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Abstract

Vision-based reinforcement learning (RL) is successful,

but how to generalize it to unknown test environments re-

mains challenging. Existing methods focus on training an RL

policy that is universal to changing visual domains, whereas

we focus on extracting visual foreground that is universal,

feeding clean invariant vision to the RL policy learner. Our

method is completely unsupervised, without manual annota-

tions or access to environment internals.

Given videos of actions in a training environment, we

learn how to extract foregrounds with unsupervised keypoint

detection, followed by unsupervised visual attention to auto-

matically generate a foreground mask per video frame. We

can then introduce artificial distractors and train a model

to reconstruct the clean foreground mask from noisy obser-

vations. Only this learned model is needed during test to

provide distraction-free visual input to the RL policy learner.

Our Visual Attention and Invariance (VAI) method sig-

nificantly outperforms the state-of-the-art on visual domain

generalization, gaining 15∼49% (61∼229%) more cumula-

tive rewards per episode on DeepMind Control (our Drawer-

World Manipulation) benchmarks. Our results demonstrate

that it is not only possible to learn domain-invariant vision

without any supervision, but freeing RL from visual distrac-

tions also makes the policy more focused and thus far better.

1. Introduction

Vision-based deep reinforcement learning (RL) has

achieved considerable success on robot control and manipu-

lation. Visual inputs provide rich information that are easy

and cheap to obtain with cameras [31, 32, 27, 9, 8]. However,

vision-based RL remains challenging: It not only needs to

process high-dimensional visual inputs, but it is also required

to deal with significant variations in new test scenarios (Fig.

1), e.g. color/texture changes or moving distractors [34, 2].

One solution is to learn an ensemble of policies, each

handling one type of variations [44]. However, anticipating

*Equal contribution.
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Figure 1: Top) Two ways to make vision-based reinforce-

ment learning generalizable to unknown environments at the

test time: Existing methods focus on learning an RL policy

that is universal to varying domains, whereas our proposed

Visual Attention and Invariance (VAI) extracts visual fore-

ground that is universal, feeding clean and invariant vision

to RL. Bottom) VAI significantly outperforms PAD (SOTA),

increasing cumulative rewards by 49% and 61% respectively

in random color tests on DeepMind control and random

texture tests on our DrawWorld manipulation benchmarks.

all possible variations quickly becomes infeasible; domain

randomization methods [48, 53, 42, 43, 58] apply augmenta-

tions in a simulated environment and train a domain-agnostic

universal policy conditioned on estimated discrepancies be-

tween testing and training scenarios.

Two caveats limit the appeal of a universal RL policy. 1)
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1) Unsupervised Keypoint Detection
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3) Self-supervised Visual Invariance
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Figure 2: Our VAI method has three components. 1) Unsupervised keypoint detection: Given two adjacent video frames, we

learn to predict keypoints and visual features from each image so that foreground features and target keypoints can be used to

reconstruct the target frame, without any manual annotations. 2) Unsupervised visual attention: We apply causal inference

to remove the model bias from the foreground mask derived from detected keypoints. 3) Self-supervised visual invariance:

We are then able to add artificial distractors and train a model to reconstruct the clean foreground observations. Keypoint and

attention modules are only used during training to extract foregrounds from videos without supervision, whereas only the last

encoder/decoder (colored in green) trained for visual invariance is used to remove distractors automatically at the test time.

Model complexity. The policy learner must have enough

complexity to fit a large variety of environments. While there

are universal visual recognition and object detection models

that can adapt to multiple domains [45, 55], it would be

hard to accomplish the same with a RL policy network often

containing only a few convolutional layers. 2) Training in-

stability. RL training could be brittle, as gradients for (often

non-differentiable) dynamic environments can only be ap-

proximated with a high variance through sampling. Adding

strong augmentations adds variance and further instability,

causing inability to converge. [15] handles instability with

weaker augmentations, in turn reducing generalization.

The state-of-the-art (SOTA) approach, PAD [15], per-

forms unsupervised policy adaption with a test-time auxil-

iary task (e.g. inverse dynamic prediction) to fine-tune the

visual encoder of the policy network on the fly. However,

there is no guarantee that intermediate representations would

fit the control part of the policy network. Drastic environ-

ment changes such as background texture change from grid

to marble can cause feature mismatches between adapted

layers and frozen layers, resulting in high failure rates.

Instead of pursuing a policy that is universal to changing

visual domains, we propose to extract visual foreground that

is universal, and then feed clean invariant vision to a standard

RL policy learner (Fig. 2). As the visual observation varies

little between training and testing, the RL policy can be

simplified and focused, delivering far better results.

