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Abstract

Humans have a strong class-agnostic object segmenta-

tion ability and can outline boundaries of unknown objects

precisely, which motivates us to propose a box-supervised

class-agnostic object segmentation (BoxCaseg) based so-

lution for weakly-supervised instance segmentation. The

BoxCaseg model is jointly trained using box-supervised im-

ages and salient images in a multi-task learning manner.

The fine-annotated salient images provide class-agnostic

and precise object localization guidance for box-supervised

images. The object masks predicted by a pretrained Box-

Caseg model are refined via a novel merged and dropped

strategy as proxy ground truth to train a Mask R-CNN for

weakly-supervised instance segmentation. Only using 7991
salient images, the weakly-supervised Mask R-CNN is on

par with fully-supervised Mask R-CNN on PASCAL VOC

and significantly outperforms previous state-of-the-art box-

supervised instance segmentation methods on COCO. The

source code, pretrained models and datasets are available

at https://github.com/hustvl/BoxCaseg.

1. Introduction

Weakly-supervised instance segmentation (WSIS) is im-

portant in computer vision for at least two reasons: First,

it reduces human annotation efforts so that it is useful in

building label-efficient visual recognition systems. Second,

humans can learn to segment objects without perfect/exact

labels, and building a visual learning system similar to hu-

man perception is a long-term goal of computer vision; thus

the research weakly-supervised instance segmentation is a

way to approach human perception. In this paper, we inves-

tigate the problem of weakly-supervised instance segmenta-

tion using bounding box annotations rather than the precise

mask annotations.

As reported in [3], labeling a mask takes about 79 sec-

onds while labeling a bounding box takes only about 10
seconds on average. Thus, if a WSIS method can obtain

⋆Wenyu Liu is the corresponding author.
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Figure 1. The top row shows a salient training image (a) and two

box-supervised training images (b). Our model is jointly trained

using both salient images and box-supervised images and obtains

high quality instance segmentation results (c).

the segmentation precision on par with the state-of-the-art

fully supervised instance segmentation methods (e.g., Mask

R-CNN [13]), it is extremely useful and has great poten-

tial to be applied in real world applications. To solve this

problem, previous methods have applied unsupervised im-

age segmentation methods based on hand-crafted features

[40, 38], pseudo labeling [7, 42, 2], multi-instance learning

[16] and attention networks [23] in various WSIS frame-

works.

We think the key problem in WSIS is box-supervised

class-agnostic object segmentation (BoxCaseg), i.e., given

the object bounding box, we need to infer pixel-level ob-

ject mask. Humans have strong ability on the task of Box-

Caseg and can perceive object boundaries even the ob-

jects are from unknown semantic categories. To mimic

this class-agnostic human learning process, we propose a

joint training scheme, in which a salient object segmen-

tation (also known as salient object detection) dataset that

contains class-agnostic pixel-level object location informa-

tion is applied to simulate humans’ historical memory. The

salient images are trained with box-annotated images (as

shown in Fig. 1) in a single deep multi-task network and are

mixed in the same mini-batches. The tasks include pixel-

level labeling salient images and multi-instance classifica-

tion [16] of both box-supervised images and salient images.

During training, salient images can provide salient knowl-
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STEP 3: Train a Mask R-CNN. 
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Figure 2. The pipeline of our approach. Our training process is divided into three steps. First, we obtain a class-agnostic segmentation

model (BoxCaseg) through the joint training of box-supervised dataset and salient object segmentation dataset (Sec. 3.2). Then, we use the

class-agnostic segmentation model to produce high quality predictions for training instances. Those segmentation predictions are merged

to generate proxy instance masks for training images. Finally, we re-train a Mask R-CNN with proxy masks (Sec. 3.4).

edge to guide the segmentation of box-supervised images.

Besides, inspired by Mask⋆ R-CNN [17], weight transfer

is performed from the multi-instance learning task to the

pixel-labeling task to enhance the joint learning.

The learned BoxCaseg model is applied to generate ob-

ject masks for box-supervised training images. The masks

are refined by our proposed merging and dropping strategies

for training a Mask R-CNN model for WSIS. Experiments

are carried out on the PASCAL VOC and COCO datasets.

At last, our main contributions are highlighted as follows.

