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Abstract

These days, unsupervised super-resolution (SR) is soar-

ing due to its practical and promising potential in real sce-

narios. The philosophy of off-the-shelf approaches lies in

the augmentation of unpaired data, i.e. first generating syn-

thetic low-resolution (LR) images Yg corresponding to real-

world high-resolution (HR) images X r in the real-world LR

domain Yr, and then utilizing the pseudo pairs {Yg,X r}
for training in a supervised manner. Unfortunately, since

image translation itself is an extremely challenging task,

the SR performance of these approaches is severely lim-

ited by the domain gap between generated synthetic LR

images and real LR images. In this paper, we propose a

novel domain-distance aware super-resolution (DASR) ap-

proach for unsupervised real-world image SR. The domain

gap between training data (e.g. Yg) and testing data (e.g.

Yr) is addressed with our domain-gap aware training and

domain-distance weighted supervision strategies. Domain-

gap aware training takes additional benefit from real data

in the target domain while domain-distance weighted su-

pervision brings forward the more rational use of labeled

source domain data. The proposed method is validated

on synthetic and real datasets and the experimental results

show that DASR consistently outperforms state-of-the-art

unsupervised SR approaches in generating SR outputs with

more realistic and natural textures. Codes are available at

https://github.com/ShuhangGu/DASR.

1. Introduction
Single image super-resolution (SR) aims at reconstruct-

ing a high-resolution (HR) image from a low-resolution

(LR) observation. In the past two decades, SR has been

a thriving research topic due to its highly practical value

in enhancing image details and textures. A wide variety of

models [15, 19, 55, 49, 22] have been suggested to deal with

the image SR problem.

*The first two authors contribute equally to this work.
†Corresponding author.

Bicubic FSSR [16] DASR(ours) Real-world

Figure 1: Visualization of the domain-gap between the gen-

erated LR images by different methods and LR images in

the AIM [40] dataset. More details can be found in our

main text.

Benefiting from the rapid development of deep convolu-

tional neural networks (CNNs), recent years have witnessed

an explosive spread of training CNN models [27, 38, 48, 52,

60, 63, 57, 36] for SR. State-of-the-art SR performance has

been boosted by directly training networks to capture the

LR-to-HR mapping. Moreover, when combined with adver-

sarial training [20] or perceptual losses [31], SR networks

can produce accurate and natural-looking image details.

In spite of their success on benchmark datasets, the poor

generalization capacity of discriminatively trained SR net-

works limits their application in real scenarios. When ap-

plied to super-resolve real images, SR networks trained on

simulated datasets usually lead to undesired strong artifacts

in their SR results. For the pursuit of real image SR, great

attempts have been made in the last couple of years. By ad-

justing the focal length of a digital camera, several works

prepared real image SR datasets [9, 61, 8]. But the col-

lections of these datasets are often laborious and costly.

Furthermore, SR networks trained on the collected datasets

are hard to generalize to images captured in other condi-
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tions. Another category of approaches investigates real-

world image SR from an algorithmic perspective. Some

works [41, 64, 5, 30] assume the LR and HR images satisfy

a parameterized degradation model and propose blind SR

algorithms which are able to adapt to the unknown down-

sampling kernel in the testing phase. These blind SR algo-

rithms [11, 56, 58, 4] have shown improved generalization

capacity over models trained on predetermined synthetic

data, but the fixed degradation assumption greatly limits

their performances on real data, which are often subject to

complex sensor noise and compression artifacts.

Recently, without any assumptions on the degradation

model, unsupervised SR approaches have been proposed to

leverage unpaired training data. Given a set of real-world

LR images Yr = {yri }i=1,...,N , some works [7, 39, 16, 24]

proposed to train a degradation network to generate LR ob-

servations y
g
i of the available HR images xr

i ∈ X r, and

enforcing the same distribution of the generated LR images

Yg = {ygi }i=1,...,M with that of real LR images Yr. With

the generated pseudo pairs {Yg,X r}, supervised training

can be employed to train the SR network. Such unsuper-

vised settings exploit the real training data to learn the com-

plex degradation model and lead to promising SR results on

real-world images [40]. However, existing unsupervised SR

approaches [16, 7, 39] ignore the domain-gap between Yg

and Yr in the training process of SR networks. In Fig. 1,

we visualize the domain gap between the generated and

the real LR images. We employed Bicubic downsampling,

the trained down-sampling networks by FSSR [16] and our

proposed DASR to generate LR images from HR images.

Although the trained down-sampling networks are able to

generate better LR images that reside in a domain closer to

the real LR domain than the bicubically downsampled im-

ages, the domain gap still exists between Yg and Yr. The

Fréchet Inception Distance (FID) [26] between bicubically

downsampled images, FSSR generated LR images, DASR

generated LR images and AIM LR images are 37.69, 33.89

and 31.28, respectively. As the four groups of LR images

share the same image contents, the FID scores clearly re-

flect the domain-distance between generated LR images and

real-world LR images in the AIM [40] dataset.

