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Abstract

Self-supervised monocular depth estimation networks

are trained to predict scene depth using nearby frames as a

supervision signal during training. However, for many ap-

plications, sequence information in the form of video frames

is also available at test time. The vast majority of monoc-

ular networks do not make use of this extra signal, thus ig-

noring valuable information that could be used to improve

the predicted depth. Those that do, either use computation-

ally expensive test-time refinement techniques or off-the-

shelf recurrent networks, which only indirectly make use of

the geometric information that is inherently available.

We propose ManyDepth, an adaptive approach to dense

depth estimation that can make use of sequence information

at test time, when it is available. Taking inspiration from

multi-view stereo, we propose a deep end-to-end cost vol-

ume based approach that is trained using self-supervision

only. We present a novel consistency loss that encourages

the network to ignore the cost volume when it is deemed

unreliable, e.g. in the case of moving objects, and an aug-

mentation scheme to cope with static cameras. Our detailed

experiments on both KITTI and Cityscapes show that we

outperform all published self-supervised baselines, includ-

ing those that use single or multiple frames at test time.

1. Introduction

Knowing the depth to each pixel in an image has proved

to be a useful and versatile tool, with applications rang-

ing from augmented reality [59], autonomous driving [22],

through to 3D reconstruction [64]. While specialist hard-

ware can give per-pixel depth, e.g. from structured light

or Lidar sensors, a more attractive approach is to only re-

quire a single RGB camera. Many recent monocular depth

from RGB methods are trained using only self-supervision,

which removes the need for expensive hardware to capture

training depth data [21, 99, 23, 26]. While these approaches

appear to be very promising, their test-time depth estima-

tion performance is not yet on a par with specialist depth

hardware or deep multi-view methods [73].

Figure 1. Trained using only self-supervision, our model not only

predicts depth from single frames (a) but can also utilize multiple

frames, when they are available, using the same model (b). This

results in superior depth predictions at test time. Error maps on the

bottom row show large depth errors as red, small as blue.

In an attempt to close this performance gap, we observe

that in most practical scenarios more than one frame is

available at test time e.g. from a camera on a moving vehi-

cle or micro-baseline frames from a phone camera [32, 41].

Yet these additional frames are typically not exploited by

current monocular methods. In this work, we use these ad-

ditional frames at both training and test time, when they

are available, to self-supervise a multi-frame depth estima-

tion system. We show that a straightforward application of

self-supervised training to a multi-view plane-sweep stereo

architecture produces poor results, significantly worse than

self-supervised single frame networks. To overcome this,

we introduce several innovations to address issues caused

by moving objects, scale ambiguity, and static cameras. We

call our resultant multi-frame system ManyDepth.

We make the following three contributions:

1. A novel self-supervised multi-frame depth estimation

model that combines the strengths of monocular and

multi-view depth estimation by making use of multiple

frames at test time, when they are available.

2. We show that moving objects and static scenes signifi-

cantly impact self-supervised multi-view matching ap-

proaches, and we introduce efficient losses and train-
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ing solutions to alleviate this problem.

3. We propose an adaptive cost volume to overcome the

scale ambiguity arising from self-supervised training

on monocular sequences. To the best of our knowl-

edge, this is the first time cost volume extents have

been learned from data rather than set as parameters.

Our ManyDepth model outperforms existing single and

multi-frame approaches on the KITTI and Cityscapes

datasets.

2. Related work

2.1. Monocular depth estimation

The goal of monocular depth estimation is to predict the

depth of each pixel in a single input image. Supervised ap-

proaches either make use of dense supervision from depth

sensors e.g. [15, 14, 20] or sparse supervision from human

annotations e.g. [8]. Self-supervised methods remove the

limitation of requiring ground truth depth supervision, in-

stead training with image-reconstruction losses using stereo

pairs [87, 21, 23] or monocular video sequences [99].

Recent advances in self-supervised training have focused

on addressing various challenges resulting from learning

from images alone e.g. more robust image reconstruction

losses [26, 72], discrete rather than continuous depth pre-

dictions [56, 25, 40], feature space reconstruction losses

[93, 72], sparse automatically generated depth supervision

[49, 83], occlusion handling [26], improved network archi-

tectures [28], and moving objects during training [69, 24,

26, 78, 92, 9, 3, 75, 48, 53] and at test time [54]. Our un-

derlying monocular architecture is based on [24], and could

similarly benefit from many of the above enhancements.

2.2. Multiframe monocular depth estimation

There is a growing number of works that extend existing

self-supervised monocular models so that they can leverage

temporal information at test time to improve the quality of

the predicted depth. It is worth noting that there are also

several non-deep-learning methods that also aim to produce

consistent sequential depth estimates e.g. [96, 44], in addi-

tion to conventional SLAM based methods [65, 63, 16, 89],

and SLAM methods that integrate a monocular depth es-

timation network [74, 4, 52]. However, here we focus on

state-of-the-art neural network based depth estimation.