1. We propose a novel weakly-supervised instance seg-

mentation method based on box-supervised class-

agnostic object segmentation, in which class-agnostic

precise salient object localization information is

utilized as auxiliary memory to promote weakly-

supervised instance segmentation during training.

2. We propose new mask merging and dropping strategies

to obtain high-quality proxy masks for pseudo-training

Mask R-CNN.

3. The class-agnostic segmentation model has great gen-

eralization ability. Only using 7991 salient images

which are disjointed with PASCAL and COCO, for

the first time, a box-supervised instance segmentation

obtains similar performance with its fully-supervised

counterpart. On COCO, our result is significantly bet-

ter than previous state-of-the-art WSIS methods.

2. Related Work

Instance segmentation acquires fine-grained but expen-

sive pixel-level annotations while many weakly supervised

methods can use only coarser annotations, such as image

tags [1, 6, 11, 25, 57, 58], points [24], scribble[30, 43], and

bounding boxes [2, 16, 20, 44, 26].

Our setup considers using object bounding box as the

weak annotation. To obtain the segmentation from the

bounding box, there is a kind of methods [7, 36, 20] utiliz-

ing traditional image segmentation algorithms to segment

objects, such as CRF [22], GrabCut [40] and MCG [38].

However, these methods rely on low-level image features

and cannot obtain stable WSIS performance. Dai et al. [7]

first proposes to combine deep networks with hand-crafted

object proposals for WSIS via iterative training and pseudo

labeling. Then methods such as [42, 23] focus on the refine-

ment of pseudo mask with the mean filling rates. Arun et al.

[2] propose a conditional network and a prediction network

which supervise each other. Unlike the above methods,

BBTP [16] designs a multi-instance learning (MIL) formu-

lation to train a weakly-supervised segmentation model. On

the basis of BBTP, BoxInst [44] employs the projection loss

to replace the MIL loss and improves the pairwise loss with

the prior derived from proximal pixels’ colors. Our weak

segmentation head is also based on BBTP and does not rely

on any traditional algorithms.

Our method is also based on the development of salient

object detection (SOD, as known as salient object segmen-

tation) [19, 49, 29, 4, 28, 15, 46], which aims at finding

visually attractive objects in an image and segmenting them

as a binary mask. It has achieved great success based on

deep learning. Recent deep SOD methods are beneficial

from prediction erasing via multi-level feature fusion [54],

reverse attention [5], global and local context integration

[33], cascaded partial decoder [47], edge-guided network

[55], pooling-based global guidance [32] and nested U-Net

(i.e., U2Net) [39].

Salient object segmentation information had been ap-

plied as a cue for weakly-supervised instance/semantic seg-

mentation, e.g., [18, 10, 50, 56], in which [50, 56] are

the most related works to our method. In [50] salient im-

ages are jointly trained with images with category labels

for class-specific semantic segmentation and saliency maps

are obtain via aggregating the class-specific prediction re-

sults. Conceptually different from [50], our method is for

class-agnostic object segmentation and does not depend on

the category intersection between salient images and box-

supervised images. ShapeProp [56] performs pixel-wise
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Figure 3. Two examples from box-supervised dataset (a) and

salient object segmentation dataset (b). According to ground truth

box (blue boxes in images), we can split each horizontal and ver-

tical crossing lines of images into positive bags and negative bags.

Red lines and yellow lines represent positive bags and negative

bags respectively.

MIL and message passing within bounding boxes to ob-

tain class-agnostic saliency information as prior for semi-

supervised instance segmentation. In contrast, our motiva-

tion is to simulate human’s strong class-agnostic object seg-

mentation ability and the domain gap between salient im-

ages and weakly-supervised images is much larger than that

in ShapeProp. Besides, there are weakly-supervised learn-

ing methods for salient object segmentation, e.g., [27, 51,

53]. In our work, the salient object information is utilized

as an auxiliary memory for weakly-supervised segmenting

generic images.

At last, class-agnostic object segmentation is becoming a

hot research topic. Pinheiro et al. [37] first studies the prob-

lem of class-agnostic object candidate segmentation. Zhang

et al. [52] perform class-agnostic segmentation via dense

comparison for few-shot object segmentation. Sharma et

al. [41] propose a novel class-agnostic segmentation loss

function for better salient object detection and segmenta-

tion. Our work shows that class-agnostic learning is ex-

tremely helpful to WSIS.

