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Abstract

In this paper, we propose a Point-Voxel Recurrent All-

Pairs Field Transforms (PV-RAFT) method to estimate

scene flow from point clouds. Since point clouds are irregu-

lar and unordered, it is challenging to efficiently extract fea-

tures from all-pairs fields in the 3D space, where all-pairs

correlations play important roles in scene flow estimation.

To tackle this problem, we present point-voxel correlation

fields, which capture both local and long-range dependen-

cies of point pairs. To capture point-based correlations, we

adopt the K-Nearest Neighbors search that preserves fine-

grained information in the local region. By voxelizing point

clouds in a multi-scale manner, we construct pyramid cor-

relation voxels to model long-range correspondences. Inte-

grating these two types of correlations, our PV-RAFT makes

use of all-pairs relations to handle both small and large dis-

placements. We evaluate the proposed method on the Fly-

ingThings3D and KITTI Scene Flow 2015 datasets. Exper-

imental results show that PV-RAFT outperforms state-of-

the-art methods by remarkable margins.

1. Introduction

3D scene understanding [7,16,32,34,45,51] has attracted

more and more attention in recent years due to its wide real-

world applications. As one fundamental 3D computer vi-

sion task, scene flow estimation [6, 10, 18, 23, 26, 50] fo-

cuses on computing the 3D motion field between two con-

secutive frames, which provides important dynamic infor-

mation. Conventionally, scene flow is directly estimated

from RGB images [20, 21, 41, 43]. Since 3D data becomes

easier to obtain, many works [6, 18, 26, 50] begin to focus

on scene flow estimation of point clouds more recently.

*Equal Contribution
†Corresponding author

Figure 1: Illustration of the proposed point-voxel correla-

tion fields. For a point in the source point cloud, we find

its k-nearest neighbors in the target point cloud to extract

point-based correlations. Moreover, we model long-range

interactions by building voxels centered around this source

point. Combining these two types of correlations, our PV-

RAFT captures all-pairs dependencies to deal with both

large and small displacements.

Thanks to the recent advances in deep learning, many

approaches adopt deep neural networks for scene flow es-

timation [6, 18, 26, 39, 50]. Among these methods, [18, 50]

borrow ideas from [5, 11, 35], leveraging techniques in ma-

ture optical flow area. FlowNet3D designs a flow embed-

ding module to calculate correlations between two frames.

Built upon PWC-Net [35], PointPWC-Net [50] introduces

a learnable point-based cost volume without the need of 4D

dense tensors. These methods follow a coarse-to-fine strat-

egy, where scene flow is first computed at low resolution

and then upsampled to high resolution. However, this strat-

egy has several limitations [37] , e.g. error accumulation

from early steps and the tendency to miss fast-moving ob-

jects. One possible solution is to adopt Recurrent All-Pairs
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Field Transforms (RAFT) [37], a state-of-the-art method for

2D optical flow, that builds correlation volumes for all pairs

of pixels. Compared with the coarse-to-fine strategy, the

all-pairs field preserves both local correlations and long-

range relations. Nevertheless, it is non-trivial to lift it to the

3D space. Due to the irregularity of point clouds, building

structured all-pairs correlation fields becomes challenging.

Moreover, since point clouds are unordered, it is difficult to

efficiently look up neighboring points of a 3D position. Un-

fortunately, the correlation volumes used in previous meth-

ods [6, 18, 50] only consider near neighbors, which fails to

capture all-pairs relations.

To address these issues, we present point-voxel corre-

lation fields that aggregate the advantages of both point-

based and voxel-based correlations (illustrated in Figure 1).

As mentioned in [19, 32, 36], point-based features main-

tain fine-grained information while voxel-based operation

efficiently encodes large point set. Motivated by this fact,

we adopt K-Nearest Neighbor (KNN) search to find a fixed

number of neighboring points for point-based correlation

fields. Meanwhile, we voxelize target point clouds in a

multi-scale fashion to build pyramid correlation voxels.

These voxel-based correlation fields collect long-term de-

pendencies and guide the predicted direction. Moreover, to

save memory, we present a truncation mechanism to aban-

don the correlations with low scores.