Test-time refinement approaches adapt monocular meth-

ods to use sequence information at test time e.g. [5, 9, 59,

62, 72, 51]. As self-supervised training does not require

any ground truth depth supervision, the same losses used

during training can be applied to the test frames to update

the network’s parameters. The downside is that this neces-

sitates the additional computation of multiple forward and

backward model passes for a set of test frames, potentially

taking several seconds to perform per set [62, 59].
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Two Frame e.g. [2] Yes Yes No No No Yes

Supervised MVS e.g. [37] Yes Yes Yes No No Yes

Self-sup MVS e.g. [46] No Yes Yes No No Yes

Supervised MD e.g. [20] Yes No No Yes Yes No

Self-sup MD e.g. [99] No No No Yes Yes No

ManyDepth (Ours) No No No Yes Yes Yes

Table 1. Comparison of existing approaches that estimate depth

from collections of images. Our approach requires no ground-

truth supervision and is robust to object motion. MVS stands for

Multi-View Stereo, and MD stands for Monocular Depth.

A second broad group of approaches combine traditional

monocular networks with recurrent layers to process se-

quences of frames e.g. [66, 81, 50, 97]. A related approach

uses pairs of sequential frames at test time, sharing fea-

tures between the pose and depth modules [79] or comput-

ing depth-from-flow [88]. These approaches are much more

efficient compared to test-time refinement, but they can be

more computationally demanding during training due to the

need to extract features from multiple frames in a sequence.

A further limitation of these methods is that they do not ex-

plicitly reason about geometry during inference; they sim-

ply rely on the network having learned how to extract mean-

ingful temporal representations.

Our experiments show that our approach often outper-

forms test-time refinement in terms of accuracy while re-

taining the efficiency of recurrent methods at inference.

2.3. Deep multiview depth estimation

Our problem of predicting depth from multiple frames is

related to multi-view depth estimation. While early deep

stereo methods used mostly convolutional layers to map

from images pairs to depth using ground-truth supervision

e.g. [61, 77, 55], [45] showed that integrating a plane-sweep

stereo cost volume significantly improved results. Recent

approaches improved the underlying architectures and con-

tributed more effective ways of regularizing the cost volume

[7, 94, 95, 10]. It is also possible to train stereo networks

without ground truth supervision [98, 82, 1, 36], but these

models are typically outperformed by supervised variants.

Some works fuse conventional matching-based stereo esti-

mation with monocular depth cues [71, 60, 17]. In contrast,

we do not require stereo pairs during training or testing.

A more general version of the stereo-matching problem

is multi-view stereo (MVS), which operates on unordered

image collections. Early deep MVS methods used memory-

expensive 3D grid representations e.g. [39, 43]. Current su-

pervised approaches, e.g. [37, 80, 91, 38, 57], utilize cost

volumes but assume ground truth depth and camera poses
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are available for training. They often require camera poses

at test time too; which can be refined from an initial esti-

mate [84, 56]. Some methods can predict pose at test time,

but they still need to be trained with supervision e.g. [77].

Similar to our approach, [56, 35] process sequences of

frames at test time using cost volumes. However, by using

ground-truth depth supervision and provided camera poses

they side-step the challenges associated with training from

self-supervision alone. [86] predict depth from triplets of

frames without requiring pose information, but their method

cannot deal with variable numbers of frames at test time

and is trained with ground truth depth. Concurrent with our

work, [85] learn depth from a cost volume, but they use

stereo pairs and sparse supervised depth at training time and

long sequences for pose estimation.

Most related to us are self-supervised MVS methods that

also do not require any ground truth depth i.e. [46, 13].

However, there are several reasons why these existing self-

supervised and supervised MVS methods aren’t applicable

in many scenarios: (i) they need more than one input im-

age at test time, (ii) they assume that the camera is not

static, (iii) they typically require camera poses to be pro-

vided during training and sometimes also at test time, and

(iv) they assume that there are no moving objects in the

scene. Our approach leverages the best of monocular and

multi-view methods by making use of sequence information

at test time, when it is available, while also being robust to

scene motion — see Table 1.

3. Problem setup

The aim of depth estimation is to predict a depth map Dt,

pixel-aligned with an input image It. Conventional single-

image depth estimation methods, e.g. [14, 23, 99], train a

deep network θdepth to map from It to Dt,

Dt = θdepth(It). (1)

In contrast, like other multi-frame methods [66, 81], our

model accepts as input N previous temporal video frames,

Dt = θdepth(It, It−1, . . . , It−N). (2)

While our model makes use of information from multiple

frames, it also can operate in the regime where only one

frame is available at test time. Unlike similar works e.g. [50,

97, 9, 59, 5], we do not use future frames at test time e.g.

It+1, the use of which would preclude online applications.

At training time, we exploit previous and future frames as

a supervisory signal, and do not require stereo supervision.

We do not assume access to the true relative camera pose

between It and the preceding frames; instead we learn to

predict these poses {Tn}Nn=1 at training and test time with a

differentiable pose network θpose, following [99]. We also

do not make use of any trained semantic models to mask

moving objects e.g. [5, 26, 29]. We do, however, assume

known fixed camera intrinsics K — though we could relax

these requirements [26, 18].