Our technical challenge is to deliver such clean visuals

with a completely unsupervised learning approach, without

mannual annotations or access to environment internals.

Given videos of actions in a training environment, we

first learn how to extract visual foreground with unsuper-

vised keypoint detection followed by unsupervised visual

attention to automatically generate a foreground mask per

video frame. We can then introduce artificial distractors

and train a model to reconstruct the clean foreground mask

from noisy observations. Only this learned model, not the

keypoint or attention model, is needed during test to provide

distraction-free visual input to the RL policy learner.

Our unsupervised Visual Attention and Invariance (VAI)

method has several desirable properties.

1. Unsupervised task-agnostic visual adaption training.

Our foreground extraction only assumes little background

change between adjacent video frames, requiring no man-

ual annotations or knowledge of environment internals

(e.g. get samples with altered textures). It does not de-

pend on the task, policy learning, or task-specific rewards

associated with RL. That is, for different tasks in the same

environment, we only need to collect one set of visual

observations and train one visual adapter, which gets us a

huge saving in real-world robotic applications.

2. Stable policy training, no test-time adaptation. By

freeing RL from visual distractions, our policy learning

is stable and fast without being subject to strong domain

augmentations, and our policy deployment is immediate

without test-time fine-tuning.

3. Clear interpretation and modularization. We extract

keypoints from videos to identify foreground, based on

which attentional masks can be formed. This unsuper-

vised foreground parsing allows us to anticipate visual

distractions and train a model to restore clean foregrounds.

Compared to existing methods that work on intermediate

features, our method has clear assumptions at each step,

which can be visualized, analyzed, and improved.

We conduct experiments on two challenging benchmarks

with diverse simulation environments: DeepMind Control

suite [51, 15] and our DrawerWorld robotic manipulation

tasks with texture distortions and background distractions

during deployment. Our VAI significantly outperforms the

state-of-the-art, gaining 15∼49% (61∼229%) more cumula-
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tive rewards per episode on DeepMind Control (our Drawer-

World Manipulation) benchmarks.

To summarize, we make the following contributions.

1. We propose a novel domain generalization approach for

vision-based RL: Instead of learning a universal policy

for varying visual domains, we decouple vision and ac-

tion, learning to extract universal visual foreground while

keeping the RL policy learning intact.

2. We propose a fully unsupervised, task-agnostic visual

adaptation method that removes unseen distractions and

restores clean foreground visuals. Without manual anno-

tations, strong domain augmentations, or test-time adapta-

tion, our policy training is stable and fast, and our policy

deployment is immediate without any latency.

3. We build unsupervised keypoint detection based on

KeyNet [22] and Transporter [24]. We develop a novel

unsupervised visual attention module with causal infer-

ence for counterfactual removal. We achieve visual in-

variance by unsupervised distraction adaptation based on

foreground extraction. Each step is modularized and has

clear interpretations and visualizations.

4. We propose DrawerWorld, a pixel-based robotic manip-

ulation benchmark, to test the adaptation capability of

vision-based RL to various realistic textures.

5. Our results demonstrate that it is not only possible to learn

domain-invariant vision from videos without supervision,

but freeing RL from visual distractions also leads to better

policies, setting new SOTA by a large margin.

2. Related Works

Unsupervised Learning has made much progress in nat-

ural language processing, computer vision, and RL. It

aims to learn a feature transferable to downstream tasks

[7, 37, 25, 6, 57, 17, 5, 4, 56]. In RL, UNREAL [21] pro-

poses unsupervised reinforcement and auxiliary learning to

improve learning efficiency of model-free RL algorithms,

by maximizing pseudo-reward functions; CPC [38] learns

representations for RL in 3D environments by predicting the

future in the latent space with autoregressive models; CURL

[49] extracts high-level features from raw pixels using con-

trastive learning and performs off-policy control on extracted

features to improve data-efficiency on pixel-based RL.

Domain Adaptation incorporates an adaptation module to

align the feature distribution from the source domain and the

target domain without paired data [39, 28, 47, 30, 62, 11].

There are various approaches to this, from using supervised

data [63, 28, 47], to assumed correspondences [13], to unsu-

pervised approaches [1, 54, 62].

Multi-domain Learning learns representations for multiple

domains known a prior [23, 35, 45, 55]. A combination of

shared and domain-specific parameters are adopted. It is

also feasible to simply learn multiple visual domains with

residual domain adapters [45, 55].

Our work is different from these works, since we do not have

prior knowledge of test data distributions and the model

needs to generalize to unknown test environments.