Based on point-voxel correlation fields, we propose

a Point-Voxel Recurrent All-Pairs Field Transforms (PV-

RAFT) method to construct a new network architecture for

scene flow estimation of point clouds. Our method first em-

ploys a feature encoder to extract per-point features, which

are utilized to build all-pair correlation fields. Then we

adopt a GRU-based operator to update scene flow in an

iterative manner, where we leverage both point-based and

voxel-based mechanisms to look up correlation features.

Finally, a refinement module is introduced to smooth the

estimated scene flow. To evaluate our method, we con-

ducted extensive experiments on the FlyingThings3D [20]

and KITTI [21, 22] datasets. Results show that our PV-

RAFT outperforms state-of-the-art methods by a large mar-

gin. The code is available at https://github.com/

weiyithu/PV-RAFT.

2. Related Work

3D Deep Learning: Increased attention has been paid to

3D deep learning [7, 12, 16, 27–29, 31–33, 45, 49, 51] due

to its wide applications. As a pioneer work, PointNet [28]

is the first deep learning framework directly operating on

point clouds. It uses a max pooling layer to aggregate fea-

tures of unordered set. PointNet++ [29] introduces a hi-

erarchical structure by using PointNet as a unit module.

Kd-network [14] equips a kd-tree to divide point clouds

and compute a sequence of hierarchical representations.

DGCNN [46] models point clouds as a graph and utilizes

graph neural networks to extract features. Thanks to these

architectures, great achievements have been made in many

3D areas, e.g. 3D recognition [15,17,28,29], 3D segmenta-

tion [7, 12, 45]. Recently, several works [19, 32, 36] simul-

taneously leverage point-based and voxel-based methods to

operate on point clouds. Liu et al. [19] present Point-Voxel

CNN (PVCNN) for efficient 3D deep learning. It combines

voxel-based CNN and point-based MLP to extract features.

As a follow-up, Tang et al. [36] design SPVConv [36] which

adopts Sparse Convolution with the high-resolution point-

based network. They further propose 3D-NAS to search

the best architecture. PV-RCNN [32] takes advantage of

high-quality 3D proposals from 3D voxel CNN and accu-

rate location information from PointNet-based set abstrac-

tion operation. Instead of equipping point-voxel architec-

ture to extract features, we design point-voxel correlation

fields to capture correlations.

Optical Flow Estimation: Optical flow estimation [5, 9,

11, 30, 38] is a hot topic in 2D area. FlowNet [5] is the

first trainable CNN for optical flow estimation, adopting a

U-Net autoencoder architecture. Based on [5], FlowNet2

[11] stacks several FlowNet models to compute large-

displacement optical flows. With this cascaded backbone,

FlowNet2 [11] outperforms FlowNet [5] by a large margin.

To deal with large motions, SPyNet [30] adopts the coarse-

to-fine strategy with a spatial pyramid. Beyond SPyNet

[30], PWC-Net [35] builds a cost volume by limiting the

search range at each pyramid level. Similar to PWC-Net,

LiteFlowNet [9] also utilizes multiple correlation layers op-

erating on a feature pyramid. Recently, GLU-Net [38]

combines global and local correlation layers with an adap-

tive resolution strategy, which achieves both high accuracy

and robustness. Different from the coarse-to-fine strategy,

RAFT [37] constructs the multi-scale 4D correlation vol-

ume for all pairs of pixels. It further updates the flow field

through a recurrent unit iteratively, and achieves state-of-

the-art performance on optical flow estimation task. The

basic structure of our PV-RAFT is similar to theirs. How-

ever, we adjust the framework to fit point clouds data for-

mat and propose point-voxel correlation fields to leverage

all-pairs relations.