3. Method

To describe the proposed method in a self-contained

manner, we first introduce the MIL-based WSIS method

[16], then formulate the proposed joint training scheme for

BoxCaseg, and finally describe how to train a Proxy Mask

R-CNN. The overall pipeline of our method is illustrated in

Fig. 2.

3.1. Weakly­supervised Instance Segmentation via
Multi­instance Learning

In order to approach the instance segmentation task with

bounding box annotations, Hsu et al. [16] propose a MIL-

based method that utilizes the bounding box tightness prior

(BBTP). The method replaces the original segmentation

loss with a novel MIL loss in Mask R-CNN [13]. As shown

in Fig. 3, the entire region of the object is in the bounding

box and each row or each column in the bounding box must

contain at least one pixel belonging to the object. BBTP re-

gards these rows and columns as positive bags. Other rows

(or columns) outside the bounding box are treated as neg-

ative bags. A bag contains multiple pixels/features on the

row (or column). As a result, either given the bounding box

from box-supervised images or the box generated by salient

object mask, we can split the image into positive bags and

negative bags.

In Mask R-CNN, it is worth to note that there are mul-

tiple region proposals corresponding to one object. Thus

the positive and negative bags generation process will be

performed for each region proposal separately. Once the

positive and negative bags are generated, its classification

probabilities are generated by max-pooling pixel classifica-

tion probabilities. The bag classification loss can be back-

propagated to optimize pixel classifier to achieve pixel seg-

mentation.

3.2. Joint Training with Salient Images

The above MIL-based WSIS method can be end-to-end

optimized under box supervision. However, it is hard to

perceive precise object boundary information. We propose

to utilize a relatively small extra salient object segmenta-

tion dataset as auxiliary knowledge. These data that contain

salient knowledge are jointly trained with box-supervised

images to provide boundary localization guidance during

the whole learning process.

Our joint training network for box-supervised class-

agnostic segmentation (BoxCaseg) is shown in Fig. 4. The

BoxCaseg network takes both salient images and box-

supervised images as input. HRNet [45] is applied for

feature extraction. The salient image feature and box-

supervised image feature are fed into three segmentation

heads supervised by the pixel-labeling loss and the MIL

loss. The details are described in the following sections.

3.2.1 Salient Images

The salient images with mask annotations are derived from

existing salient object segmentation/detection datasets, e.g.,

the DUTS-TR dataset [46]. In each salient image, we make

sure there is only one object. The salient objects are from a

large range of categories and occupy a large region in their

images. The salient images are used for providing gener-

alizable fine-grained boundary localization information. To

avoid over-fitting, we make sure the salient images used in

our method have no overlap with the target WSIS datasets,

e.g., PASCAL and COCO.

3.2.2 Data Augmentation

Different from BBTP which completes detection and seg-

mentation simultaneously in Mask R-CNN, in which patch

features are extracted using ROIAlign, we train a class-

agnostic object segmentation model separately. Though

ROIAlign is time-efficient to get patch features, it does not

extract fine-grained features for precise object segmenta-

tion, as discussed in PointRend [21]. Therefore, instead of
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Figure 4. The joint training scheme for box-supervised class-agnostic object segmentation. A salient image and a box-supervised image

within a mini-batch are fed into a backbone network (i.e., HRNet [45]) to extract convolutional feature maps. The weak convolutional

feature map is then fed into the weak segmentation head trained with the MIL loss described in Eq. (1). The salient convolutional feature

map is simultaneously fed into the weak segmentation head, the transferred segmentation head, and the salient segmentation head. The last

two heads are fused and supervised via a pixel-labeling loss (as described in Eq. (3)).

using ROIAlign, we crop patches according to object po-

sitions as the input of our BoxCaseg network. The patch

cropping (i.e., data augmentation) strategies are different for

salient images and box-annotated images. For each salient

image, it is firstly resized into 320×320 and then randomly

cropped into 288× 288 as the input. For box-annotated im-

ages, we find that the following more aggressive data aug-

mentation strategy works better.