Robustness to Distribution Shifts studies the effect of cor-

ruptions, perturbations, out-of-distribution examples, and

real-world distribution shifts [36, 29, 20, 33, 43, 19]. Recent

deep RL approaches model such uncertainties explicitly.

[18] uses recurrent neural networks for direct adaptive con-

trol and determines dynamic model parameters on-the-fly.

UP-OSI [60] applies indirect adaptive control for online pa-

rameter identification. EPOpt [44] uses simulated source

domains and adversarial training to learn policies that are ro-

bust and generalizable to a range of possible target domains.

PAD [15] uses self-supervision to continue policy training

during deployment without any rewards, achieving SOTA

in several environments. SODA [16], a concurrent work to

ours, alternates strong augmentations associated with self-

supervised learning and weak augmentations associated with

RL for obtaining both generalizability and stability.

Instead of demanding a universal policy that is invariant to

distribution shifts or transferable to novel environments, we

achieve generalizability by demanding universal visuals that

can be fed into the subsequent RL policy learner, freeing it

from visual distractions and making it more effective.

3. Unsupervised Visual Attention & Invariance

Our goal is to extract universal visual foreground and then

feed clean invariant vision to an RL policy learner (Fig. 2).

Our technical challenge is to deliver such clean visuals with

a completely unsupervised learning approach, without man-

nual annotations or access to environment internals.

Our VAI method has three components: Unsupervised

keypoint detection, unsupervised visual attention, and self-

supervised visual invariance. The first two are only used

during training to extract foregrounds from videos without

supervision, whereas only the last trained model is deployed

to automatically remove distractors from a test video.

3.1. Unsupervised Keypoint Detection

We assume that training videos contain moving fore-

grounds against a relatively still background. Our idea for

unsupervised foreground extraction is the following: Given

two such source and target frames, we can learn to predict

keypoints and visual features from each image so that fore-

ground features and target keypoints can be used to recon-

struct the target frame, without requiring manual annotations.

For a particular image pair, the moving foreground may

have a still part (upper body), or the background may have

a moving part (flickering flames) . However, when the key-

point predictor and the visual feature extractor have to work

consistently across all the videos in the same environment,

they would have to focus on the entire moving foreground

and disregard the random minor background motion.
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Figure 3: Technical implementation of our three components. 1) Unsupervised keypoint detection: We build unsupervised

keypoint detection and visual feature extraction based on KeyNet [22] and Transporter [24]. The goal is to reconstruct the

target frame from the target foreground appearance and the source-transported background appearance, capturing a moving

foreground on a relatively still background. 2) Unsupervised visual attention: We remove the model bias in the foreground

mask derived from detected keypoints with novel causal inference for counterfactual removal. 3) Self-supervised visual

invariance: We train a model to restore an invariant foreground visual image by adding artificial distractors to extracted

foreground and perform self-supervised distraction removal.

Let os,ot∈R
C×H×W denote the source and target frames

sampled from a trajectory, where C, H , and W are the

channel dimension, image height and width respectively. Let

Φ(·) denote the visual feature extractor. Let Ψ(·) denote

the keypoint network that predicts K keypoints in terms of

2D spatial locations {µk}. We render each keypoint as a

smaller H ′ ×W ′ Gaussian heatmap with fixed variance σ2,

and derive a foreground mask by taking the max of all of

them:

G(µ;x) = max
k∈{1,2,...,K}

exp

(

−
‖x− µk‖

2

2σ2

)

. (1)

We follow KeyNet [22, 24] to reconstruct the target obser-

vation ot from K landmarks Ψ(os),Ψ(ot). We follow [24]

to transport the source background appearance to the target

frame by putting the source feature at common background

areas and the target feature at the target keypoints:

Φ̂(ot,os) =Φ(os)⊗ (1− G(Ψ(os)))(1− G(Ψ(ot)))

+Φ(ot)⊗ G(Ψ(ot)) (2)

where ⊗ denotes location-wise multiplication applied to each

channel. A visual attention (VA) decoder outputs a recon-

struction ôt of target frame ot from the transported feature

Φ̂(ot,os). Minimizing the reconstruction loss below opti-

mizes the KeyNet and the visual attention encoder/decoder

end-to-end:

LO-R(ot, ôt) = ‖ot − ôt‖
2

2
. (3)

Note that the original Transporter only focuses on changes

between frames in the same episode, whereas we also sample

frames from different episodes 50% of the time in reacher en-

vironment which has a fixed target throughout each episode,

so that our keypoints will be able to capture the target and

spread over the entire moving foreground.