Scene Flow Estimation: First introduced in [41], scene

flow is the three-dimension vector to describe the motion

in real scenes. Beyond this pioneer work, many studies

estimate scene flow from RGB images [1, 2, 8, 25, 42–44,

47, 48]. Based on stereo sequences, [8] proposes a varia-

tional method to estimate scene flow. Similar to [8], [48]

decouples the position and velocity estimation steps with

consistent displacements in the stereo images. [44] rep-

resents dynamic scenes as a collection of rigidly moving

planes and accordingly introduces a piecewise rigid scene

model. With the development of 3D sensors, it becomes
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easier to get high-quality 3D data. More and more works

focus on how to leverage point clouds for scene flow estima-

tion [4,6,18,26,39,40,50]. FlowNet3D [18] introduces two

layers to simultaneously learn deep hierarchical features of

point clouds and flow embeddings. Inspired by Bilateral

Convolutional Layers, HPLFlowNet [6] projects unstruc-

tured point clouds onto a permutohedral lattice. Operat-

ing on permutohedral lattice points, it can efficiently calcu-

late scene flow. Benefiting from the coarse-to-fine strategy,

PointPWC-Net [50] proposes cost volume, upsampling, and

warping layers for scene flow estimation. Different from the

above methods, FLOT [26] adopts the optimal transport to

find correspondences. However, the correlation layers in-

troduced in these methods only consider the neighbors in

a local region, which fail to efficiently capture long-term

dependencies. With point-voxel correlation fields, our PV-

RAFT captures both local and long-range correlations.

3. Approach

To build all-pairs fields, it is important to design a corre-

lation volume which can capture both short-range and long-

range relations. In this section, we first explain how to con-

struct point-voxel correlation fields on point clouds. Then

we will introduce the pipeline of our Point-Voxel Recurrent

All-Pairs Field Transforms (PV-RAFT).

3.1. PointVoxel Correlation Fields

We first construct a full correlation volume based on fea-

ture similarities between all pairs. Given point clouds fea-

tures Eθ(P1) ∈ R
N1×D, Eθ(P2) ∈ R

N2×D, where D is the

feature dimension, the correlation fields C ∈ R
N1×N2 can

be easily calculated by matrix dot product:

C = Eθ(P1) · Eθ(P2) (1)

Correlation Lookup: The correlation volume C is built

only once and is kept as a lookup table for flow estimations

in different steps. Given a source point p1 = (x1, y1, z1) ∈
P1, a target point p2 = (x2, y2, z2) ∈ P2 and an estimated

scene flow f = (f1, f2, f3) ∈ f, the source point is expected

to move to q = (x1+f1, x2+f2, x3+f3) ∈ Q, where Q is

the translated point cloud. We can easily get the correlation

fields between Q and P2 by searching the neighbors of Q

in P2 and looking up the corresponding correlation values

in C. Such looking-up procedure avoids extracting features

of Q and calculating matrix dot product repeatedly while

keeping the all-pairs correlations available at the same time.

Since 3D points data is not structured in the dense voxel,

grid sampling is no longer useful and we cannot directly

convert 2D method [37] into 3D version. Thus, the main

challenge is how to locate neighbors and look up correlation

values efficiently in the 3D space.

Truncated Correlation: According to our experimental re-

sults, not all correlation entries are useful in the subsequent

correlation lookup process. The pairs with higher similarity

often guide the correct direction of flow estimation, while

dissimilar pairs tend to make little contribution. To save

memory and increase calculation efficiency in correlation

lookup, for each point in P1, we select its top-M highest

correlations. Specifically, we will get truncated correlation

fields CM ∈ R
N1×M , where M < N2 is the pre-defined

truncation number. The point branch and voxel branch are

built upon truncated correlation fields.

Point Branch: A common practice to locate neighbors in

3D point clouds is to use K-Nearest Neighbors (KNN) al-

gorithm. Suppose the top-k nearest neighbors of Q in P2

is Nk = N (Q)k and their corresponding correlation values

are CM (Nk), the correlation feature between Q and P2 can

be defined as:

Cp(Q,P2) = max
k

(MLP(concat(CM (Nk),Nk −Q)))

(2)

where concat stands for concatenation and max indicates

a max pooling operation on k dimension. We briefly note

N (Q) as N in the following statements as all neighbors

are based on Q in this paper. The point branch extracts

fine-grained correlation features of the estimated flow since

the nearest neighbors are often close to the query point, il-

lustrated in the upper branch of Figure 1. While the point

branch is able to capture local correlations, long-range re-

lations are often not taken into account in KNN scenario.

Existing methods try to solve this problem by implement-

ing the coarse-to-fine strategy, but error often accumulates

if estimates in the coarse stage are not accurate.

