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Figure 1: An instance of the Room Rearrangement task. Objects begin in the positions indicated by the solid 3D bounding

boxes. An agent must walk through the room and record the objects it sees. The agent is then removed, and objects are moved

to the locations indicated by the dashed bounding boxes. The agent is then reintroduced into the room and must interact with

objects (moving or opening them) to return the room to its original state.

Abstract

There has been a significant recent progress in the field

of Embodied AI with researchers developing models and

algorithms enabling embodied agents to navigate and in-

teract within completely unseen environments. In this pa-

per, we propose a new dataset and baseline models for the

task of Rearrangement. We particularly focus on the task

of Room Rearrangement: an agent begins by exploring a

room and recording objects’ initial configurations. We then

remove the agent and change the poses and states (e.g.,

open/closed) of some objects in the room. The agent must

restore the initial configurations of all objects in the room.

Our dataset, named RoomR, includes 6,000 distinct rear-

rangement settings involving 72 different object types in 120

scenes. Our experiments show that solving this challenging

interactive task that involves navigation and object interac-

tion is beyond the capabilities of the current state-of-the-art

techniques for embodied tasks and we are still very far from

achieving perfect performance on these types of tasks.

1. Introduction

One of the longstanding goals of Embodied AI is to build

agents that interact with their surrounding world and per-

form tasks. Recently, navigation and instruction following

tasks have gained popularity [1, 2, 4] in the Embodied AI

community. These tasks are the building blocks of inter-

active embodied agents, and over the past few years, we

have observed remarkable progress regarding the develop-

ment of models and algorithms. However, a typical assump-

tion for these tasks is that the environment is static; namely,

the agent can move within the environment but cannot inter-

act with objects or modify their state. The ability to interact

with and change its environment is crucial for any artifi-

cial embodied agent and cannot be studied in static envi-

ronments. There is a general trend towards interactive tasks

[50, 41, 49]. These tasks focus on specific aspects of in-

teraction such as object manipulation, long-horizon plan-

ning and understanding pre-condition and post-conditions

of actions. In this paper, we address a more comprehensive

task in a visually rich environment that can subsume each

of these skills.
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We address an instantiation of the rearrangement prob-

lem, an interactive task, recently introduced by Batra et

al. [3]. The goal of the rearrangement task is to reach a

goal room configuration from an initial room configuration

through interaction. In our instantiation, an agent must re-

cover a scene configuration after we have randomly moved,

or changed the state of, several objects (e.g. see Fig. 1).

This problem has two stages: walkthrough and unshuf-

fle. During the walkthrough stage, the agent may explore

the scene and, through egocentric perception, record infor-

mation regarding the goal configuration. We then remove

the agent from the room and move some objects to other

locations or change their state (e.g. opening a closed mi-

crowave). In the unshuffle stage, the agent must interact

with objects in the room to recover the goal configuration

observed in the walkthrough stage.

Rearrangement poses several challenges such as infer-

ring the visual differences between the initial and goal con-

figurations, inferring the objects’ state, learning the post-

conditions and pre-conditions of actions, maintaining a

persistent and compact memory representation during the

walkthrough stage, and successful navigation. To establish

baseline performance for our task, we evaluate an actor-

critic model akin to the state-of-the-art models used for

long-horizon tasks such as navigation. We train our base-

lines using decentralized distributed proximal policy op-

timization (DD-PPO) [47, 40], a reward-based RL algo-

rithm, as well as with DAgger [37], a behavioral cloning

method. During the walkthrough stage, the agent uses a

non-parametric mapping module to memorize its observa-

tions along with any visible objects and their positions. In

the unshuffle stage the agent compares images that it ob-

serves against what it has observed in its map and may use

this information to inform which objects it should move

or open. As a proof-of-concept we also run experiments

with a model that includes a semantic mapping component

adapted from the Active Neural SLAM model [8].

To facilitate research in this challenging direction,

we compiled the Room Rearrangement (RoomR) dataset.

RoomR is built upon AI2-THOR [29], a virtual interac-

tive environment that enables interacting with objects and

changing their state. The RoomR dataset includes 6,000 re-

arrangement tasks that involve changing the pose and state

of multiple objects within an episode. The level of the dif-

ficulty of each episode varies depending on the differences

between the initial and the goal object configurations. We

have used 120 rooms and more than 70 unique object cate-

gories to create the dataset.