4. Method

Our method starts with two well established compo-

nents: self-supervised reprojection based training, and a

multi-view cost volume. We then introduce three important

innovations that enable cost volume matching to work with

self-supervised training from monocular video: (1) adaptive

cost volumes, (2) a method to prevent a failure mode we re-

fer to as ‘cost volume overfitting’, and (3) augmentation for

static cameras and single frame inputs.

4.1. Selfsupervised monocular depth estimation

Following [99], we train a self-supervision depth net-

work using only video frames that are temporally close to

It. We use the current estimated depth Dt and the pose

network θpose’s estimate of relative camera pose Tt→t+n

to synthesize the scene from the same viewpoint as It,

but only using pixels from neighboring source frames i.e.

{It+n, n ∈ {−1,1}}. The synthesized counterpart to It is

It+n→t = It+n⟨proj(Dt, Tt→t+n,K)⟩, (3)

where ⟨⟩ is the sampling operator and proj returns the 2D

coordinates of the depths in Dt when reprojected into the

camera of It+n. Note that while our cost volume, described

later, only uses preceding frames to enable online appli-

cations, at training-time our reprojection loss uses future

frames too. Following [24], for each pixel we optimize the

loss for the best matching source image, by selecting the per

pixel minimum over the reconstruction loss pe,

Lp =min
n

pe(It, It+n→t). (4)

We set pe as a combination of SSIM and L1 losses, and we

minimize this loss over all the pixels in the training images

over four output scales; see [24] for more details.

4.2. Building a cost volume

To exploit multiple input frames, inspired by [11, 42, 45]

we build a cost volume which measures the geometric com-

patibility at different depth values between the pixels from

It and nearby source frames from the input video. This

requires knowledge of relative pose T , which we estimate

with the pose network θpose, trained using a reprojection

loss. We define a set of ordered planes P , each perpendicu-

lar to the optical axis at It and with depths linearly spaced

between dmin and dmax. Each frame is encoded into a deep

feature map Ft and warped to the viewpoint of It using

each of the hypothesised alternative depths d ∈ P using the

known camera intrinsics and estimated pose. This creates
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Figure 2. Our cost volume based depth estimator. Our depth network θdepth has three main components: a feature extractor, an encoder,

and a depth decoder. Our pose network θpose estimates the relative pose between pairs of images, which is then used to build a cost volume

in the reference frame of the target image It by warping features extracted from images at different time points. The encoder and depth

decoder processes the cost volume to produce a depth image for It.

a warped feature map Ft+n→t,d. The final cost volume is

constructed as the absolute difference between the warped

features and the features from It, at each d ∈ P . This is av-

eraged over all source images, following [65]. The cost vol-

ume effectively says ‘for pixel (i, j), what is the likelihood

of the correct depth being d, for each d in P?’. Following

[19], the cost volume is concatenated with features Ft and

used as input to a convolutional decoder which regresses the

depth Dt. See Fig. 2 for an overview.

Cost volumes have the benefit of allowing the network

to leverage inputs from multiple viewing angles. However,

they typically require dmin and dmax to be chosen as hy-

perparameters, and they assume that world is static. In the

following sections we show how to relax these assumptions.

4.3. Adaptive cost volumes

Cost volume approaches have a problem of needing a

known depth range i.e. dmin and dmax. These are typically

selected as hyperparameters in advance of training based

on prior knowledge of the dataset [13] or from known cam-

era poses [37]. We are unable to do this, as self-supervised

depth estimation trained on monocular sequences only esti-

mates depth ‘up to scale’. This means that while we assume

that the final predicted depths, and corresponding poses

from the pose network, will all end up in broad agreement

with each other, they will be different from real-world depth

by an unknown scaling factor.

To solve this problem we introduce a novel adaptive cost

volume, by allowing dmin and dmax to be learned from the

data, so they can adjust during training as the network finds

its own scaling. This is done using the current predictions

from the network of Dt, whereby we compute the average

min and max of each Dt over a training batch. These are

then used to update an exponential moving average esti-

mates of dmin and dmax with momentum 0.99. dmin and

dmax are saved along with the model weights and then kept

fixed at test time. Our approach contrasts to [27] who adapt

dmin, dmax at test time in a coarse-to-fine manner.

4.4. Addressing cost volume overfitting

We observe that our baseline cost volume model trained

with monocular supervision suffers from severe artefacts,

including large ‘holes’ punched on moving objects. These

are similar to artefacts observed in monocular It → Dt

models (see [5, 24] for a description). However, in our cost

volume network they are far more severe (see Fig. 3 (c)).

Why does the monocular-trained cost volume fail? In

theory, our model should do well. It is trained with a sim-

ilar reprojection loss used to train state-of-the-art single-

frame depth estimators, but it also has access to an addi-

tional source of information via the cost volume. However,

the information contained in the cost volume is only reli-

able in specific scenarios e.g. in static regions with textured

surfaces. In regions where objects are moving, or where sur-

faces are untextured, the cost volume will be an unreliable

source of depth information (Fig. 3 (b)). For example, the

moving car in Fig. 3 results in a match in the cost volume at

an incorrect depth and corresponds to a very low reprojec-

tion loss. During training, the network becomes over-reliant

on the cost volume. Instead of ignoring the cost volume

around moving objects, it trusts it too much. Artefacts in the

cost volume from moving objects are then introduced in the

final depth map, at both training and test time. Ultimately,

the final predicted depths inherit the cost volume’s mistakes.