Voxel Branch: To tackle the problem mentioned above, we

propose a voxel branch to capture long-range correlation

features. Instead of voxelizing Q directly, we build voxel

neighbor cubes centered around Q and check which points

in P2 lie in these cubes. Moreover, we also need to know

each point’s relative direction to Q. Therefore, if we denote

sub-cube side length by r and cube resolution by a, then the

neighbor cube of Q would be a a× a× a Rubik’s cube:

Nr,a = {N (i)
r |i ∈ Z

3} (3)

N (i)
r = {Q+ i ∗ r + dr| ‖dr‖1 ≤

r

2
} (4)

where i = [i, j, k]T , ⌈−a
2 ⌉ ≤ i, j, k ≤ ⌈a

2 ⌉ ∈ Z and each

r × r × r sub-cube N
(i)
r indicates a specific direction of

neighbor points (e.g., [0, 0, 0]T indicates the central sub-

cube). Then we identify all neighbor points in the sub-cube

N
(i)
r and average their correlation values to get sub-cube

features. The correlation feature between Q and P2 can be

defined as:

Cv(Q,P2) = MLP

(

concat
i

(

1

ni

∑

ni

CM

(

N (i)
r

)

))

(5)
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Figure 2: Illustration of the proposed PV-RAFT architecture. The feature extractor encodes high dimensional features of

both P1 and P2, while the context extractor only encodes context features of P1. We calculate the matrix dot product of two

feature maps to construct all-pair correlation fields. The truncated correlation field is then used in iterative update block to

save memory. The detailed structure of ’Iterative Update’ module can be found in Figure 3. The predicted flow from the

iteration block finally converges to a static status and is fed into the separately trained refinement module. We use the refined

flow as the final scene flow prediction.

where ni is the number of points in P2 that lie in the i
th

sub-cube of Q and Cv(Q,P2) ∈ R
N1×a3

. Please refer to

the lower branch of Figure 1 for illustration.

The Voxel branch helps to capture long-range correla-

tion features as r, a could be large enough to cover distant

points. Moreover, we propose to extract pyramid correla-

tion voxels with fixed cube resolution a and proportionate

growing sub-cube side length r. During each pyramid it-

eration, r is doubled so that the neighbor cube expands to

include farther points. The pyramid features are concate-

nated together before feeding into the MLP layer.

3.2. PVRAFT

Given the proposed correlation fields that combine the

fine-grained and long-range features, we build a deep neu-

ral network for scene flow estimation. The pipeline con-

sists of four stages: (1) feature extraction, (2) correlation

fields construction, (3) iterative scene flow estimation, (4)

flow refinement. The first three stages are differentiable in

an end-to-end manner, while the fourth one is trained sepa-

rately with previous parts frozen. Our framework is called

PV-RAFT and in this section we will introduce it in detail.

Please refer to Figure 2 for illustration.

Feature Extraction: The feature extractor Eθ encodes

point clouds with mere coordinates information into higher

dimensional feature space, as Eθ : Rn×3 7→ R
n×D. Our

backbone framework is based on PointNet++ [29]. For con-

secutive point clouds input P1, P2, the feature extractor out-

puts Eθ(P1), Eθ(P2) as backbone features. Besides, we de-

sign a content feature extractor Eγ to encode context feature

of P1. Its structure is exactly the same as feature extrac-

tor Eθ, without weight sharing. The output context feature

Eγ(P1) is used as auxiliary context information in GRU it-

eration.

Correlation Fields Construction: As is introduced in Sec-

tion 3.1, we build all-pair correlation fields C based on

backbone features Eθ(P1), Eθ(P2). Then we truncate it ac-

cording to correlation value sorting and keep it as a lookup

table for later iterative updates.