In this paper, we propose a Domain-distance Aware

Super-resolution (DASR) framework for real-world image

super-resolution. Different from previous unsupervised

methods [7, 39, 16, 23] which rely on the generation of

pseudo pairs for supervised training, our DASR takes into

consideration the domain gap between the generated and

real LR images, i.e. Yg and Yr, and solves the SR prob-

lem with both of them under a domain adaptation setting.

Our DASR method addresses the domain gap issue through

two training strategies: domain-gap aware training and

domain-distance weighted supervision. Firstly, with the

domain-gap aware training, DASR employs both the gener-

ated pseudo pairs {Yg,X r} and real LR images Yr to train

the SR network. Besides the supervised loss on the pseudo

pairs {Yg,X r}, DASR also imposes adversarial constraints

on the HR estimation X̂ r→r of real-world data Yr. Incor-

porating Yr into training informs the network of the target

domain, greatly improves its SR performance on real-world

data. Secondly, besides the domain-gap aware training, a

domain-distance weighted supervision strategy is also pro-

posed for advanced exploitation of the generated pseudo

pairs. As shown in Fig. 1, some generated LR samples re-

side closer to the real-world domain while the others are rel-

atively far away from it. We therefore adjust the importance

of each pair {ygi , x
r
i } according to the domain distance be-

tween y
g
i and Yr. Samples that are relatively closer to the

real-world domain are assigned with larger weights in the

training phase; while unrealistic samples are only allowed

to make a limited contribution to the training.

In addition to the above strategies, which are the major

contributions of this paper, we also improve previous meth-

ods by employing better architecture of the down-sampling

network and better adversarial loss in the wavelet domain.

Our contributions can be summarized as follows:

• A domain distance aware super-resolution (DASR)

framework is proposed to solve the real-world image

SR problem. DASR addresses the domain gap between

generated LR images and real images with the pro-

posed domain-gap aware training and domain-distance

weighted supervision strategies.

• We provide detailed ablation studies to analyze and

validate our contributions. Experimental results on

synthetic and real datasets clearly demonstrate the su-

periority of DASR over the competing approaches.

2. Related Works

2.1. Single Image SuperResolution with CNNs

Nowadays CNN-based methods are the mainstream in

the single image SR field. In the pioneering work of Dong et

al. [12], the first CNN-based SR method to reach compet-

itive results was introduced. They proposed SRCNN, a 3

layers CNN, to directly learn the mapping function between

LR and HR image pairs. After that, a surge of network

architectures, such as a deep network with residual learn-

ing [27], network with residual blocks [38], densely con-

nected network [52], have been designed to solve the SR

task. The SR performance on benchmark datasets have been

continuously improved by newly proposed network archi-

tectures [2, 13, 25, 29, 32, 34, 63, 3, 28, 51]. Besides in-

vestigating more powerful network architecture, perceptual-

driven approaches explore better loss functions to improve

the perceptual quality of SR results. Johnson et al. [31]

proposed a perceptual loss which measures the error of two

images in the feature space instead of pixel space. Ledig et
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Figure 2: Illustration of our DASR framework. DASR firstly trains a down-sampling network (DSN) which aims to generate

LR images yg in the real LR domain yr from HR images xr: yg = DSN(xr). Then, DASR take the domain-gap between

generated LR images yg and real-world LR images yr into consideration, utilize the generated LR-HR pairs {yg, xr}, domain

distance maps w and real-world LR images yr to train super-resolution network (SRN).

al. [35] firstly introduced the adversarial loss to favor out-

puts residing on the manifold of natural images. Inspired by

these pioneer works, different training criteria [52, 60, 44]

have been suggested to promote the visual quality of SR

results.

Although significant advances have been made, all the

aforementioned approaches are trained and evaluated on

simulated datasets which assume simple and uniform degra-

dation. These days, the real-world image super-resolution

problem has attracted increasing attention due to its high

practical values. A branch of work [30, 41, 64, 5, 11] as-

sumes the degradation model between LR and HR images

can be characterized by an unknown blur kernel and the sub-

sequent downsampling operation. These blind SR works

explicitly estimate the unknown blur kernel at the testing

time and take the estimated kernel as an input variable for

kernel adaptive SR networks [58, 64] to adapt to different

degradation hyper-parameters. There are also works [4, 37]

attempting to use the test image for training or fine-tuning

the SR network in the testing phase. However, both ap-

proaches still rely on a known degradation model during

training. To deal with more general real-world SR task,

some recent works consider an unsupervised setting which

does not rely on the degradation assumption. Given a group

of LR images, Yuan et al. [56] firstly learned a mapping to

transfer the original input images to the clean image do-

main and applied SR in the clean image domain. Other

unsupervised approaches [16, 7, 39, 24] proposed to learn

a downsampling process to generate paired data and train

SR network with the generated data in a supervised man-

ner. The advantage of these unsupervised SR methods is

that they do not rely on the degradation assumption, and

therefore are capable of generalizing to very challenging

real-world images. However, as image translation itself is

an extremely challenging task, the generated LR images are

often not consistent with the real LR images. Such a do-

main gap between training and testing data will deteriorate

the final SR performance in the testing phase.