3.2. Unsupervised Spatial Attention

Now we already have an unsupervisedly learned keypoint

detector. We first explain why we do not use keypoints for

control and instead derive a visual foreground mask. We

then describe our novel causal inference formulation for

obtaining a foreground mask without model bias.

Transporter [24] successfully makes use of keypoints for

RL in Atari ALE [3] and Manipulator [51]. Keypoints are ge-

ometrical extraction without visual appearance distractions

that they could be potentially used to minimize differences

between training and testing environments.

However, there are three major issues with keypoints in

practice. 1) It is often hard to track keypoints consistently

across frames; even for humans, whether a keypoint is on the

left or right foot is unclear in Fig. 4. This implies that using

predicted keypoints for control directly would be brittle even

in clean images.

2) While keypoints along with image features and LSTM

could work on relatively complicated tasks [24], they add

substantial model complexity and computational costs. 3)

While keypoints themselves are free of visual distractions,
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Figure 4: Our VAI foreground reconstruction (Row 1) pro-

vides clearer and more robust foreground visual information

than detecting keypoints across image frames using Trans-

porter (Row 2). Due to occlusion, symmetry, and lacking

visual distinctions, it is often impossible to track keypoints

consistently across frames. That is, keypoint locations alone

are not suitable as an invariant visual representation.

walker walk finger spin

Figure 5: Foreground reconstructions with causal inference

are cleaner (Row 2) than those without (Row 1).
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Figure 6: Causal graph of casual inference with counter-

factual reasoning for our foreground mask extraction. The

Controlled Direct Effect (CDE) is measured by the contrast

between two outcomes: the counterfactual outcome given

the visual feature At and that given the null feature A0.

their extractor (KeyNet) is only trained for the training envi-

ronment, with no guarantee for robustness against domain

shifts.

We thus propose to generate a foreground mask G(Ψ(ot))
from the (un-ordered) collection of predicted keypoints in-

stead. We enhance the visual feature in the foreground:

G(Ψ(ot)) ⊗ Φ(ot) and pass it to the VA decoder to recon-

struct a cleaner image ôt (Fig. 5 Row 1). However, it is

blurry with common background remnants captured in the

bias terms of the decoder. The bias terms are essential for

proper reconstruction and cannot be simply set to zero.

We apply causal inference with counterfactual reasoning

[40, 46, 41, 12, 50] to remove the model bias (Fig. 6). Intu-

cartpole walker open drawer

Figure 7: Our detected keypoints (Row 1) and generated fore-

ground masks (Row 2) from DeepMind control and Draw-

erWorld benchmarks. Note that they could cover multiple

moving objects in the foreground.

itively, the predicted foreground mask Y has a direct cause

from the visual feature A, and an indirect cause from the

model bias M through the decoder D. To pursue the direct

causal effect, we perform counterfactual reasoning known as

Controlled Direct Effect (CDE) [40, 12], which contrasts the

counterfactual outcomes (marked by do(·)) between visual

feature At and null visual feature A0 (set to the zero tensor):

CDE(Y )=[Y |do(At), do(M)]−[Y |do(A0), do(M)]. (4)

We further threshold it to obtain the foreground mask D(ot):

D(ot) =

{

0,CDE(Y ) < ǫ

1,CDE(Y ) ≥ ǫ
. (5)

Fig. 7 shows our detected keypoints and generated masks:

1) While the keypoints may be sparse and imprecise, the

foreground mask is clean and complete; 2) Our unsupervis-

edly learned keypoints do not correspond to semantic joints

of articulation, e.g., for the grasper opening a drawer, there

are keypoints on both the grasper and the drawer, and our

derived foreground mask contains both moving objects.

3.3. Self­supervised Visual Invariance

Our spatial attention module outputs a foreground mask,

after seeing samples in the training environment. To make

it adaptable to unknown test environments, we augment the

clean foreground image with artificial distractors and train

a model to reconstruct a mask to retrieve clean foreground

observation.

Given image ot, we generate equally cropped clean target

image It and noisy source image Is.