Iterative Flow Estimation: The iterative flow estimation

begins with the initialize state f0 = 0. With each itera-

tion, the scene flow estimation is updated upon the current

state: ft+1 = ft + ∆f . Eventually, the sequence converges

to the final prediction fT → f∗. Each iteration takes the

following variables as input: (1) correlation features, (2)

current flow estimate, (3) hidden states from the previous

iteration, (4) context features. First, the correlation features

are the combination of both fine-grained point-based ones

and long-range pyramid-voxel-based ones:

Ct = Cp(Qt, P2) +Cv(Qt, P2) (6)

Second, the current flow estimation is simply the direction

vector between Qt and P1:

ft = Qt − P1 (7)

Third, the hidden state ht is calculated by GRU cell [37]:

zt = σ(Conv1d([ht−1, xt],Wz)) (8)

rt = σ(Conv1d([ht−1, xt],Wr)) (9)

ĥt = tanh(Conv1d([rt ⊙ ht−1, xt],Wh)) (10)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (11)

where xt is a concatenation of correlation Ct, current flow

ft and context features Eγ(P1). Finally, the hidden state

ht is fed into a small convolutional network to get the final

scene flow estimate f∗. The detailed iterative update process

is illustrated in Figure 3.
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Figure 3: Illustration of the iterative update. This figure is a detailed explanation of the ’Iterative Update’ module in Figure 2.

During iteration t, we find both voxel neighbors and KNN of Qt−1 in P2. This helps us extract long-range voxel correlation

features and fine-grained point correlation features from the truncated correlation field. The combined correlation feature,

together with context feature and current flow estimate ft−1 are fed to a convolutional motion head. The output is used as xt

of the Gated Recurrent Unit (GRU). Finally, the flow head encodes the hidden state ht of GRU to predict the residual of flow

estimation, which is used to update ft and Qt.

Flow Refinement: The purpose of designing this flow

refinement module is to make scene flow prediction f∗

smoother in the 3D space. Specifically, the estimated scene

flow from previous stages is fed into three convolutional

layers and one fully connected layer. To update flow for

more iterations without out of memory, the refinement mod-

ule is not trained end-to-end with other modules. We first

train the backbone and iterative update module, then we

freeze the weights and train the refinement module alone.

3.3. Loss Function

Flow Supervision: We follow the common practice of su-

pervised scene flow learning to design our loss function. In

detail, we use l1-norm between the ground truth flow fgt

and estimated flow fest for each iteration:

Liter =

T
∑

t=1

w(t)‖(f
(t)
est − fgt)‖1 (12)

where T is the total amount of iterative updates, f
(t)
est is the

flow estimate at tth iteration, and w(t) is the weight of tth

iteration:

w(t) = γ ∗ (T − t− 1) (13)

where γ is a hyper-parameter and we set γ = 0.8 in our

experiments.

Refinement Supervision: When we freeze the weights of

previous stages and only train the refinement module, we

design a similar refinement loss:

Lref = ‖(fref − fgt)‖1 (14)

where fref is the flow prediction from refinement module.

4. Experiments

In this section, we conducted extensive experiments to

verify the superiority of our PV-RAFT. We first introduce

the experimental setup, including datasets, implementation

details and evaluation metrics. Then we show main results

on the FlyingThings3D [20] and KITTI [21,22] datasets, as

well as ablation studies. Finally, we give a further analy-

sis of PV-RAFT to better illustrate the effectiveness of our

proposed method.

4.1. Experimental Setup

Datasets: Same with [6, 18, 26, 50], we trained our model

on the FlyingThings3D [20] dataset and evaluated it on both

FlyingThings3D [20] and KITTI [21, 22] datasets. We fol-

lowed [6] to preprocess data. As a large-scale synthetic

dataset, FlyingThings3D is the first benchmark for scene

flow estimation. With the objects from ShapeNet [3], Fly-

ingThings3D consists of rendered stereo and RGB-D im-

ages. Totally, there are 19,640 pairs of samples in the train-

ing set and 3,824 pairs in the test set. Besides, we kept aside

2000 samples from the training set for validation. We lifted

depth images to point clouds and optical flow to scene flow

instead of operating on RGB images. As another bench-

mark, KITTI Scene Flow 2015 is a dataset for scene flow

estimation in real scans [21, 22]. It is built from KITTI raw

data by annotating dynamic motions. Following previous

works [6, 18, 26, 50], we evaluated on 142 samples in the

training set since point clouds were not available in the test

set. Ground points were removed by height (0.3m). Further,

we deleted points whose depths are larger than 35m.

Implementation Details: We randomly sampled 8192

points in each point cloud to train PV-RAFT. For the point
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Table 1: Performance comparison on the FlyingThings3D and KITTI datasets. All methods are trained on FlyingThings3D

in a supervised manner. The best results for each dataset are marked in bold.