2.2. Domain Adaptation

Domain adaptation aims to utilize a labeled source do-

main to learn a model that performs well on an unlabeled

target domain. It is a classical machine learning prob-

lem [17, 14, 46]. Recently, with the explosive spread of

using CNN models to solve computer vision tasks, domain

adaption has received increasing attention. It has been de-

ployed in many tasks for levering synthetic data or data

from other datasets. Early domain adaptation works in the

computer vision field focus on solving the domain bias is-

sue in high-level classification tasks [42, 10, 18, 21, 43].

Recently, domain adaptation has also been adopted in more

challenging dense estimation tasks such as semantic seg-

mentation [62, 45]. With appropriate adaptation strategies,

models trained on synthetic datasets have achieved compa-

rable performance to models trained with real labeled data

[6, 17, 45, 54]. In this paper, we utilize domain adaptation

to improve SR performance on real data.

3. DASR for Unsupervised Image SR

3.1. Methodology Overview

Given two domains described by two sets of unpaired

LR images Yr = {yri }i=1,...,N and HR images X r =
{xr

i }i=1,...,M , we aim to learn an SR network (SRN) to

enlarge the size of an image from the LR domain and si-

multaneously ensure the HR estimation lies in the real HR

domain. To attain this goal, we follow the previous state-

of-the-art methods [16, 7, 39] and propose a two-stage ap-

proach. Firstly, we train a down-sampling network (DSN)

to generate LR images in the real-world LR domain from

HR images: y
g
i = DSN(xr

i ). Then, we utilize the gen-

erated LR-HR pairs {ygi , x
r
i }i=1,...,M for training the SRN.

In contrast to previous works [16, 7, 39] which simply em-

ploy the generated pseudo pairs to train SRN in a supervised
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(a) (b)

Figure 3: (a) Proposed DSN architecture and train losses.

(b) Adversarial loss in wavelet high-frequency space.

manner, our DASR framework considers the domain bias

between Yg and Yr and adopts domain-gap aware training

and domain-distance weighted supervision strategies to take

full advantage of real-world LR images as well as the gen-

erated pairs. An illustration of the proposed DASR frame-

work is shown in Fig. 2.

In the remaining parts of this section, we firstly introduce

how we train a DSN to generate synthetic LR-HR pairs.

Then, we present our domain-gap aware training strategy

and domain-distance weighted supervision strategy.

3.2. Training of DownSampling Network

Network architecture. Different down-sampling networks

[16] have been trained in previous unsupervised SR works

to generate synthetic real-world LR images from HR im-

ages. To avoid changing the image sizes between the in-

put to output, existing approaches adopt a bicubic down-

sampling operation as the pre-processing step. Therefore,

the degradation networks only need to translate the bicu-

bic downsampled images to the real image domain. In con-

trast, our DSN takes the HR image as input and captures the

whole degradation process with the network directly. Thus,

without losing information in the bicubic down-sampling

step, all the information in HR images can be exploited for

generating better synthetic LR images. Our detailed net-

work architecture can be found in Fig. 3 (a). DSN utilizes

23 residual blocks to extract information from the HR im-

age, each residual block contains two convolutional layers

(with kernel size 3×3 and channel number 64) and a ReLU

activation in between. Then, a bilinear resize operator and

two convolutional layers are adopted to reduce the spatial

resolution of features and project the features back to the

image domain.

Losses. We train our DSN with a combination of multiple

loss functions. To keep the content of generated LR im-

age consistent with the input HR image, we apply content

loss Lcon and perceptual loss Lper to constrain the distance

between generated LR image y
g
i = DSN(xr

i ) and bicubic

downsampled HR image ybi :

Lcon = Exr ||ybi −DSN(xr
i )||1,

Lper = Exr‖φ(ybi )− φ(DSN(xr
i ))‖1;

(1)

where ybi = B(xr
i ) is the bicubic downsampled HR image,

and φ(·) denotes the VGG [47] feature extractor. In our im-

plementation, we follow ESRGAN [52] and calculate per-

ceptual loss on VGG-19 [47] features from conv5 3 convo-

lutional layer. While to achieve the goal of domain transla-

tion, we impose adversarial losses between image samples

in Yg and Yr. We adopt a similar idea with FSSR [16],

which only imposes adversarial loss in the high-frequency

space. But we use Haar wavelet transform to extract more

informative high-frequency components. Concretely, de-

note the four sub-bands decomposed by Haar wavelet trans-

form as LL, LH, HL and HH, we stack the LH, HL and

HH components as the input to the discriminator. Com-

pared with the high-frequency extractor used in FSSR [16],

our wavelet-based extractor also exploits direction informa-

tion to better characterize image details. The GAN loss for

generator (i.e. our DSN) is defined as:

LG
adv = −Exr [log (D (Hwavelet (DSN(xr))))]; (2)

and the GAN loss for training the discriminator is in a sym-

metrical form:

LD
adv =− Eyr [log(D(Hwavelet(y

r)))]

− Exr [log (1−D (Hwavelet (DSN(xr))))].
(3)

Hwavelet(·) in Eqs. (2) and (3) represents extracting LH,

HL and HH subbands with Haar wavelet transform and

concatenating the three variables. Imposing the adversar-

ial loss in the high-frequency domain enables us to ignore

the low-frequency content which is less relevant to the SR

task [16] and focus more on the image details. Moreover,

conducting adversarial training in lower-dimension space

also reduces the difficulty of GAN training [33, 53].

In our implementation, we adopt a similar strategy as

CycleGAN [65], which imposes GAN loss on each patch.

Concretely, we utilize a 4 layer fully convolutional discrim-

inator, the patch discriminator has a valid receptive field of

23× 23. The PatchGAN strategy helps to derive the patch-

level dense domain distance map, which will be utilized in

the subsequent training phase of SRN. We refer to our suppl.

material for more details of our patch discriminator.

Training Details. Our DSN is trained using the loss:

LDSN = αLcon + βLper + γLG
adv. (4)

To stabilize our training, we pre-train our DSN network

with content loss. After a pre-train process of 25000 itera-

tions, the α, β and γ in Eq. (4) are set as 0.01, 1 and 0.0005,

respectively. We train the DSN networks with 192 × 192

HR crops, the batch size is set as 16. The initial learning

rate is 0.0001, and we halve it every 10000 iterations. We

train the model for 50000 iterations.
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Figure 4: Domain-distance aware training of our SRN.

3.3. Domain distance aware training of SRN

With the aforementioned DSN, we are able to generate

synthetic paired data {ygi , x
r
i }i=1,...,M . However, as shown

in Fig. 1, a domain gap still exists between generated LR

images Yg and real LR images Yr. When the SR network

trained on synthetic data is applied to super-resolve real-

world LR images, such a domain gap between training and

testing data will lead to a performance drop. To alleviate the

domain bias issue, we consider a domain adaptation setting

and incorporate both source domain labeled data {Yg,X r}
and target domain unlabeled data Yr in the training of our

SR network. The core of our adaptation strategy consists

of two parts which include domain-gap aware training and

domain-distance weighted supervision.

Domain-gap aware training. Given training samples from

source and target domains, we utilize different losses in the

two domains to take full advantage of the training data (see

Fig. 4). For the data in the source domain, which have su-

pervised labels, we deploy losses to train the network in a

supervised manner. While, for target domain data, which

do not have labels, we impose adversarial losses to align

the distribution of their outputs X̂ r→r = SRN(Yr) and the

distribution of real HR images X r. The same as our DSN

training, we introduce GAN losses in the wavelet space.

LG
target,adv =− Eyr [log(D(Hwavelet(SRN(yr))))];

LD
target,adv =− Exr [log(D(Hwavelet(x

r)))]

− Eyr [log(1−D(Hwavelet(SRN(yr))))].
(5)

Besides introducing Ltarget,adv to guide network train-

ing with target domain information, making rational use of

information in the source domain is of equal importance for

obtaining a good SRN. In the following part, we introduce

how the domain distance information of each sample can be

used for adaptively supervised training of SRN.

Domain-distance weighted supervision. As shown in

Fig. 1, each sample in Yg has a distinct distance to the real-

world image domain Yr. More specifically, since the dif-

ference between images from different domains only lies

in their low-level details, each area of generated images

may possess diverse domain distances to the real-world im-

age domain. When being applied as source domain data to

train target domain SRN, different areas should be endowed

with various importance based on their respective distance

to the target domain. We therefore propose a weighted su-

pervision strategy which utilizes a dense domain distance

map to adaptively adjust the losses for each pair {ygi , x
r
i }.