It = Tc(ot)⊗ Tc(D(ot)) (6)

Is = Tf (It) + Tb(Tc(ot)⊗ (1−D(It))) (7)

where D(It) = Tc(D(ot)), Tc denotes synchronized ran-

dom crop, Tf adds possible foreground changes such as

color jitter and random brightness change, whereas Tb adds

a set of possible background changes such as random col-

ored boxes to the background. We learn a convolutional
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training randomized colors video backgrounds distractions

Figure 8: Visualization results of testing environments in DeepMind Control benchmark [15, 51]. The testing environment

changes include randomized colors, video backgrounds, and background distractions.

encoder/decoder pair to reconstruct the clean foreground

mask from noisy Is, so that they could focus more on the

foreground and ignore background distractors. We impose a

feature matching loss at output of encoder E and an image

reconstruction loss at output of decoder D̂:

Ltotal = ‖D̂(Is)−D(It)‖
2

2
+ λ · ‖E(Is)− E(It)‖

2

2
(8)

where D(It) is simply the cropped version of D(ot). During

RL training and deployment, for any frame I , we feed I ⊗
D̂(E(I)) to the learned RL policy.

What augmentations to use has a big impact on gener-

alization. We propose four additional strong background

augmentations on Tb. 1) The background could randomly

assume the training image background, a random color, or

the mean foreground color with small perturbations. 2) Gaus-

sian pixel-wise noise and random boxes are added. Multi-

ColorOut, an extension to Cutout-color [26], adds multiple

boxes of random sizes, colors, and positions. 3) Darkened

foreground copies are added to the background areas where

the foreground mask values are 0, to simulate distractors

that look similar to the foreground. 4) We follow [16] to ran-

domly select images in the Places dataset [61] as background

images for augmentation. For fair comparisons, we list our

results with and without this option. With such generic aug-

mentations, our model is able to perform well on realistic

textures and unknown testing environments even though it

has not encountered them during training.

RL policy training with weak augmentations. Our vi-

sual invariance model outputs a clean foreground image with

background distractors suppressed. The RL policy learner

still needs to handle foreground variations in unknown test

environments. We train our RL policy with weak foreground

augmentations to make it robust to noise and distortions. We

add the usual Gaussian random noise and use only a simple

MultiColorOut to simulate the inclusion of backgrounds and

missing foreground parts. Empirically we find that such

weak augmentations do not affect the RL training stability.

4. Experiments

We experiment on two benchmarks, DeepMind and Draw-

erWorld, and perform ablation studies. The DeepMind Con-

trol benchmark contains various background distractions

Random colors SAC DR PAD SODA+P VAI VAI+P ∆

Walker, walk 414
±74

594
±104

468
±47

692
±68

819
±11

918
±6

+226
(↑ 33%)

Walker, stand 719
±74

715
±96

797
±46

893
±12

964
±2

968
±3

+75
(↑ 8%)

Cartpole, swingup 592
±50

647
±48

630
±63

805
±28

830
±10

819
±6

+14
(↑ 2%)

Cartpole, balance 857
±60

867
±37

848
±29

- 990
±4

957
±9

+142
(↑ 17%)

Ball in cup, catch 411
±183

470
±252

563
±50

949
±19

886
±33

960
±8

+11
(↑ 1%)

Finger, spin 626
±163

465
±314

803
±72

793
±128

932
±3

968
±6

+165
(↑ 21%)

Finger, turn easy 270
±43

167
±26

304
±46

- 445
±36

455
±48

+151
(↑ 50%)

Cheetah, run 154
±41

145
±29

159
±28

- 337
±1

334
±2

+178
(↑ 112%)

Reacher, easy 163
±45

105
±37

214
±44

- 934
±22

936
±19

+722
(↑ 337%)

average 467 464 531 - 793 812 +281
(↑ 53%)

Table 1: VAI outperforms existing methods on DeepMind

randomized color tests by a large margin without using the

external Places dataset; it is even better than SODA+P, which

uses Places as a part of the training set. Soft Actor-Critic

(SAC) [14, 32] is used as a base algorithm for DR (do-

main randomization), PAD [15], SODA [16], and our VAI.

SODA+P and VAI+P use Places [61] as overlay or adapter

augmentation. The results of SAC and DR are copied from

PAD [15]. Listed are the mean and std of cumulative rewards

across 10 random seeds and 100 random episode initializa-

tions per seed. The absolute and relative improvement of

VAI over SOTA method are listed in the ∆ column.

[52, 15]. We propose a DrawerWorld Robotic Manipula-

tion benchmark, based on MetaWorld [59], in order to test a

model’s texture adaptability in manipulation tasks.

4.1. DeepMind Control Benchmark

Tasks. There are walking, standing, and reaching objects

[52], all in 3D simulation. Our agent receives pixel-based

inputs instead of state-based inputs from the underlying dy-

namics unless otherwise stated.