Dataset Method EPE(m)↓ Acc Strict↑ Acc Relax↑ Outliers↓

FlyingThings3D

FlowNet3D [18] 0.1136 0.4125 0.7706 0.6016

HPLFlowNet [6] 0.0804 0.6144 0.8555 0.4287

PointPWC-Net [50] 0.0588 0.7379 0.9276 0.3424

FLOT [26] 0.052 0.732 0.927 0.357

PV-RAFT 0.0461 0.8169 0.9574 0.2924

KITTI

FlowNet3D [18] 0.1767 0.3738 0.6677 0.5271

HPLFlowNet [6] 0.1169 0.4783 0.7776 0.4103

PointPWC-Net [50] 0.0694 0.7281 0.8884 0.2648

FLOT [26] 0.056 0.755 0.908 0.242

PV-RAFT 0.0560 0.8226 0.9372 0.2163

branch, we searched 32 nearest neighbors. For the voxel

branch, we set cube resolution a = 3 and built 3-level pyra-

mid with r = 0.25, 0.5, 1. To save memory, we set trunca-

tion number M as 512. We updated scene flow for 8 itera-

tions during training and evaluated the model with 32 flow

updates. The backbone and iterative module were trained

for 20 epochs. Then, we fixed their weights with 32 it-

erations and trained the refinement module for another 10

epochs. PV-RAFT was implemented in PyTorch [24]. We

utilized Adam optimizer [13] with initial learning rate as

0.001 .

Evaluation Metrics: We adopted four evaluation metrics

used in [6,18,26,50], including EPE, Acc Strict, Acc Relax

and Outliers. We denote estimated scene flow and ground-

truth scene flow as fest and fgt respectively. The evaluation

metrics are defined as follows:

• EPE: ||fest−fgt||2. The end point error averaged on each

point in meters.

• Acc Strict: the percentage of points whose EPE < 0.05m
or relative error < 5%.

• Acc Relax: the percentage of points whose EPE < 0.1m
or relative error < 10%.

• Outliers: the percentage of points whose EPE > 0.3m or

relative error > 10%.

4.2. Main Results

Quantitative results on the FlyingThings3D and KITTI

datasets are shown in Table 1. Our PV-RAFT achieves state-

of-the-art performances on both datasets, which verifies its

superiority and generalization ability. Especially, for Out-

liers metric, our method outperforms FLOT by 18.1% and

10.6% on two datasets respectively. The qualitative results

in Figure 4 further demonstrate the effectiveness of PV-

RAFT. The first row and second row present visualizations

on the FlyingThings3D and KITTI datasets respectively. As

we can see, benefiting from point-voxel correlation fields,

our method can accurately predict both small and large dis-

placements.

4.3. Ablation Studies

We conducted experiments to confirm the effectiveness

of each module in our method. Point-based correlation,

voxel-based correlation and refinement module were ap-

plied to our framework incrementally. From Table 2, we

can conclude that each module plays an important part in

the whole pipeline. As two baselines, the methods with

only point-based correlation or voxel-based correlation fail

to achieve high performance, since they cannot capture all-

pairs relations. An intuitive solution is to employ more near-

est neighbors in the point branch to increase the receptive

field or decrease the side length r in the voxel branch to

take fine-grained correlations. However, we find that such

straightforward methods lead to inferior results (See details

in the supplemental material).

To better illustrate the effects of two types of correla-

tions, we show visualizations in Figure 5. At the beginning

of update steps, when predicted flows are initialized as zero,

the estimated translated points are far from ground-truth

correspondences in the target point cloud (first column).

Under this circumstance, the similarity scores with near

neighbors are small, where point-based correlation provides

invalid information. In contrast, since voxel-based correla-

tion has the large receptive field, it is able to find long-range

correspondences and guide the prediction direction. As the

update iteration increases, we will get more and more ac-

curate scene flow. When translated points are near to the

ground-truth correspondences, high-score correlations will

concentrate on the centered lattice of the voxel (third col-

umn), which does not serve detailed correlations. However,

we will get informative correlations from the point branch

since KNN perfectly encodes local information.