The weighted supervised losses in the source domain can be

written as:

Lsource,con = Ey
g

i
,xr

i
‖wi ⊙ ((SRN(ygi )− xr

i ) ‖1,

Lsource,per = Ey
g

i
,xr

i
‖wi ⊙ (φ (SRN(ygi ))− φ(xr

i )) ‖1;
(6)

where wi is the domain distance map for y
g
i , and ⊙ denotes

the point-wise multiplication. We utilize the discriminators

obtained during the training process of DSN to evaluate the

domain distance map for each sample. Note that the dis-

criminator is trained to distinguish the generated patches

from the real-world LR patches and the discriminator out-

put denotes the possibility that the input comes from the

target domain. Thus, the larger the discriminator output,

the higher the possibility that the input comes from the tar-

get real-world LR domain and the less the distance to the

target domain. We directly utilize bilinear resize to adjust

the spatial size of discriminator outputs, and utilized the re-

size weight map to weigh the importance of each local area.

Training details. In summary, with our domain-distance

aware training strategy, SRN is trained through minimizing

the following losses:

LSRN=αLsource,con+βLsource,per+γLtarget,adv. (7)

The same as our training schedule for DSN, we pretrain our

SRN with content loss in the source domain. After 25000

iterations of pretraining, we employ all the losses in Eq. (7)

with weights α = 0.01, β = 1 and γ = 0.005 to train

the network for another 50000 iterations. We initialize the

learning rate as 0.0002, and halve it every 10000 iterations.

Our adaptation strategy is applicable to diverse network

architectures. In this paper, we directly adopt the architec-

ture used in ESRGAN [52] as our SRN.

4. Experimental Results on Synthetic Datasets

4.1. Experimental Setting

In this section, we evaluate the proposed DASR method

on the AIM dataset, which was used in the AIM Challenge

on Real World SR at ICCV 2019 [40]. The dataset was

simulated by applying synthetic but realistic degradations

to clean high-quality images. We follow the experimental

setting of target domain super resolution in the Challenge.

The training set consists of 2650 noisy and compressed im-

ages with unknown degradation from the Flickr2K dataset

[1], and 800 clean HR images from the DIV2K [50] dataset.

We conduct our experiments on the validation dataset of the

AIM challenge, which has paired data for quantitative com-

parison. The validation dataset contains 100 images with
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DSN Input Ladv for DSN LPIPS↓ PSNR↑ SSIM↑
Bicubic LR GBFS 0.110 25.258 0.8081

HR RGB 0.138 25.204 0.8153

HR GBFS 0.101 25.474 0.8156

HR WFS 0.067 26.007 0.8097

Bicubic HR HR HR Real

GBFS RGB GBFS WFS world

Table 1: LR image generation with different DSN architectures and adversarial training criterion. Details of the experiments

are described in section 4.2.

Source domain {Yb,X r} {Yb,X r} {Yg,X r} {Yg,X r} {Yg,X r} {Yg,X r}
Target domain - Yr - Yr - Yr

Domain gap aware % " % " % "

Weighted sup. % % % % " "
PSNR↑ 21.382 20.820 21.910 21.805 21.452 21.600

SSIM↑ 0.5478 0.5103 0.5555 0.5615 0.5304 0.5640

LPIPS↓ 0.543 0.390 0.378 0.359 0.348 0.336

MOS↓ 3.16 2.87 2.41 2.37 2.31 1.94

Table 2: Ablation study on the AIM dataset [40]. We evaluate our Domain gap aware training and Domain distance weighted

supervision strategies in different conditions. Details of the experiments are described in 4.2.

the same type of degradation as the training LR images.

Since the GAN approaches focus on the perceptual qual-

ity of the recovered image, Learned Perceptual Image Patch

Similarity (LPIPS) [59] and Mean Opinion Score (MOS)

are used as the primary metrics to evaluate different meth-

ods. A user study is conducted to calculate the MOS for dif-

ferent methods. The test candidates were shown a side-by-

side comparison of a sample result and the corresponding

ground-truth. The final MOS of a specific image is the av-

erage score of different candidates’ opinion: 0 - ‘the same’,

1 - ‘very similar’, 2 - ‘similar’, 3 - ‘not similar’ and 4 - ‘dif-

ferent’. For all the MOS values reported in the paper, we

have the same 26 candidates to perform the user study. In

addition to the perceptual metrics, the Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index (SSIM) are

provided for reference.

4.2. Ablation study

Before comparing DASR with state-of-the-art unsuper-

vised real-world image SR methods, we conduct ablation

experiments to analyze our DASR model. We firstly ana-

lyze our design choice for DSN training. Then, we provide

experimental results to demonstrate the effectiveness of the

proposed Domain-gap aware training and Domain-distance

weighted supervision strategies.