We introduce a method to correct this during training, by

teaching the network not to trust the cost volume in these

unreliable regions.

Using a separate network to regularize. We make the ob-

servation that single-image depth networks do not have a

cost volume, so are unaffected by ‘cost volume overfitting’.

While moving objects can still be a problem for these meth-
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ods during training [5, 24, 69], in general they make far

less severe mistakes on moving objects. We therefore use a

monocular network at training time to help ‘teach’ our cost

volume network the right answer — but only in regions we

suspect the cost volume to be problematic. This separate

network θconsistency produces a depth map D̂t for each train-

ing image, and is discarded after training. θconsistency shares

θpose with our main network to help ensure scale-consistent

predictions between θdepth and θconsistency. Potentially prob-

lematic pixels in our multi-frame output are identified by a

binary mask M . In these masked regions we apply an L1

loss on Dt, encouraging the predictions to be similar to D̂t,

Lconsistency = ∑M ∣Dt − D̂t∣. (5)

Gradients to D̂t are blocked, ensuring knowledge only

transfers from teacher to student and not vice versa.

Identifying unreliable pixels. Our binary mask M is 1 in

regions considered to be unreliable, and 0 otherwise. To

generate this mask we again make use of D̂t. We reason

that in regions where the cost volume is reliable, the depth

represented by D̂t will be similar to the depths represented

by the argmin of the cost volume. We therefore compare

the depth represented by the argmin of the cost volume (i.e.

Dcv, not Dt) to the depth D̂t predicted by θconsistency. The

mask M is set to 1 only in regions where D̂t and Dcv differ

significantly, so

M =max (Dcv − D̂t

D̂t

,
D̂t −Dcv

Dcv

) > 1. (6)

The idea of using a separate ‘disposable’ network to help

to regularize training is not new, e.g. [69, 99]. Our nov-

elty is in using a single-frame depth network to improve a

multi-frame system. Our approach is also less costly and

less constrained than using offline semantic segmentation

[26], and makes fewer assumptions than RANSAC-based

filtering [29]. In our experiments we compare to two alter-

native masking schemes from [69] and [24], and show that

our approach is superior.

4.5. Static cameras and startofsequences

Using multiple frames at test time introduces two po-

tential challenges for our method. The first issue is when

It−1 does not exist, i.e. when predicting depth for a single

image or those at the start of a sequence. This case is triv-

ially handled by monocular methods as they only require

single frames as input. However, MVS approaches fail in

these situations. To address this problem, during training

with probability p, we replace the cost volume with a tensor

of zeros. For these images, this encourages the network to

learn to rely only on features directly from It. Then at test

time, when It−1 does not exist, we simply replace the cost

Figure 3. We enable self-supervised training to work with a cost

volume. When we build a cost volume from a sequence (a), mov-

ing objects create incorrect depths in the cost volume (b). These

errors are propagated through to our predicted depth maps (c).

‘Traditional’ single-image depth estimation does not exhibit this

failure mode, but can still produce biased depth (d). We there-

fore use a single-image network to help our model recover from

this failure mode, but only on pixels identified to be unreliable by

our mask M (e). Our final prediction (f) is superior to both our

baseline and the single-image network.

volume with zeros. The second case arises when the cam-

era does not move between It−1 and It, e.g. a car stopped

at traffic lights. Again this is another failure case for MVS

methods. To address this at training time, with probability

q, we replace the It−1 input to the cost volume with a color-

augmented version of It, but still supervise with the ‘real’

It−1, It+1 in Eqn. 4. This enables the network to predict

plausible depths even when the cost volume is constructed

from images with no camera baseline.

Our final loss is L = (1 −M)Lp + Lconsistency + Lsmooth,

where Lsmooth is the smoothness loss from [23].

5. Implementation details

We use training-time color and flip augmentations on im-

ages being fed to the depth and pose networks, using the set-

tings from [24]. Unless otherwise stated, all our models are

trained with an input and output resolution of 640×192, and

we fix N = 1, so the cost volume is constructed with frames

{It, It−1}, at both training and test time. In all cases self-

supervision during training is from frames {It−1, It, It+1}.
We train with Adam [47] for 20 epochs with a learning rate

of 10−4, dropping by a factor of 10 for the final 5 epochs.