1 def box_augmentation(x, y, w, h):

2 x2 = x + random(-0.25, 0.25) * w

3 y2 = y + random(-0.25, 0.25) * h

4 w2 = random(0.5, 1.5) * w

5 h2 = random(0.5, 1.5) * h

6 return (x2, y2, w2, h2)

This data augmentation strategy shifts the position and

shape of the bounding box and introduces background in-

formation. Once a new box is obtained, an image patch is

cropped and resized into 288× 288 for joint training.

3.3. Multi­task Learning

As shown in Fig. 4, there are three tasks for training our

BoxCaseg network, i.e., MIL training for box-supervised

images, MIL training for salient images, and pixel-labeling

for salient images. There are three segmentation heads

termed as salient segmentation head, transferred segmen-

tation head, and weak segmentation head. The three heads

have exactly the same network architecture as shown in the

right side of Fig. 4.

3.3.1 MIL loss for weak segmentation

The convolutional feature for the salient image is denoted as

Ps and the convolutional feature for the weakly-supervised

(i.e., box-supervised) image is denoted as Pw. Ps and Pw

are fed into the weak segmentation head to obtain one-

channel probability maps Ss and Sw via a pixel-wise sig-

moid function, respectively. Besides, the upsample opera-

tion makes sure that Ss and Sw have the same size as the

input images. As described in Sec. 3.1, we can sample a set

of positive bags B+ and a set of negative bags B− from Ss

and Sw respectively. The MIL loss is defined as follows.

Lmil(S,B
+,B−) =−

∑

B∈B+

log

(

max
p∈B

S(p)

)

−
∑

B∈B−

log

(

1−max
p∈B

S(p)

)

+ 0.05× ϕ(S,B+,B−),

(1)

where p is a spatial position in a bag B ∈ {B+,B−} and

a score map in S ∈ {Ss, Sw}, S(p) denotes the score at

position p, and the last item ϕ(S,B+,B−) is a smooth term

with a fixed weight of 0.05 defined as follows.

ϕ(S,B+,B−) =
∑

p∈{B+,B−}

∑

p′∈Ω(p)

‖S(p)− S(p′)‖
2
,

(2)

where Ω(p) means eight-connected region of the pixel p. In

Eq. (1), the unary term uses MIL for pixel classification and

the pairwise term aims to keep local smoothness. Positive

bags having at least one pixel of the object, we encourage

the maximal score of any positive bag to be as close to 1
as possible, while suppressing maximal scores in negative

bags.

3.3.2 Pixel-wise loss for salient segmentation and

transferred segmentation

The pixel-wise loss function is only applied to salient im-

ages. The precise annotations of salient images with the

10228



pixel-wise loss are helpful for our BoxCaseg network to

capture class-agnostic boundary information. As this loss

cannot be applied to box-supervised images, we propose

a transferred segmentation head to make the pixel-wise la-

beling parameters more suitable for box-supervised images.

It is enabled by weight transfer, which is originally pro-

posed in Mask⋆ RCNN [17]. As shown in Fig. 4, we trans-

fer detached convolution parameters of the weak segmenta-

tion head to the transferred segmentation head via a weight

transfer module. As for the weight transfer module, we

simply use a two-layer multi-layer perceptron (MLP) with

leaky ReLU as activation function. Note that the weight

transfer is a single direction process, since it is detached

from the weak segmentation head, i.e., the gradients do

not back-propagate to the weak segmentation head. During

training, the parameters of the weight transfer MLP is op-

timized. Given a salient image, its ground-truth is a binary

mask denoted as M and we denote its score maps output

from the salient segmentation head and transferred segmen-

tation head as Sa and St respectively. Then, the pixel-wise

loss function is a standard binary cross-entropy loss defined

as follows.

Lpix(M,Sa, St) =−M log (αSa + (1− α)St)

− (1−M) log (1− (αSa + (1− α)St)),

(3)

where α ∈ [0, 1] is a parameter to control how much trans-

ferred segmentation map used for calculating the pixel-wise

loss.

The final loss function is summarized as follows.

L = Lmil(S,B
+,B−) + λLpix(M,Sa, St), (4)

where λ is equal to 0 if the input comes from box-

supervised images, otherwise 1. Last but not least, during

the training of the proposed network, there are both box-

supervised images and salient images in a mini-batch. Their

ratios will be detailed in the experiments. This mixed input

strategy helps stabilize the training process and solve the

data imbalance problem, e.g., in the COCO dataset there are

a huge number of box-supervised images while the number

of salient images is limited.