Better down-sampling network for synthetic paired data

generation. Our DSN improves upon previous down-

sampling networks [16, 7, 39] by directly estimating LR

image from un-preprocessed HR image and adopting bet-

ter adversarial loss in wavelet space. In order to evaluate

the effect of our modifications, we train downsampling net-

works with different settings, and use these models to gen-

erate LR images from the HR images in the AIM valida-

tion dataset. We compare the generated LR images with the

original LR images in the datasets, the quantitative metrics

achieved by different models are reported in Table 1 side

by side with some visual examples of the LR images gen-

erated. In the table, HR/Bicubic LR denotes the respective

inputs used by different down-sampling networks. While,

Gaussian Blur Frequency Separation (GBFS), Wavelet Fre-

quency Separation (WFS) and RGB indicate the model con-

ducts adversarial training in different spaces: GBFS uses

the residual between original and Gaussian blurred images

to extract high-frequency component, our WFS approach

adopts Wavelet transform to obtain high-frequency com-

ponent, RGB means we introduce GAN loss directly on

RGB images. The results in Table 1 show that both the

proposed architecture of DSN and adversarial loss in the

wavelet space are beneficial for generating better LR im-

ages, which are more similar to the real images in the target

domain.

Domain-gap Aware Training. As one of our major con-

tributions, domain-gap aware training is of vital importance

for the success of our model. In Table 2, we present ex-

perimental numerical and visual results to show the advan-

tage of our domain-gap aware training. We conduct experi-
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AIM [40] 4× RealSR [8] 4× RealSR [8] 2× CameraSR [9] 1×
Methods PSNR↑ SSIM↑ LPIPS↓ MOS↓ PSNR↑ SSIM↑ LPIPS↓ MOS↓ PSNR↑ SSIM↑ LPIPS↓ MOS↓ PSNR↑ SSIM↑ LPIPS↓ MOS↓
ZSSR 22.327 0.6022 0.630 3.10 26.007 0.7482 0.386 3.42 30.563 0.8787 0.1756 2.51 - - - -

P.T. ESRGAN 21.382 0.5478 0.543 3.16 25.956 0.7468 0.415 3.08 30.397 0.8725 0.1720 2.46 - - - -

CinCGAN 21.602 0.6129 0.461 3.56 25.094 0.7459 0.405 3.24 28.099 0.8665 0.1663 2.23 - - - -

FSSR 20.820 0.5103 0.390 2.41 25.992 0.7388 0.265 2.45 30.397 0.8737 0.1421 1.89 23.781 0.7566 0.180 3.14

DASR(ours) 21.600 0.5640 0.336 1.94 26.782 0.7822 0.228 2.05 29.887 0.8670 0.1291 1.43 25.769 0.8312 0.151 2.60

S.T. ESRGAN - - - - 25.704 0.7487 0.199 1.35 30.648 0.8802 0.0970 1.25 25.346 0.8036 0.111 1.18

Table 3: Quantitative comparison on different datasets. More experimental details can be found in section 4 and 5. Please

note that supervisely trained ESRGAN (S.T. ESRGAN) is trained with paired training data while the other methods are

trained without paired training data.

Ground Truth ZSSR [4] P.T. CinCGAN [56] FSSR [16] DASR HR

ESRGAN [52] (ours)

Figure 5: SR results by different methods on testing images from AIM Challenge on Real World SR at ICCV 2019 [40].

ments with our DSN generated synthetic pairs {Yg,X r} or

bicubic downsampled LR-HR pairs {Yb,X r} as source do-

main data. Our domain-gap aware training strategy (see sec-

tion 3.2) introduces extra adversarial loss in the target do-

main. For a fair comparison, in Table 2, the models without

domain-gap aware training introduce the adversarial loss

in the source domain. The same strategy has been widely

adopted in previous unsupervised methods [52, 35, 60]. In

both settings, the proposed domain-aware training strategy

consistently improves the final SR performance. It helps

the SRN to generate high-quality HR estimations with bet-

ter MOS as well as a better LPIPS index. Because the MOS

is achieved by comparing the subject image with its cor-

responding reference image, images with different visual

quality may be categorized as the same class, i.e. similar or

not similar. Therefore, the MOS could not thoroughly re-

flect the advantage of our domain-gap aware training strat-

egy. On the other hand, the LPIPS index can validate the ef-

fectiveness of our domain-gap aware training clearly. By in-

troducing target domain data in the training process of SRN,

even the model trained with bicubic downsampled LR-HR

pairs {Yb,X r} generalize well on real-world LR images.

Domain-distance weighted Supervision. Besides the

domain-gap aware training, we also proposed a domain-

distance weighted supervision strategy to make better use

of source domain data. The experimental results in Table 2

clearly show the advantage of domain-distance weighted

supervision. By introducing weights to adaptively exploit

paired training data, we are able to achieve better SRN over

the baseline models. In addition, the proposed two strate-

gies are complementary, when combining the two strategies

together, DASR achieves significant improvement over the

models which only adopts one of the two strategies.