After Q epochs, we fix dmin and dmax and the weights of

θpose and θconsistency. This allows θdepth to finetune with a

non-moving target. We set Q = 15 for KITTI, and Q = 5

for Cityscapes to account for the larger number of images
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Figure 4. Qualitative results on KITTI. Error maps in columns 2 and 4 show the abs. rel. error compared to new ground truth [76],

from good (blue) to bad (red). All error maps are colormapped equivalently. While depth maps look qualitatively similar between our

multi-frame predictions (bottom rows) and the baselines, the error maps reveal the large ‘hidden mistakes’ made by methods which only

have access to a single test-time image. This is particularly apparent in ambiguous regions, e.g. in the dark embankment on the right of

the freeway. Additionally, note that [66] also has access to multiple frames at test time, however their method does not explicitly utilize

geometry. This results in an improvement over the single frame [24], but there is noticeably higher error than for our approach.

in the Cityscapes training set. The feature extractor in θdepth

comprises the first five ResNet18 layers [33]. These fea-

tures are aggregated into a cost volume, the result of which

is concatenated with our input image features, and followed

by the remaining ResNet18 convolutional layers. We use

the depth decoder from [24]. Our pose network θpose and

skip connections for θdepth are the same as [24]. θconsistency

uses the standard architecture from [24] with no modifica-

tions. Full architecture details are in the supplementary.

Following [24, 83, 79, 31], we use weights pretrained on

ImageNet [70], but provide results trained from scratch in

the supplementary material. For all our experiments we set

p = q = 0.25 during training.

6. Experiments

Here we evaluate our ManyDepth model and (1) show

that it gives SOTA results by comparing, in a standardized

way, to both single-frame and multi-frame depth estimation

and (2) validate our design decisions via ablations. Addi-

tional results are provided in the supplementary material.

We evaluate on two challenging depth estimation

datasets, both of which exhibit moving objects. For both,

we use the standard depth evaluation metrics from [14, 15].

(a) KITTI [22]. We use the Eigen split from [14]. This

is commonly used for single frame depth estimation, but

is more recently also used for multi-frame approaches

e.g. [81, 66]. 22 frames in the KITTI Eigen test set are at the

start of a sequence, and do not have a previous frame. We

still include these images in the evaluation. For these im-

ages, the network does not have access to any other frames

and thus makes a prediction based on one frame only. In

the supplementary material, we additionally include mod-

els evaluated on the improved KITTI ground truth [76].

(b) Cityscapes [12]. Following [99, 90, 92], we train on

69,731 images from the monocular sequences, which we

preprocess into triples using the scripts from [99]. We do

not use stereo pairs or semantics. We evaluate on the 1,525

test images using the provided SGM [34] disparity maps.

As with KITTI, we clip predicted depths at 80m, and only

evaluate on ground truth depths less than 80m.

6.1. KITTI results

In Table 2 we compare to multi-frame approaches, some

of which, e.g. [9, 5, 66, 79, 62], see more frames than ours

or also use future frames e.g. [9, 5, 62]. We do not include

results from [56] as they do not provide their scores on the

KITTI Eigen split (see [88]). We additionally compare to

the best-performing self-supervised monocular depth esti-

mation approaches. To control for resolution, we separate

low and high resolution models, and we also split methods

which use expensive multi-pass test-time refinement into

separate sections. We observe that our approach outper-

forms all previously published self-supervised methods that

do not use semantic supervision on most metrics. We also
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TTR Method Test frames Semantics WxH Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253
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Ranjan et al. [69] 1 832 x 256 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ [58] 1 832 x 256 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth (M) [5] 1 ● 416 x 128 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Videos in the wild [26] 1 ● 416 x 128 0.128 0.959 5.230 0.212 0.845 0.947 0.976

Guizilini et al. [29] 1 ● 640 x 192 0.102 0.698 4.381 0.178 0.896 0.964 0.984

Johnston et al. [40] 1 640 x 192 0.106 0.861 4.699 0.185 0.889 0.962 0.982

Monodepth2 [24] 1 640 x 192 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Packnet-SFM [28] 1 640 x 192 0.111 0.785 4.601 0.189 0.878 0.960 0.982

Li et al. [53] 1 416 x 128 0.130 0.950 5.138 0.209 0.843 0.948 0.978

Patil et al. [66] N 640 x 192 0.111 0.821 4.650 0.187 0.883 0.961 0.982

Wang et al. [79] 2 (-1, 0) 640 x 192 0.106 0.799 4.662 0.187 0.889 0.961 0.982

ManyDepth (MR) 2 (-1, 0) 640 x 192 0.098 0.770 4.459 0.176 0.900 0.965 0.983

● GLNet [9] 3 (-1, 0, +1) 416 x 128 0.099 0.796 4.743 0.186 0.884 0.955 0.979

● Luo et al. [59] N 384 x 112 0.130 2.086 4.876 0.205 0.878 0.946 0.970

● CoMoDA [51] N ● 640 x 192 0.103 0.862 4.594 0.183 0.899 0.961 0.981

● McCraith et al. [62] 2 (0, +1) 640 x 192 0.089 0.747 4.275 0.173 0.912 0.964 0.982

● Struct2depth (M+R) [5] 3 (-1, 0, +1) ● 416 x 128 0.109 0.825 4.750 0.187 0.874 0.958 0.983

● ManyDepth (MR + TTR) 2 (-1, 0) 640 x 192 0.090 0.713 4.261 0.170 0.914 0.966 0.983

H
ig

h
re

so
lu

ti
o

n

Monodepth2 [24] 1 1024 x 320 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Packnet-SFM [28] 1 1280 x 384 0.107 0.802 4.538 0.186 0.889 0.962 0.981