We consider two variations of the room rearrangement

task. In the first setting, which we call the 1-Phase task,

the agent completes the walkthrough and unshuffle stages

in parallel so that it is given aligned images from the walk-

through and unshuffle configurations at every step. In the

second setting, the 2-Phase task, the agent must complete

the walkthrough and unshuffle stages sequentially; this 2-

Phase variant is more challenging as it requires the agent to

reason over longer time spans. Highlighting the difficulty

of the rearrangement, our evaluations show that our strong

baselines struggle even in the easier 1-Phase task. Rear-

rangement poses a new set of challenges for the embodied-

AI community. Our code and dataset are publicly available.

A supplementary video1 provides the description of the task

and some qualitative results.

2. Related Work

Embodied AI tasks. In recent years, we have witnessed a

surge of interest in learning-based Embodied AI tasks. Var-

ious tasks have been proposed in this domain: navigation

towards objects [4, 51, 48, 7] or towards a specific point

[1, 38, 47, 36], scene exploration [9, 8], embodied question

answering [18, 13], task completion [55], instruction fol-

lowing [2, 41], object manipulation [16, 52], multi-agent

coordination [24, 23], and many others. Rearrangement

can be considered as a broader task that encompasses skills

learned through these tasks.

Rearrangement. Rearrangement Planning is an estab-

lished field in robotics research where the goal is to reach

a goal state from an initial state [5, 44, 27, 31, 53, 33].

While these methods have shown impressive performance,

they consider complete observability of the state from per-

fect visual perception [11, 27], a planar surface as the envi-

ronment [30, 42], a static robot [15, 32], same environment

for evaluation of generalization [39, 26], or a limited set of

object categories or limited variation within the categories

[10, 19]. Some works address some of these issues, such

as generalization to new objects or imperfect perception

[54, 6]. In this paper, we take a step further and relax these

assumptions by considering raw visual input instead of per-

fect perception, a visually and geometrically complex scene

as the configuration space, separate scenes for training and

evaluation, a variety of objects, and object state changes.

Task and motion planning. Our work can be considered

as an instance of joint task and motion planning [25, 43,

35, 17, 12] since solving the rearrangement task requires

low-level motion planning to plan a sequence of actions and

high-level task planning to recover the goal state from the

initial state of the scene. However, the focus of these works

is primarily on the planning problem rather than perception.

3. The Room Rearrangement Task

3.1. Definition

Our goal is to rearrange an initial configuration of a room

into a goal configuration. So that our agent does not have to

1https://youtu.be/1APxaOC9U-A
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reason about soft-body physics, we restrict our attention to

piece-wise rigid objects. Suppose a room contains n piece-

wise rigid objects. We define the state for object i as si =
(pi, oi, ci, bi) where

• pi 2 {3D rotations and translations} = SE(3) records

the pose of the object,

• if the object can be opened oi 2 [0, 1] specifies the

openness of an object (e.g. oi = 0.5 means a door is

half open) and if the object cannot be opened (e.g. a

mug) then oi = ;,

• ci records the 8 coordinates in R
3 of the corners of the

3D bounding box for object i, and

• bi 2 {0, 1} records if the ith object is “broken” (1 if

broken, otherwise 0).

While this definition of an object’s state is constrained (e.g.

objects can be more than just “broken” and “unbroken”) it

matches well the capabilities of our target embodied envi-

ronment (AI2-THOR) and can be easily enriched as embod-

ied environments become increasingly realistic. We now let

S = SE(3) ⇥ ([0, 1] [ {;}) ⇥ R
8·3 ⇥ {0, 1} be the set of

all possible poses for a single object and S =
Q

n

i=1
S the

set of all possible joint object poses. The agent’s goal is to

convert an initial configuration s0 2 S to a goal s⇤ 2 S .

Our task has two stages: (1) walkthrough and (2) unshuf-

fle. During the walkthrough stage, the agent is placed into a

room with goal state s⇤, and it should collect as much infor-

mation as needed for that particular state of the room in a

maximum number of actions (for us, 250). The agent is re-

moved from the room after the walkthrough stage. We then

select a random subset of the n objects and change their

state. The state change may be a change in p or o. This

state will be the initial state s0 that the agent observes at

the beginning of the unshuffle stage. The agent’s goal is to

convert s0 to s⇤ (s0 ! s⇤) via a sequence of actions.

3.2. Metrics

To quantify an agent’s performance, we introduce four

metrics below. Recall from the above that an agent begins

an unshuffle episode with the room in state s0 and has the

goal of rearranging the room to end in state s⇤. Suppose that

at the end of an unshuffle episode, the agent has reconfig-

ured the room so that it lies in state s = (s1, . . . , sn) 2 S .

In practice, we cannot expect that the agent will place ob-

jects in exactly the same positions as in s⇤. We instead

choose a collection of thresholds which determine if two

object poses are, approximately, equal. When two poses

(si, s
⇤

i
) are approximately equal we write si ⇡ s⇤

i
. Other-

wise we write si 6⇡ s⇤
i
.