Testing. We follow PAD [15] and test our method under

three types of environments: 1) randomized colors; 2) video

backgrounds; and 3) distracting objects. For tasks with

video background and distracting objects, we apply a moving

average de-noising trick by subtracting a moving average
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Video background SAC DR PAD SODASODA+P VAI VAI+P∆

Walker, walk 616
±80

655
±55

717
±79

635
±48

768
±38

870
±21

917
±8

+149
(↑ 19%)

Walker, stand 899
±53

869
±60

935
±20

903
±56

955
±13

966
±4

968
±2

+13
(↑ 1%)

Cartpole, swingup 375
±90

485
±67

521
±76

474
±143

758
±62

624
±146

761
±127

+3
(↑ 0%)

Cartpole, balance 693
±109

766
±92

687
±58

- - 869
±189

847
±205

+182
(↑ 26%)

Ball in cup, catch 393
±175

271
±189

436
±55

539
±111

875
±56

790
±249

846
±229

-29
(↓ 3%)

Finger, spin 447
±102

338
±207

691
±80

363
±185

695
±97

569
±366

953
±28

+258
(↑ 37%)

Finger, turn easy 355
±108

223
±91

362
±101

- - 419
±50

442
±33

+80
(↑ 22%)

Cheetah, run 194
±30

150
±34

206
±34

- - 322
±35

325
±31

+119
(↑ 58%)

average 497 470 569 - - 678 757 +188
(↑ 33%)

Table 2: VAI+P (VAI) outperforms PAD by more than 33%

(19%) on challenging DeepMind video backgrounds. Same

settings and conventions as Table 1.

Distracting objects SAC DR PAD VAI ∆

Cartpole, swingup 815
±60

809
±24

771
±64

891
±0

+120
(↑ 16%)

Cartpole, balance 969
±20

938
±35

960
±29

993
±0

+24
(↑ 2%)

Ball in cup, catch 177
±111

331
±189

545
±173

956
±4

+411
(↑ 75%)

Finger, spin 652
±184

564
±288

867
±72

805
±3

-62
(↓ 7%)

Finger, turn easy 302
±68

165
±12

347
±48

389
±18

+42
(↑ 12%)

average 583 561 698 806 +108
(↑ 15%)

Table 3: VAI outperforms current SOTAs by more than 15%

on DeepMind Control distracting objects. Although VAI

performs worse than PAD on “Finger, spin” task in terms of

mean rewards, the reward variance is greatly reduced from

72 to 3 in std. Same settings and conventions as Table 1.

of the past observations from the current observation and

adding back the mean color of the moving average. We

introduced a constant factor α multiplied to past moving

average to tune the aggressiveness of the de-noising trick.

Training. For each scenario, we train agents without distrac-

tions and evaluate the model across 10 random seeds and

100 random environment initializations. To get observation

samples for training, we export 5000 transitions from the

replay buffer for the training environment, which are col-

lected with a random policy. We use the same environment

settings such as frame skip and data augmentation as in PAD

to ensure fair comparisons between VAI, PAD, and others.

Randomized color results. Table 1 shows that our VAI

outperforms published SOTA on all the 9 tasks by up-to

an astonishing 337% margin in terms of mean cumulative

rewards, without seeing samples in the test environment

at any time. In contrast, DR is trained with color change

to the environment (which requires knowing and changing

the internals of the environment), which, to some extent,

previews what the test environment would be. Similarly,

success %
DrawerOpen DrawerClose

SAC PAD VAI ∆ SAC PAD VAI ∆

Grid 98
±2

84
±7

100
±0

+2
(↑ 2%)

100
±0

95
±3

99
±1

-1
(↓ 1%)

Black 95
±2

95
±3

100
±1

+5
(↑ 5%)

75
±4

64
±9

100
±0

+25
(↑ 33%)

Blanket 28
±8

54
±6

86
±6

+32
(↑ 59%)

0
±0

0
±0

85
±8

+85
(↑ ∞%)

Fabric 2
±1

20
±6

99
±1

+79
(↑ 395%)

0
±0

0
±0

74
±8

+74
(↑ ∞%)

Metal 35
±7

81
±3

98
±2

+17
(↑ 21%)

0
±0

2
±2

98
±3

+96
(↑ 4800%)

Marble 3
±1

3
±1

43
±7

+40
(↑ 1333%)

0
±0

0
±0

49
±13

+49
(↑ ∞%)

Wood 18
±5

39
±9

94
±4

+55
(↑ 141%)

0
±0

12
±2

70
±6

+58
(↑ 483%)

average 40 54 87 +33
(↑ 61%)

25 25 82 +57
(↑ 228%)