4.3. Comparison with StateoftheArts.

In this section, we compare our method with other super-

resolution method on the AIM dataset [40]. The competing

approaches include Zero-Shot SR (ZSSR) [4] and unpaired

learning approaches Frequency Separation for Super Reso-

lution (FSSR) [16] and cycle-in-cycle generative adversar-

ial networks (CinCGAN) [56]. ZSSR applies a Zero-Shot

learning strategy in the testing phase to adapt to the image-

specific degradation model. CinCGAN and FSSR are re-

cently proposed unsupervised SR approaches, FSSR is the

winner of the AIM Challenge on Real World SR at ICCV

2019 [40]. The code of FSSR [16] is provided by the paper

authors, and CinCGAN model [56] is implemented by our-

selves. Moreover, we also provide the results by pre-trained

ESRGAN (denote as P.T. ESRGAN) for reference, the pre-

trained ESRGAN model was trained on a synthetic dataset

with bicubic downsampled LR images. The quantitative re-

sults achieved by different methods are shown in Table 3,

while in Fig. 5, we also provide some visual SR results.

The quantitative metrics as well as visual examples clearly

demonstrate that our proposed DASR approach is superior

to the competing models. The degradation assumptions by

ZSSR and Pre-trained ESRGAN can not reflect the com-

plex degradation adopted in the AIM challenge, both two

approaches generate strange artifacts in the HR estimation.

FSSR generates better synthetic data which have similar

characteristic with a real-world image to train the model and

is able to deliver better SR results than the ZSSR and pre-

trained ESRGAN approach. But FSSR does not consider
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Ground Truth ZSSR[4] P.T. CinCGAN [56] FSSR[16] DASR S.T. HR

ESRGAN [52] (ours) ESRGAN [52]

Figure 6: SR results by different methods on testing images from RealSR [8].

Ground Truth

FSSR [16] DASR S.T. HR

(ours) ESRGAN [52]

Figure 7: SR results by different methods on a testing image

from CameraSR [9].

the domain gap between generated and real LR images, still

create artifacts in the final output. Our novel DASR ex-

ploits information in the target domain in the training phase,

is able to generate high-quality SR estimations which have

visually pleasant textures and fewer artifacts. More visual

examples can be found in our supplementary material.

5. Experimental Results on Real Images

In this section, we evaluate the proposed DASR model

on two real image datasets: RealSR [8] and CameraSR [9].

The two datasets contain real LR-HR image pairs collected

by adjusting the focal length of digital cameras. We adopt

the LR images in the two datasets and HR images in the

DIV2K [50] dataset to deploy our unsupervised training,

and evaluate our models on the validation sets which have

paired data for quantitative evaluation.

5.1. Experimental Results on RealSR Dataset

RealSR [8] is a recently collected real image SR dataset.

The authors utilize a Canon and a Nikon camera to collect

595 real LR-HR image pairs by adjusting the focal length

of the cameras, and adopt an image registration algorithm

to achieve aligned image pairs. In our experiments, we

utilize the 200 LR images collected by the Canon camera

as our real-world LR images, and the 800 HR images in

the DIV2K [50] as our HR images. We train our DASR

model as well as FSSR [16] and CinCGAN [56] models

with the same data. After unsupervised training, we em-

ploy our model to super-resolve LR images in the valida-

tion set of RealSR [8], which consists of 100 LR-HR pairs.

The SR results generated by our model and the competing

approaches are shown in Table 3. Besides the ZSSR [4],

FSSR [16] and pre-trained ESRGAN [52], we also provide

the results by supervisely trained ESRGAN (denote as S.T.

ESRGAN) for reference, which utilizes the real paired data

in the training set to train the ESRGAN model in a fully

supervised manner. DASR significantly outperforms other

blind super-resolution methods in both LPIPS and MOS.

Compared with the Supervised ESRGAN, DASR achieves

comparable LPIPS indexes. Some visual examples by dif-

ferent approaches are shown in Fig. 6, more visual examples

can be found in our supplementary file.

5.2. Experimental Results on CameraSR

We also compare different approaches on the CameraSR

[9] dataset. CameraSR contains 100 LR-HR pairs captured

by an iPhoneX and a Nikon Camera, respectively. We test

our method on the iPhoneX subset. As the LR and HR

images in the dataset are of the same spatial size, we re-

move the down-sampling and up-sampling operations in our

framework as well as the FSSR model. Similar to our exper-

iments on the RealSR dataset, we use 100 LR images in the

CameraSR training set and 800 HR images in DIV2K [50]

to train our model and FSSR. The SR results by different

methods are shown in Table 3. DASR outperforms FSSR

by a large margin. Visual examples are shown in Fig. 7,

more results can be found in our supplementary file.

6. Conclusions

We propose a novel DASR framework for unsupervised

real-world image SR. Given only unpaired data, DASR

firstly trains a down-sampling network to generate synthetic

LR images in the real-world LR distribution. Then, the

generated synthetic pairs and real LR images are exploited

to train the SR network under a domain adaptation setting.