3.4. Training a Proxy Mask R­CNN

To use jointly trained BoxCaseg network for instance

segmentation, we need to obtain the positions of objects

with a detector first in the testing phase. To simplify this

process and avoid the time-consuming two-step testing pro-

cedure, we consider re-training a Mask R-CNN to perform

box localization and mask prediction in one network. Our

solution is straight-forward - we can use the BoxCaseg

model to generate proxy masks on the training set. When

generating proxy masks for training instances with the pre-

trained BoxCaseg network, we just simply crop patches

from the image by ground truth boxes as inputs and only

use the salient segmentation head and transferred segmen-

tation head to predict object mask. In our method, the Mask

R-CNN model is trained with the bounding box annotations

and the proxy masks, thus called Proxy Mask R-CNN.

Though the jointly trained BoxCaseg model obtains high

performance, there are inevitably segmentation errors. The

main difficulty is caused by the fact that multiple objects

are highly-overlapped in one bounding box, e.g., motor-

bike with person and sofa with person in Fig. 5. Since

these object pairs have large probabilities to appear to-

gether, weakly-supervised methods are hard to deal with

them. To reduce the errors in the masks generated by Box-

Caseg, we propose a merge and drop, i.e., merge masks us-

ing the strategy of smaller object better and drop masks via

the proxy box agreement rule, which are detailed as follows.

Merging via smaller object better: Our prior knowl-

edge tells us that each pixel in an image can only belong to

one object. When merging segmentation results, for those

pixels belong to multiple predicted masks, we assign them

to the smallest objects. The reason is that the smaller object

is usually within the box of the large one.

Dropping via proxy box agreement: After the merg-

ing procedure, we further drop low quality masks. It is ob-

served that the low quality masks have shapes significantly

different from their ground truth (GT), however, we only

have GT boxes but do not have GT masks. Thus, we find

the bounding box of the proxy mask, called proxy bound-

ing box, and calculate the IoU between the proxy bounding

box and GT bounding box as the proxy box agreement. It is

the lower bound of mask IoU between proxy mask and GT

mask and can reflect the segmentation quality. Note that

dropping the mask does not mean removing it from the an-

notation file. Instead, those deleted masks are neglected in

the back propagation process of mask head training in Mask

R-CNN.

4. Experiment

Datasets Extensive experiments are performed on the

COCO 2017 dataset [31] and the augmented PASCAL VOC

2012 dataset [12]. And we adopt the DUTS-TR dataset [46]

to provide salient images.

PASCAL VOC: It is a commonly-used evaluating

dataset for WSIS. Following the common practice [20],

augmented PASCAL VOC 2012 dataset is used, which is

derived by combining the SBD dataset [12] and the PAS-

CAL VOC 2012 dataset [9]. The final dataset contains

10, 582 training images with 25, 815 training instances and

1, 449 validation images.

COCO: It is a large-scale instance segmentation dataset

which contains 118, 287 training images with 860, 001 in-

stances and 5, 000 images for validation. It is also applied

for evaluating WSIS in our experiments.
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Image Ground Truth (a) (b) (c) (d)
Merge Delete

Figure 5. From the prediction results of BoxCaseg (a&b) to the proxy masks (d). Since there are two highly-overlapped objects in each

image. BoxCaseg predicts two masks with errors. We first merge the two predicted masks using the smaller object better strategy and then

drop bad masks (e.g., the sofa mask in bottom row) according to the proxy box agreement rule. In this case, the bounding box of the sofa

mask in (c) has low agreement (i.e., low IoU) with its ground truth box, so the sofa mask is dropped.

DUTS-Single: The images in the DUTS-TR dataset [46]

are collected from ImageNet DET [8] training/val/test sets

and the SUN dataset [48]. DUTS-TR is widely-used for

salient object segmentation/detection task. We have care-

fully checked the image sources of DUTS-TR, they have no

overlap with Pascal VOC and COCO dataset. Usually, a

bounding box contains only one object, so we filter out im-

ages which contain multiple objects to ensure that the fore-

ground mask only belongs to a single object. The derived

salient object segmentation dataset is named DUTS-Single,

which contains 7991 images. The derived DUTS-Single

dataset will be made publicly available.