Guizilini et al. [29] 1 ● 1280 x 384 0.100 0.761 4.270 0.175 0.902 0.965 0.982

Shu et al. [72] (ResNet50) 1 1024 x 320 0.104 0.729 4.481 0.179 0.893 0.965 0.984

Wang et al. [79] 2 (-1, 0) 1024 x 320 0.106 0.773 4.491 0.185 0.890 0.962 0.982

ManyDepth (HR) 2 (-1, 0) 1024 x 320 0.093 0.715 4.245 0.172 0.909 0.966 0.983

ManyDepth (HR ResNet50) 2 (-1, 0) 1024 x 320 0.091 0.694 4.245 0.171 0.911 0.968 0.983

● McCraith et al. [62] 2 (0, +1) 1024 x 320 0.089 0.756 4.228 0.170 0.917 0.967 0.983

● Shu et al. [72] (ResNet50) 3 (-1, 0, +1) 1024 x 320 0.088 0.712 4.137 0.169 0.915 0.965 0.982

● ManyDepth (HR + TTR) 2 (-1, 0) 1024 x 320 0.087 0.696 4.183 0.167 0.918 0.968 0.983

● ManyDepth (HR R50 + TTR) 2 (-1, 0) 1024 x 320 0.087 0.685 4.142 0.167 0.920 0.968 0.983

Table 2. Comparison of our method to existing self-supervised approaches on the KITTI [22] Eigen split. At the top we compare

medium and low resolution results without and with test-time refinement (TTR). At bottom we compare high resolution results without

and with TTR. The best results in each subsection are in bold; second best are underlined. Our method outperforms all previous methods

in all subsections across most metrics, whether or not the baselines use multiple frames at test time. We indicate if a method uses semantic

supervision (Semantics) and methods indicated by N take a long sequence of frames as input for each test image (e.g. the preceding frames

or frames before and after in time).

implement the test-time refinement scheme of [62] on our

model, updating the weights of the depth and pose encoders

using sequential pairs of images from the test set, for 50

steps. Not surprisingly, this further improves our results,

and we outperform other test-time refinement methods.

Qualitative results are presented in Fig. 4. In some cases

the predicted depth maps looks qualitatively similar to the

monocular only models, but the error maps show the high

magnitude of mistakes which can be present.

Efficiency comparison. Fig. 5 illustrates the runtime effi-

ciency of our ManyDepth models (640 x 192: , and 1024

x 320: , ) compared to other methods, including test-time

refinement approaches ( ). We report multiply-add compu-

tations (MACs) for each method and show that test-time re-

finement models which perform multiple forward-backward

passes are too computationally demanding for use in real-

time applications. The supplementary material contains a

full results table and additional details.

6.2. KITTI ablation

In Table 4 we show the importance of the various com-

ponents of our approach by turning them on and off in turn.
ManyDepth w/o motion masking: We omit Lconsistency

from our loss and set M to zeros everywhere.

ManyDepth w/o motion masking, w/o augmentation:

As above, but also omitting our augmentations.
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Figure 5. Our single-pass network is significantly more effi-

cient than test-time optimisation. We compare abs. rel. error

(y-axis) against MACs (x-axis) on the KITTI Eigen test set.

– Single frame models. These tend to have low MACs.

– Multi-frame models which use test-time refinement.

– Multi-frame models with a single forward pass at test time.

Methods which are more accurate than ours take over two orders

of magnitude more time to compute (note the logarithmic scale on

the x-axis.). Our MR multi-frame version ( ) has better accuracy

than [79], who has a similar runtime.
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Method Test frames Semantics WxH Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253
Struct2Depth 2 [6] 1 ● 416 x 128 0.145 1.737 7.280 0.205 0.813 0.942 0.976

Pilzer et al. [67] 1 512 x 256 0.240 4.264 8.049 0.334 0.710 0.871 0.937

Monodepth2† [24] 1 416 x 128 0.129 1.569 6.876 0.187 0.849 0.957 0.983

Videos in the Wild [26] 1 ● 416 x 128 0.127 1.330 6.960 0.195 0.830 0.947 0.981

Li et al. [53] 1 416 x 128 0.119 1.290 6.980 0.190 0.846 0.952 0.982

Struct2Depth 2 [6] 3 (-1, 0, +1) 416 x 128 0.222 5.737 8.613 0.258 0.774 0.908 0.954

Struct2Depth 2 [6] 3 (-1, 0, +1) ● 416 x 128 0.151 2.492 7.024 0.202 0.826 0.937 0.972

ManyDepth 2 (-1, 0) 416 x 128 0.114 1.193 6.223 0.170 0.875 0.967 0.989

Table 3. Results on Cityscapes. Our method gives superior performance to all competing models. † is trained by us with the authors’

code, with preprocessing from [99]. Results from [67] are their ‘Half-Cycle Mono’ model, their only variant not requiring test-time stereo

pairs. We evaluate using the cropping scheme of [6] following conversations with the authors; see supplementary material for specifics.