We proposed a domain-gap aware training strategy to intro-

duce an adversarial loss in the target domain, and a domain-

distance weighted supervision strategy to take better advan-

tage of synthetic data in the source domain. Our experimen-

tal results on synthetic and real-world datasets demonstrate

the effectiveness of our approach for real-world SR.
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Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe

Shi. Photo-realistic single image super-resolution using a

generative adversarial network. Proc. CVPR, 2016. 3, 7

[36] Yawei Li, Vagia Tsiminaki, Radu Timofte, Marc Pollefeys,

and Luc Van Gool. 3D appearance super-resolution with

deep learning. In Proc. CVPR, 2019. 1

[37] Yudong Liang, Radu Timofte, Jinjun Wang, Yihong Gong,

and Nanning Zheng. Single image super resolution - when

model adaptation matters. ArXiv, 2017. 3

[38] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPRW, 2017. 1, 2

[39] Andreas Lugmayr, Martin Danelljan, and Radu Timofte. Un-

supervised learning for real-world super-resolution. ArXiv,

2019. 2, 3, 6

[40] Andreas Lugmayr, Martin Danelljan, Radu Timofte, Manuel

Fritsche, Shuhang Gu, Kuldeep Purohit, Praveen Kandula,

Maitreya Suin, AN Rajagopalan, Nam Hyung Joon, et al.

Aim 2019 challenge on real-world image super-resolution:

Methods and results. ArXiv, 2019. 1, 2, 5, 6, 7

[41] Tomer Michaeli and Michal Irani. Nonparametric blind

super-resolution. In ICCV, pages 945–952, 2013. 2, 3

[42] Jian Ren, Ilker Hacihaliloglu, Eric A Singer, David J Foran,

and Xin Qi. Adversarial domain adaptation for classifica-

tion of prostate histopathology whole-slide images. In In-

ternational Conference on Medical Image Computing and

Computer-Assisted Intervention, 2018. 3

[43] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In Proc. CVPR, 2018. 3

[44] Mehdi SM Sajjadi, Bernhard Scholkopf, and Michael

Hirsch. Enhancenet: Single image super-resolution through

automated texture synthesis. In Proc. CVPR, 2017. 3

[45] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain,

Ser Nam Lim, and Rama Chellappa. Unsupervised do-

main adaptation for semantic segmentation with gans. ArXiv,

2017. 3

[46] Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio

Savarese. Learning transferrable representations for unsu-

pervised domain adaptation. In NIPS, 2016. 3

[47] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

2014. 4

[48] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration. In

ICCV, 2017. 1

[49] Radu Timofte, Vincent De Smet, and Luc Van Gool.

Anchored neighborhood regression for fast example-based

super-resolution. In ICCV, 2013. 1

[50] Radu Timofte, Shuhang Gu, Jiqing Wu, Luc Van Gool, Lei

Zhang, Ming-Hsuan Yang, Muhammad Haris, et al. Ntire

2018 challenge on single image super-resolution: Methods

and results. In CVPRW, 2018. 5, 8

[51] Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Im-

age super-resolution using dense skip connections. In Proc.

CVPR, 2017. 2

[52] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-

hanced super-resolution generative adversarial networks. In

ECCVW, 2018. 1, 2, 3, 4, 5, 7, 8

[53] Jiqing Wu, Zhiwu Huang, Dinesh Acharya, Wen Li, Janine

Thoma, Danda Pani Paudel, and Luc Van Gool. Sliced

wasserstein generative models. In Proc. CVPR, 2019. 4

[54] Jin Xiao, Shuhang Gu, and Lei Zhang. Multi-domain learn-

ing for accurate and and few-shot color constancy. In Proc.

CVPR, 2020. 3

[55] Jianchao Yang, John Wright, Thomas S Huang, and Yi

Ma. Image super-resolution via sparse representation. IEEE

transactions on image processing, 2010. 1

[56] Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang,

Chao Dong, and Liang Lin. Unsupervised image super-

resolution using cycle-in-cycle generative adversarial net-

works. CVPRW, 2018. 2, 3, 7, 8

[57] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.

Learning deep cnn denoiser prior for image restoration. In

Proc. CVPR, 2017. 1

[58] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a

single convolutional super-resolution network for multiple

degradations. In Proc. CVPR, 2018. 2, 3

[59] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In Proc. CVPR, 2018. 6

[60] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.

Ranksrgan: Generative adversarial networks with ranker for

image super-resolution. In ICCV, 2019. 1, 3, 7

[61] Xuaner Cecilia Zhang, Qi feng Chen, Ren Ng, and Vladlen

Koltun. Zoom to learn, learn to zoom. Proc. CVPR, 2019. 1

[62] Yang Zhang, Philip David, and Boqing Gong. Curricu-

lum domain adaptation for semantic segmentation of urban

scenes. In ICCV, 2017. 3

[63] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

Proc. CVPR, 2018. 1, 2
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