Evaluation metric For evaluating the performance of

class-agnostic object segmentation, we use IoU@k, which

represents the percentage of predicted instance masks

whose intersection over union (IoU) with its ground-truth

mask is larger than k%, where k∈{50, 75} in our experi-

ments. Besides, we design a mIoU∗ metric to evaluate our

model’s class-related performance, which calculates IoUs

of every instance prediction, per-class mean IoU and aver-

ages all the per-class mean IoUs.

After retraining the Proxy Mask R-CNN, we adopt the

standard evaluation metric, the mean average precision

(mAP). We follow the same evaluation scheme as [16] and

report mAP with four IoU thresholds (including 0.25, 0.50,

0.70 and 0.75) for PASCAL VOC dataset. Besides, we also

report the evaluation metric including AP, AP50, AP75 (av-

eraged over IoU thresholds), and APS, APM, APL (AP at

different scales) for COCO dataset.

Implementation details For joint training the BoxCaseg

network, we apply the HRNetV2-W48 [45] as the back-

bone and its default hyper-parameters are applied, i.e., ini-

tial learning rate of 4e-3, weight decay of 1e-4, momentum

of 0.9. The batch-size is set to be 16 per GPU. For gener-

ating proxy masks for training Mask R-CNN, each training

object is cropped from its image according to its ground-

truth bounding box and resized into 320×320 as the input

of pre-trained BoxCaseg network. Proxy Mask R-CNN is

trained using ResNet-101-FPN [14] as the backbone fol-

lowing the default settings in the maskrcnn benchmark [35].

Experiments are carried out on two Nvidia TITAN V GPUs

(12GB RAM). Source code and pre-trained models will be

made publicly available.

4.1. Comparison with the State­of­the­art Methods

Tab. 1 presents the instance segmentation results on

the PASCAL VOC 2012 validation set, including the

fully-supervised Mask R-CNN baseline, weakly-supervised

methods using image-level annotation and box-level an-

notation. In the metrics, AP50 is the most widely used

one. Our AP50 is 67.6, which is on par with the fully-

supervised Mask R-CNN. With the help of joint training

with salient images, our method significantly outperforms

other weakly-supervised instance segmentation methods.

Comparing with the MIL-based BBTP method [16], joint

training with salient images brings 8.7 AP50 performance

gain and 20.8 AP75 performance gain. The results confirm

that joint training with salient images is very helpful for pre-

cisely segmenting objects.

Tab. 2 presents the results on the COCO test-dev

set. COCO is a large-scale instance segmentation dataset

that contains 118, 287 training images that contain about

860, 000 training instances. Using only 7, 991 (9.3%)

salient objects for joint training, we improve the state-of-

the-art baseline (BBTP) by 10.1 AP and the results are get-

ting close to the fully-supervised Mask R-CNN.

4.2. Ablation Studies

To validate our proposed method and configurations’

usefulness, extensive ablation experiments are conducted

on both the joint training BoxCaseg stage and the re-training

stage.

4.2.1 Less salient images for joint training

In order to investigate the influence of the number of salient

images, we perform ablation experiments on the number of
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Table 1. Instance segmentation results on the PASCAL VOC 2012

val set. In the supervision column, M denotes mask-level super-

vision, I denotes image-level supervision, B denotes box-level su-

pervision and S denotes salient object supervision. ‡ indicates the

results are obtained by running their released codes using our set-

tings.