ManyDepth with motion masking but no teacher: We

remove Lconsistency but still use M to mask Lp.

Stack of 2 frames as input: A baseline which directly

maps (It−1, It) to Dt. We modify [24]’s network to

accept two images as input, and train using their loss.

ManyDepth with motion masking from [69]: We use

our full loss, but our mask M is the same as [69]. We

use their pretrained models to compute these masks

offline for the entire training set.

ManyDepth with motion masking from [24]: Here we

use our full loss, but set the mask M to an ‘automask’

from [24].

Khot et al. [46]: We trained this unsupervised MVS ap-

proach on KITTI, with the implementation from [30].

ManyDepth (It−2, It−1, It) and ManyDepth (It−1, It, It+1):

Retrained variants of our model which build the cost

volume from three frames instead of just two. This

improves some metrics but not all.

Benefit of our augmentations. In Table 5 we evaluate

three different scenarios, comparing our model to a baseline

which was trained without our augmentations from Sec-

tion 4.5. When evaluating in ‘standard’ mode (i.e. using the

previous and current frames as input) on the entire KITTI

test set, the difference between the two models is negligible.

This is partially because the KITTI test images are predom-

inately from a moving camera. However, when we eval-

uate in ‘start-of-sequence’ mode (i.e. the standard monoc-

ular setting using only (It) as input) and ‘static camera’

evaluation mode (i.e. simulating a static camera with inputs

(It, It)), our augmentation scheme is significantly better.

6.3. Cityscapes results

In Table 3 we perform additional comparisons where we

train and test on the Cityscapes dataset [12]. Again, we con-

sistently outperform competing methods, even those that

use semantic supervision.

7. Conclusion

We presented a fully self-supervised online method that

predicts superior depths from a single image, or from multi-

ple images when they are available. We achieve the benefits

Ablation Abs Rel Sq Rel RMSE

ManyDepth full 0.098 0.770 4.459

ManyDepth (w/o motion masking) 0.113 1.354 5.228

ManyDepth (w/o motion masking, w/o aug.) 0.284 11.240 8.516

ManyDepth (with motion masking, w/o teacher) 0.154 2.682 6.573

Stack of 2 frames as input (It−1, It) 0.121 1.028 5.016

ManyDepth (with motion masking from [69]) 0.099 0.783 4.447

ManyDepth (with motion masking from [24]) 0.099 0.780 4.465

Khot et al. [46] reimplementation 0.200 4.694 7.232

ManyDepth with 3-frame input (It−2, It−1, It) 0.098 0.780 4.430

ManyDepth with 3-frame input (It−1, It, It+1) 0.097 0.768 4.431

Table 4. Our contributions lead to better scores. Here we ablate

our ManyDepth method on KITTI 2015 [22] using the Eigen split.

Full numbers are in the supplementary material.

Test-time input Model Abs Rel Sq Rel RMSE

Standard: (It−1, It)
No augmentation 0.100 0.794 4.432

ManyDepth 0.098 0.770 4.459

Start-of-sequence: (It)
Monodepth2 [24] 0.115 0.903 4.863

No augmentation 0.148 1.076 5.161

ManyDepth 0.118 0.892 4.764

Static camera: (It, It)
No augmentation 0.158 1.132 5.228

ManyDepth 0.117 0.886 4.754

Table 5. Our augmentations help in static camera and start-

of-sequence cases. We compare two variants of our model, one

trained with our novel data augmentations (‘Ours’) and one with-

out. We create two artificial scenarios to test each model’s perfor-

mance on start-of-sequence images (where we just input It) and

static cameras (where both input frames are the exact same).

of both multi-frame and monocular methods, while being

more robust on moving objects and static cameras compared

to a naive integration of a cost volume. We presented state-

of-the-art results on both the KITTI and Cityscapes datasets.

While test-time refinement methods are close competitors

in terms of depth accuracy, we have shown that our method

is significantly more efficient during inference. We expect

that our results could be further improved via recent com-

plimentary advances in monocular depth estimation e.g. dis-

cretized output depths [25] or feature based losses [72].
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Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In CVPR, 2016.

[62] Robert McCraith, Lukas Neumann, Andrew Zisserman, and

Andrea Vedaldi. Monocular depth estimation with self-

supervised instance adaptation. arXiv:2004.05821, 2020.

[63] Richard A Newcombe and Andrew J Davison. Live dense

reconstruction with a single moving camera. In CVPR, 2010.

[64] Richard A Newcombe, Shahram Izadi, and Otmar Hilliges.

Kinectfusion: Real-time dense surface mapping and track-

ing. In UIST, 2011.

[65] Richard A Newcombe, Steven J Lovegrove, and Andrew J

Davison. DTAM: Dense tracking and mapping in real-time.

In ICCV, 2011.

[66] Vaishakh Patil, Wouter Van Gansbeke, Dengxin Dai, and Luc

Van Gool. Don’t forget the past: Recurrent depth estimation

from monocular video. In IEEE Robotics and Automation

Letters, 2020.

[67] Andrea Pilzer, Dan Xu, Mihai Marian Puscas, Elisa Ricci,

and Nicu Sebe. Unsupervised adversarial depth estimation

using cycled generative networks. In 3DV, 2018.