4.4. Further Analysis

Effects of Truncation Operation: We introduce the trun-

cation operation to reduce running memory while maintain

the performance. To prove this viewpoint, we conducted
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Figure 4: Qualitative results on FlyingThings3D (top) and KITTI (bottom). Blue points and red points indicate P1 and P2

respectively. Translated points P1 + f are in green. Our PV-RAFT can deal with both small and large displacements’ cases.

Table 2: Ablation Studies of PV-RAFT on the FlyingThings3D dataset. We incrementally applied point-based correlation,

voxel-based correlation and refinement module to the framework.

point-based voxel-based refine
EPE(m)↓ Acc Strict↑ Acc Relax↑ Outliers↓

correlation correlation module

X 0.0741 0.6111 0.8868 0.4549

X 0.0712 0.6146 0.8983 0.4492

X X 0.0534 0.7348 0.9418 0.3645

X X X 0.0461 0.8169 0.9574 0.2924

Table 3: Effects of truncation operation. M denotes the

truncation number.

M memory EPE(m)↓ Acc Strict↑ Outliers↓

128 7.4G 0.0585 0.7113 0.3810

512 10.7G 0.0461 0.8169 0.2924

1024 14.1G 0.0475 0.8173 0.2910

Table 4: Comparison with other correlation volume meth-

ods. ”MLP+Maxpool” and ”patch-to-patch” are correlation

volumes used in FlowNet3D [18] and PointPWC-Net [50]

respectively.

Method EPE(m)↓ Acc Strict↑ Outliers↓

MLP+Maxpool [18] 0.0704 0.7137 0.3843

patch-to-patch [50] 0.0614 0.7209 0.3628

point-voxel 0.0461 0.8169 0.2924

experiments with different truncation numbers M , which

are shown in Table 3. On the one hand, when M is too

small, the accuracy will degrade due to the lack of corre-

lation information. On the other hand, achieving the com-

parable performance with M = 512, the model adopting

M = 1024 needs about 14G running memory, which is not

available on many GPU services (e.g. RTX 2080 Ti). This

result indicates that top 512 correlations are enough to ac-

curately estimate scene flow with high efficiency.

Comparison with Other Correlation Volumes: To further

demonstrate the superiority of the proposed point-voxel cor-

relation fields, we did comparison with correlation volume

methods introduced in FlowNet3D [18] and PointPWC-Net

[50]. To fairly compare, we applied their correlation vol-

umes in our framework to substitute point-voxel correlation

fields. Evaluation results are shown in Table 4. Leverag-

ing all-pairs relations, our point-voxel correlation module

outperforms other correlation volume methods.

5. Conclusion

In this paper, we have proposed a PV-RAFT method for

scene flow estimation of point clouds. With the point-voxel

correlation fields, our method integrates two types of corre-

lations and captures all-pairs relations. Leveraging the trun-

cation operation and the refinement module, our framework

becomes more accurate. Experimental results on the Fly-

ingThings3D and KITTI datasets verify the superiority and

generalization ability of PV-RAFT.
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Figure 5: Visualization of point-voxel correlation fields. In the first row, green points represent translated point cloud P1 + f

while red points stand for target point cloud P2. The pink cube is a point in the translated point cloud, whose correspondence

in P2 is the yellow cube. The correlation fields of voxel branch are illustrated in the second (r = 1) and third (r = 0.25)

rows. If the target point (yellow cube) lies in a lattice, the boundaries of this lattice will be colored in black. The last row

exhibits the correlation field of the point branch. The colors of the last three rows indicate normalized correlation scores,

where red is highest and purple is lowest (Figure 1 shows colormap). At the beginning of the iterative update (the first

column), the predicted flow is not accurate so that the translated point is far from the target point. Since the voxel branch has

large receptive fields, it can cover the target point while the point branch fails. From the first column and the second row, we

see that the sub-cube which contains the target point has the highest correlation score. This indicates that the voxel branch

provides effective guidance for flow prediction at early iterations. As the iteration goes on, the translated point gets near

to the target point (the third column). The voxel branch only provides the coarse position of the target point (at the central

sub-cube) while the point branch can accurately localize the target point by computing correlation scores of all neighbor

points in the local region. The viewpoints are chosen to best visualize the sub-cube with the highest score.
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