Table 4: Our VAI consistently outperforms all the baselines

in new texture environments, and on DrawerClose in par-

ticular, VAI succeeds 82% vs. SAC/PAD’s 25%. Grid is

the training environment. Black means a completely dark

background without texture. Other textures are shown in

Fig. 9. DrawerClose is more challenging than DrawerOpen,

as the drawer handle is concealed by the effector in Draw-

erClose, which would require the agent to infer the handle

position from the position and the size of the effector. The

success rate is the percentage of successful attempts out of

100 attempts to open or close a drawer. The mean/std are

collected over 10 seeds.

although PAD does not use any evaluation samples during

training, it does use the samples at the test time to tune the

encoder. Since VAI does not change model weights, it has

no adaptation delay, better stability, and less compute (see

more details in supplementary materials). By suppressing

distractions and feeding only the foreground image, the RL

algorithm ideally sees the same input no matter what the

environment is and is thus not influenced by background

distractions or domain shifts in the test environment.

Video background results. Table 2 shows that our VAI

outperforms baselines in 7 out of 8 tasks in terms of mean

cumulative rewards, often by a large margin.

Distracting object results. Table 3 shows that our VAI

surpasses baselines on 4 out of 5 tasks in terms of cumulative

rewards. It not only obtains nearly full scores on “Cartpole,

balance” and “Ball in cup, catch” tasks, but also greatly

decreases the variance of results to a negligible level.

4.2. DrawerWorld Manipulation Benchmark

A New Texture Benchmark for Manipulation. CNNs are

sensitive to textures [10]. We propose to evaluate a model’s

texture adaptability in manipulation tasks, based on the Meta-

World [59] benchmark for meta RL and multi-task RL.

In the original MetaWorld, the observations include 3D

Cartesian positions of the robot, the object, and the goal

positions collected with sensors on the object and the robot.

Accurate object positions and robot keypoints are hard to get
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Figure 9: DrawerWorld environments. Grid is the texture

used in training. Other 5 evaluation textures are from realistic

photos, which makes the task challenging.

by in real-world applications, we thus propose a variant of

MetaWorld, DrawerWorld, with visual observations instead.

We focus on the variety of realistic textures (Fig. 9).

Tasks. There are DrawerOpen and DrawerClose tasks,

where a Sawyer arm is manipulated to open and close a

drawer. The action space contains the end-effector positions

in 3D. We adopt MetaWorld reward functions and success

metrics. See supplementary materials for details.

Testing. We test the agent on surfaces of different textures

which, unlike the grid texture used for training, come from

photos instead of from simulations. These tasks are ex-

tremely challenging for two reasons: 1) The agent has never

seen any realistic textures during training; 2) Each texture

also has a different color, so the agent needs to handle both

color change and texture change at the same time.

Texture background results. Table 4 shows that our VAI

outperforms PAD [15] and SAC [14] significantly in all the

test environments. In particular, for 5 out of 6 textures such

as blanket, metal, and wood, SAC and PAD have 0% success

rate, whereas VAI performs far better at 85%, 98%, and 70%

respectively. In the training grid environment, PAD performs

worse than SAC, consistent with [15] on the DeepMind

Control benchmark, whereas our VAI is on-par or slightly

better than SAC, suggesting that we are not gaining texture

adaptability at the cost of losing training performance.

CNNs’ sensitivity to textures poses a big challenge for

visual adaptation. 1) SAC adapts to unknown test environ-

ments with augmentations at the training time. Since textures

are not used during training, SAC breaks down during tex-

ture testing. 2) PAD has to change its feature encoder a lot in

order to adapt to never-seen textures at the time time, shifting

the feature distribution. However, PAD assumes an invariant

feature distribution and, therefore, does not fine-tune the

control part of the policy network at the test time, which

causes the vision-RL pipeline to break down.

4.3. Ablation Studies

We evaluate four ablated variants of our methods on the

DrawerOpen task:

success rate (%) Grid Wood Metal Fabric

SAC 98
±2

18
±5

35
±7

2
±1

+ RL Augmentation 100
±1

18
±5

41
±8

24
±5

+ Foreground Extraction 100
±0

18
±4

13
±4

38
±4

+ Background Augmentation 100
±0

94
±4

98
±2

99
±1

Table 5: Ablation studies for augmentation and foreground

extraction on DrawOpen task. From top to bottom rows,

components are added to the method cumulatively. Each

method is trained in the grid environment and tested in new

texture enviroments of wood, metal, and fabric. Success

rates are collected over 500K steps. Only the last method

with all augmentations deliver consistent robustness.