Method Sup. AP25 AP50 AP70 AP75

ResNet-50 Backbone

PRM [57] I 44.3 26.8 - 9.0

IAM [58] I 45.9 28.8 - 11.9

Label-PEnet [11] I 49.1 30.2 - 12.9

CountSeg [6] I 48.5 30.2 - 14.4

WISE [25] I 49.2 41.7 - 23.7

IRN [1] I - 46.7 23.5 -

LIID [34] I - 48.4 - 24.9

BBTP‡ [16] B+S 75.9 61.0 33.4 25.1

ShapeProp‡ [56] B+S 75.1 61.6 37.8 30.3

BoxCaseg (ours) B+S 76.2 65.8 46.3 38.6

ResNet-101 Backbone

SDI [20] B - 46.4 - 18.5

AnnoCoIn [2] B 73.1 57.7 33.5 31.2

BBAM [26] B 76.8 63.7 39.5 31.8

BoxInst [44] B - 61.4 - 37.0

BBTP [16] B 75.0 58.9 30.4 21.6

BBTP‡ [16] B+S 77.0 61.4 34.4 26.6

ShapeProp‡ [56] B+S 76.0 62.4 39.9 31.3

BoxCaseg (ours) B+S 77.7 67.6 49.4 42.4

Mask R-CNN [13] M 76.7 67.9 52.5 44.9

salient images in {100, 500, 1000, 2500, 4701, 7991/All}
for joint training. The 100, 500, 1000, & 2500 salient im-

ages are randomly selected. The 4701 salient images are

manually picked to make sure that they do not contain any

object belongs to any of the 20 PASCAL categories.

As Tab. 3 shows, when there are too few salient im-

ages (100), our salient segmentation head and transferred

segmentation head will perform awful and serve unstable

performance, even worse than the performance of weak

segmentation head. When the number of salient images

comes to over 500, its training process becomes stable and

the model will perform better with images number increase

both in mIoU∗ and AP evaluation metric. Training with the

4701 salient images, the results are very close to that uses

all salient images, which confirms that BoxCaseg has a very

strong category-wise transfer ability.

4.2.2 The effectiveness of the three segmentation heads

Tab. 4 indicates the influence of three segmentation heads

for the whole model respectively. First, only using a salient

segmentation head, which is trained by salient images, will

lead to an awful segmentation result on box-supervised im-

ages. This is due to the salient images are different from the

box-supervised PASCAL images. So it is necessary to add

the weak segmentation head to help the backbone learn how

to extract features of box-supervised images. Second, trans-

ferred segmentation head, which delivers box-supervised

information from the weak segmentation head to pixel-level

prediction, helps the salient segmentation head improve

segmentation quality on box-supervised images. Finally,

by using all three heads, we finally get a 71.8 mIoU∗ in-

stance segmentation result on Pascal VOC 2012 validation

set. In fact, our BoxCaseg model has a strong salient ob-

ject segmentation performance that is on-par with the SOTA

U2Net[39].

4.2.3 Sampling strategies for imbalanced training im-

ages

When there is an extreme unbalance between COCO

(860, 001 instances) and DUTS-Single (7991 instances), we

discover that the model performs worse as the training pro-

gressing. Thus, we propose a simple yet efficient sam-

ple strategy that we use all salient images and randomly

sample part of box-supervised images to form batches in

an epoch. And all batches own a common fixed ratio of

box-supervised images to salient images. Tab. 5 demon-

strates our sample strategy is efficient, where rws is the ra-

tio of box-supervised images to salient images in a batch

and RS represents random sampling. Obviously, this strat-

egy greatly solves the problem of data unbalance and makes

training process more stable as well as enables model with

better generalization ability. When rws is equal to 9 : 7, we

can get 70.9 mIoU∗ in COCO validation set.

4.2.4 The weight of transferred segmentation head

We also conduct experiments on α, which controls the

weight of the transferred segmentation head whn adding

with the salient segmentation head for pixel-level predic-

tion. As Tab. 6 shows, combining the prediction of trans-

ferred segmentation head and salient segmentation head,

we have access to deriving better results than only using

one of two heads by at least 1.3% improvement. What’s

more, it’s relatively stable for segmentation result, when

α ∈ [0.3, 0.7] and proves our weight transfer method’s use-

fulness. And we can derive the best result when α is 0.7.

4.2.5 The strategies for merging and deleting proxy

masks

In Tab. 7, we firstly give a baseline of retraining results

without any strategies. We can observe that the merge via

smaller object better strategy improves the performance by

0.8 AP75 and 1.1 AP75 on the two datasets respectively. At

the same time, the drop via proxy box agreement strategy

obtains obvious improvement on the COCO dataset while

little improvement on the PASCAL dataset. This is due to

the fact that PASCAL is simpler than COCO dataset and

bad cases are much fewer. In addition, we tried different
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Table 2. Instance segmentation results on the COCO test-dev set.

