the LR images us-

ing DnCNN [41] (a state-of-the-art denoising method) un-

der blind settings. Since the pre-trained model of IKC is

trained on isotropic Gaussian kernels only, we further fine-

tuned this model on anisotropic Gaussian kernels for fair

comparison. The predictor sub-network of the fine-tuned

IKC model is used to estimate degradations for SRMDNF.

It can be observed from Table 3 that RCAN produces

relatively low performance on complex degradations since

it is trained on bicubic degradation only. Since SRMDNF

is sensitive to degradation estimation errors, its perfor-

mance for complex degradations is limited. By iteratively

correcting the estimated degradations, IKC performs fa-

vorably against SRMDNF. However, IKC is more time-

consuming since numerous iterations are required. Differ-

ent from IKC that focuses on pixel-level degradation esti-

mation, our DASR explores an effective yet efficient ap-

proach to learn discriminative representations to distinguish

different degradations. Using our degradation representa-

tion learning scheme, DASR outperforms IKC in terms of

PSNR for various blur kernels and noise levels with running

time being reduced by over 7 times. Figure 7 further illus-

trates the visualization results produced by different meth-

ods. Our DASR achieves much better visual quality while
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Table 3. PSNR results achieved on Set14 for ×4 SR.

Method #Params. Time Noise

Blur Kernel

DnCNN [41]+RCAN [44] 650K+15.2M 169ms

0 26.44 26.22 24.48 24.23 24.29 24.19 23.90 23.42 23.01

5 26.10 25.90 24.29 24.07 24.14 24.02 23.74 23.31 22.92

10 25.65 25.47 24.05 23.84 23.92 23.80 23.54 23.14 22.77

DnCNN [41]+SRMDNF [44]+Predictor [12] 650K+1.5M+420K 8ms

0 26.84 26.88 25.57 25.69 25.64 24.98 25.12 25.28 24.84

5 25.92 25.75 24.18 23.97 24.05 23.93 23.65 23.20 22.80

10 25.39 25.23 23.88 23.68 23.74 23.65 23.39 22.99 22.64

DnCNN [41]+IKC [12] 650K+5.2M 520ms

0 27.71 27.78 27.11 27.02 26.93 26.65 26.50 26.01 25.33

5 26.91 26.80 24.87 24.53 24.56 24.40 24.06 23.53 23.06

10 26.16 26.09 24.55 24.33 24.35 24.17 23.92 23.43 23.01

DASR (Ours) 5.8M 70ms

0 27.99 27.97 27.53 27.45 27.43 27.22 27.19 26.83 26.21

5 27.25 27.18 26.37 26.16 26.09 25.96 25.85 25.52 25.04

10 26.57 26.51 25.64 25.47 25.43 25.31 25.16 24.80 24.43

Bicubic

GT

RCAN SRMDNF

IKC DASR (Ours)
Figure 7. Visual comparison achieved on Set14 and B100. Noise levels are set to 0 and 5 for these two images, respectively.

other methods suffer obvious blurring artifacts.

4.4. Experiments on Real Degradations

We further conduct experiments on real degradations to

demonstrate the effectiveness of our DASR. Following [42],

DASR trained on isotropic Gaussian kernels is used for

evaluation on real images. Visualization results are shown

in Fig. 8. It can be observed that our DASR produces visu-

ally more promising results with clearer details and fewer

blurring artifacts.

5. Conclusion

In this paper, we proposed an unsupervised degrada-

tion representation learning scheme for blind SR to han-

dle various degradations. Instead of explicitly estimating

the degradations, we use contrastive learning to extract dis-

criminative representations to distinguish different degra-

dations. Moreover, we introduce a degradation-aware SR

(DASR) network with flexible adaption to different degra-

dations based on the learned representations. It is demon-

strated that our degradation representation learning scheme

can extract discriminative representations to obtain accurate

RCAN SRMDNF

IKC DASR (Ours)

Figure 8. Visualization results achieved on a real image.

degradation information. Experimental results show that

our network achieves state-of-the-art performance for blind

SR with various degradations.
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