1. SAC, a base universal policy learning model

2. Method 1 + RL with image augmentations, equivalent to

Domain Randomization;

3. Method 2 + Visual invariance module trained without

augmentations: Tf , Tb are identity functions;

4. Method 3 + We apply the augmentations in Section 3.3

on Tf , Tb, for greater adaptability.

Table 5 shows that while all the methods perform well

in the training environment, they adapt poorly to realistic

textures except the last one. These results suggest that adding

visual augmentations during RL or to the entire image as a

whole is insufficient; providing a clean observation for RL

agents with foreground clues adds significant robustness to

vision-based RL.

5. Summary

We propose a fully unsupervised method to make vision-

based RL more generalizable to unknown test environments.

While existing methods focus on learning a universal policy,

we focus on learning universal foreground vision.

We learn to extract foregrounds with unsupervised key-

point detection, followed by unsupervised visual attention

to remove model bias and generate a foreground mask. We

then train a model to reconstruct the clean foreground mask

from noise-augmented observations.

We propose an additional challenging DrawerWorld

benchmark, which trains manipulation tasks on grid and

tests on texture environments. Existing methods fail due to

CNN’s sensitivity to textures, yet our model with foreground

extraction and strong generic augmentation is robust to never-

seen textures without sacrificing training performance.

Our method significantly advances the state-of-the-art in

vision-based RL, demonstrating that it is not only possible

to learn domain-invariant vision without supervision, but

freeing RL from visual distractions also improves the policy.

Acknowledgments. This work was supported, in part, by

Berkeley Deep Drive.

6684



References

[1] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew

Taylor. Unsupervised cross-domain transfer in policy gradi-

ent reinforcement learning via manifold alignment. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 29, 2015.

[2] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek

Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki,

Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,

et al. Learning dexterous in-hand manipulation. The Interna-

tional Journal of Robotics Research, 39(1):3–20, 2020.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael

Bowling. The arcade learning environment: An evaluation

platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020.

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-

proved baselines with momentum contrastive learning. arXiv

preprint arXiv:2003.04297, 2020.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[7] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

ICCV, 2015.

[8] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex

Lee, and Sergey Levine. Visual foresight: Model-based deep

reinforcement learning for vision-based robotic control. arXiv

preprint arXiv:1812.00568, 2018.

[9] Chelsea Finn and Sergey Levine. Deep visual foresight for

planning robot motion. In 2017 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 2786–2793.

IEEE, 2017.

[10] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,

Matthias Bethge, Felix A Wichmann, and Wieland Brendel.

Imagenet-trained cnns are biased towards texture; increasing

shape bias improves accuracy and robustness. arXiv preprint

arXiv:1811.12231, 2018.

[11] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang,

David Balduzzi, and Wen Li. Deep reconstruction-

classification networks for unsupervised domain adaptation.

In European Conference on Computer Vision, pages 597–613.

Springer, 2016.

[12] Sander Greenland, James M Robins, and Judea Pearl. Con-

founding and collapsibility in causal inference. Statistical

science, pages 29–46, 1999.

[13] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel,

and Sergey Levine. Learning invariant feature spaces to

transfer skills with reinforcement learning. arXiv preprint

arXiv:1703.02949, 2017.

[14] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George

Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Ab-

hishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms

and applications. arXiv preprint arXiv:1812.05905, 2018.

[15] Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A Efros, Ler-

rel Pinto, and Xiaolong Wang. Self-supervised policy adap-

tation during deployment. arXiv preprint arXiv:2007.04309,

2020.

[16] Nicklas Hansen and Xiaolong Wang. Generalization in rein-

forcement learning by soft data augmentation. arXiv preprint

arXiv:2011.13389, 2020.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning. In CVPR, 2020.

[18] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and

David Silver. Memory-based control with recurrent neural

networks. arXiv preprint arXiv:1512.04455, 2015.

[19] Johannes Heinrich and David Silver. Deep reinforcement

learning from self-play in imperfect-information games. arXiv

preprint arXiv:1603.01121, 2016.

[20] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and

Dawn Song. Using self-supervised learning can improve

model robustness and uncertainty. In Advances in Neural

Information Processing Systems, pages 15663–15674, 2019.

[21] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-

necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray

Kavukcuoglu. Reinforcement learning with unsupervised

auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[22] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea

Vedaldi. Unsupervised learning of object landmarks through

conditional image generation. In Advances in neural informa-

tion processing systems, pages 4016–4027, 2018.

[23] Mahesh Joshi, William W Cohen, Mark Dredze, and Car-
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