Method Supervision Backbone AP AP50 AP75 APS APM APL

Mask R-CNN [13] (Oracle) M ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4

BBTP [16] B ResNet-101-FPN 20.8 45.1 17.0 10.4 21.7 30.3

BBAM [26] B ResNet-101-FPN 25.7 50.0 23.3 - - -

BoxCaseg (ours) B+S ResNet-101-FPN 30.9 54.3 30.8 12.1 32.8 46.3

Table 3. Results on PASCAL val using different numbers of salient

images for joint training.

Number mIoU* IoU@50 IoU@75 AP@50 AP@75

100 61.8 70.4 32.2 55.3 27.0

500 65.3 73.3 39.6 62.6 36.2

1000 66.4 77.4 47.3 65.1 37.2

2500 69.2 79.9 51.1 67.1 40.9

4701 70.1 80.1 50.2 66.7 38.9

All 71.8 83.8 56.8 67.6 42.4

Table 4. Results on PASCAL val when using different segmen-

tation heads. Weak, Salient, and Trans denote the weak, salient,

and transferred segmentation heads respectively. If only Trans or

Salient is checked, α in Eq. (3) is set to 0 or 1.

Weak Salient Trans. mIoU∗ IoU@50 IoU@75

X 66.1 76.8 40.0

X 43.1 43.0 25.9

X X 69.7 80.0 50.3

X X 70.5 80.8 53.7

X X X 71.8 83.4 56.8

Table 5. Results on COCO val using different image sampling

methods. RS means randomly sampling from the union set of

box-supervised images and salient images. rws is the ratio of box-

supervised images to salient images in a batch.

rws mIoU∗ IoU@50 IoU@75

RS 58.1 62.2 27.9

8:8 70.7 84.5 48.0

9:7 70.9 84.9 48.6

10:6 70.0 82.7 45.4

11:5 70.7 83.6 47.8

12:4 70.4 82.7 47.2

13:3 68.1 77.6 44.1

14:2 69.2 81.1 46.4

Table 6. Results on PASCAL val set when the weight of salient

segmentation head (α) varies.

α 0.0 0.3 0.4 0.5 0.6 0.7 1.0

mIoU∗ 69.7 71.7 71.0 71.4 71.3 71.8 70.5

IoU@50 80.0 83.0 82.0 82.6 82.7 83.4 80.8

IoU@75 50.3 55.7 54.9 55.6 55.2 56.8 53.7

values for the dropping threshold to find the best perform-

ing threshold, shown in Tab. 8. The drop rate refers to the

percentage of the ignored samples in the total samples. The

Table 7. Results on PASCAL val and COCO val when using the

merging and dropping strategies or not.

Data Merge Drop AP AP50 AP75

PASCAL 39.6 67.5 41.3

PASCAL X 40.2 67.6 42.1

PASCAL X X 40.2 67.6 42.4

COCO 28.6 51.3 28.2

COCO X 29.5 51.9 29.3

COCO X X 30.9 53.7 31.3

results show that the drop strategy can pick out samples with

better proxy masks and bring robust performance improve-

ments. Using a very high IoU threshold of 0.95 obtains the

best results among them, which reveals that have a few very

high quality mask for training Mask R-CNN is better than

having lots of medium quality masks.

Table 8. COCO val results and the ratios of dropped masks when

the dropping threshold varies.

Drop thresh 0.0 0.75 0.85 0.90 0.95

Drop rate 0.00 0.27 0.49 0.64 0.80

COCO AP 29.5 30.2 30.4 30.7 30.9

5. Conclusion

We explore a new direction for WSIS, i.e., box-

supervised class-agnostic learning with salient images for

object segmentation. The proposed BoxCaseg network uses

the salient object information as an auxiliary memory dur-

ing the whole training process. This design is to mimic

the way humans perform class-agnostic object segmenta-

tion. Once the proxy masks are obtained via the pre-

trained BoxCaseg model, we propose useful mask merging

and dropping strategies for re-training Mask R-CNN. On

PASCAL and COCO, state-of-the-art weakly-supervised

instance segmentation results have been achieved. In the

next step, we would like to develop new learning methods to

push the performance of the BoxCaseg-based WSIS method

to match the performance of fully-supervised Mask R-CNN

on COCO using the 7991 salient images.
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