[68] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mat-

toccia. Towards real-time unsupervised monocular depth es-

timation on CPU. In IROS, 2018.

[69] Anurag Ranjan, Varun Jampani, Kihwan Kim, Deqing Sun,

Jonas Wulff, and Michael J Black. Competitive collabora-

tion: Joint unsupervised learning of depth, camera motion,

optical flow and motion segmentation. In CVPR, 2019.

[70] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 2015.

[71] Ashutosh Saxena, Jamie Schulte, and Andrew Y Ng. Depth

estimation using monocular and stereo cues. In IJCAI, 2007.

[72] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.

Feature-metric loss for self-supervised learning of depth and

egomotion. In ECCV, 2020.

1173



[73] Nikolai Smolyanskiy, Alexey Kamenev, and Stan Birchfield.

On the importance of stereo for accurate depth estimation:

An efficient semi-supervised deep neural network approach.

In CVPR Workshops, 2018.

[74] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir

Navab. Cnn-slam: Real-time dense monocular slam with

learned depth prediction. In CVPR, 2017.

[75] Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo

Poggi, Samuele Salti, Luigi Di Stefano, and Stefano Mat-

toccia. Distilled semantics for comprehensive scene under-

standing from videos. In CVPR, 2020.

[76] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,

Thomas Brox, and Andreas Geiger. Sparsity invariant CNNs.

In 3DV, 2017.

[77] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-

laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas

Brox. DeMoN: Depth and motion network for learning

monocular stereo. In CVPR, 2017.

[78] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia

Schmid, Rahul Sukthankar, and Katerina Fragkiadaki.

SfM-Net: Learning of structure and motion from video.

arXiv:1704.07804, 2017.

[79] Jianrong Wang, Ge Zhang, Zhenyu Wu, XueWei Li, and Li

Liu. Self-supervised joint learning framework of depth esti-

mation via implicit cues. arXiv:2006.09876, 2020.

[80] Kaixuan Wang and Shaojie Shen. MVDepthNet: Real-time

multiview depth estimation neural network. In 3DV, 2018.

[81] Rui Wang, Stephen M Pizer, and Jan-Michael Frahm. Recur-

rent neural network for (un-)supervised learning of monocu-

lar video visual odometry and depth. In CVPR, 2019.

[82] Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yi

Yang, and Wei Xu. UnOS: Unified unsupervised optical-flow

and stereo-depth estimation by watching videos. In CVPR,

2019.

[83] Jamie Watson, Michael Firman, Gabriel Brostow, and Dani-

yar Turmukhambetov. Self-supervised monocular depth

hints. In ICCV, 2019.

[84] Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and Xi-

angyang Xue. DeepSFM: Structure from motion via deep

bundle adjustment. In ECCV, 2020.

[85] Felix Wimbauer, Nan Yang, Lukas von Stumberg, Niclas

Zeller, and Daniel Cremers. MonoRec: Semi-supervised

dense reconstruction in dynamic environments from a single

moving camera. In CVPR, 2021.

[86] Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Song Wang, and

Lili Ju. Spatial correspondence with generative adversarial

network: Learning depth from monocular videos. In ICCV,

2019.

[87] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3D: Fully

automatic 2D-to-3D video conversion with deep convolu-

tional neural networks. In ECCV, 2016.

[88] Jiaxin Xie, Chenyang Lei, Zhuwen Li, Li Erran Li, and

Qifeng Chen. Video depth estimation by fusing flow-to-

depth proposals. In IROS, 2020.

[89] Luwei Yang, Feitong Tan, Ao Li, Zhaopeng Cui, Yasutaka

Furukawa, and Ping Tan. Polarimetric dense monocular

SLAM. In CVPR, 2018.

[90] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram

Nevatia. LEGO: Learning edge with geometry all at once by

watching videos. In CVPR, 2018.

[91] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.

Mvsnet: Depth inference for unstructured multi-view stereo.

In ECCV, 2018.

[92] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised learn-

ing of dense depth, optical flow and camera pose. In CVPR,

2018.

[93] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,

Kejie Li, Harsh Agarwal, and Ian Reid. Unsupervised learn-

ing of monocular depth estimation and visual odometry with

deep feature reconstruction. In CVPR, 2018.

[94] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and

Philip HS Torr. GA-Net: Guided aggregation net for end-

to-end stereo matching. In CVPR, 2019.

[95] Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu,

Benjamin Wah, and Philip Torr. Domain-invariant stereo

matching networks. In ECCV, 2020.

[96] Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, and Hujun Bao.

Consistent depth maps recovery from a video sequence.

PAMI, 2009.

[97] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao,

Yu Liu, and Youliang Yan. Exploiting temporal consistency

for real-time video depth estimation. In ICCV, 2019.

[98] Yiran Zhong, Yuchao Dai, and Hongdong Li. Self-

supervised learning for stereo matching with self-improving

ability. arXiv:1709.00930, 2017.

[99] Tinghui Zhou, Matthew Brown, Noah Snavely, and David

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, 2017.

1174