Let s1
i
, s2

i
2 S be two possible poses for object i. As it

makes little intuitive sense to compare the poses of broken

objects, we will always assert that poses of broken objects

are unequal. Thus if b1
i
= 1 or b2

i
= 1 we define s1

i
6⇡ s2.

Now let’s assume that neither b1
i
= 1 nor b2

i
= 1. If ob-

ject i is pickupable, let IOU(s1
i
, s2

i
) be the intersection over

union between the 3D bounding boxes c1
i
, c2

i
. We then say

that s1
i
⇡ s2

i
if, and only if, IOU(s1

i
, s2

i
) � 0.5. If object

i is openable but not pickupable, we say that s1
i
⇡ s2 if,

and only if, |o1
i
� o2

i
|  0.2. The use of the IOU above

means that object poses can be approximately equal even

when their orientations are completely different. While this

can be easily made more stringent, our rearrangement task

is already quite challenging. Note also that our below met-

rics do not consider the case where there are multiple identi-

cal objects in a scene (as this does not occur in our dataset).

We now describe our metrics.

Success (SUCCESS) – This is the most unforgiving of our

metrics and equals 1 if all object poses in s and s⇤ are ap-

proximately equal, otherwise it equals 0.

% Fixed (Strict) (%FIXEDSTRICT) – The above SUCCESS

metric does not give any credit to an agent if it manages to

rearrange some, but not all, objects within a room. To this

end, let Mstart = {i | s0
i
6⇡ s⇤

i
} be the set of misplaced

objects at the start of the unshuffle stage and let Mend =
{i | si 6⇡ s⇤

i
} be the set of misplaced objects at the end of

the episode. We then let %FIXEDSTRICT equal 0 if |Mend \
Mstart| > 0 (i.e. the agent has moved an object that should

not have been moved) and, otherwise, let %FIXEDSTRICT

equal 1� |Mend|/|Mstart| (i.e. the proportion of objects that

were misplaced initially but ended in the correct pose).

% Energy Remaining (%E) – Missing from all of the

above metrics is the ability to give partial credit if, for ex-

ample, the agent moves an object across a room and to-

wards the goal pose, but fails to place it so that it has a

sufficiently high IOU with the goal. To allow for partial

credit, we define an energy function D : S ⇥ S ! [0, 1]
that monotonically decreases to 0 as two poses get closer

together (see the Appendix E for full details) and which

equals zero if two poses are approximately equal. The

%E metric is then defined as the amount of energy re-

maining at the end of the unshuffle episode divided by

the total energy at the start of the unshuffle episode, e.g.

%E = (
P

n

i=1
D(si, s

⇤

i
))/(

P
n

i=1
D(s0

i
, s⇤

i
)).

# Changed (#CHANGED) – To give additional insight as to

our agent’s behavior we also include the #CHANGED met-

ric. This metric is simply the the number of objects whose

pose has been changed by the agent during the unshuffle

stage. Note that larger or smaller values of this metric are

not necessarily “better” (both moving no objects and mov-

ing many objects randomly are poor strategies).

The above metrics are then averaged across episodes

when reporting results.

4. The RoomR Dataset

The Room Rearrangement (RoomR) dataset utilizes 120

rooms in AI2-THOR [29] and contains 6,000 unique rear-

rangements (50 rearrangements per training, validation, and
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Figure 2: Distance distribution. The horizontal (Man-

hattan distance) and vertical distance distributions between

changed objects in their goal and initial positions.

testing room). Each datapoint consists of an initial room

state s0, the agent’s starting position, and the goal state s⇤.

4.1. Generating Rearrangements

The automatic generation of the dataset enables us to scale

up the number of rearrangements easily. We generate each

room rearrangement using the procedure that follows.

Place agent. We randomize the agent’s position on the

floor. The position is restricted to lie on a grid, where

each cell is of size 0.25m ⇥ 0.25m. The agent’s rotation is

then randomly chosen amongst {0�, 90�, 180�, 270�}. The

agent’s starting pose is the same for both s0 and s⇤.

Shuffle background objects. To obtain different configu-

rations of objects for each task in the dataset, we randomly

shuffle each movable object, ensuring background objects

do not always appear in the same position. Shuffled objects

are never hidden inside other receptacles (e.g. fridges, cab-

inets), which reduces the task’s complexity.

Sample objects. We now randomly sample a set of N � 0
openable but non-pickupable objects and a set of M � 0
pickupable objects. These objects and counts are chosen

randomly with N 2 {0, 1} and M 2 {1�N, ..., 5�N}.

Goal (s⇤) setup. We open the N objects sampled in the

last step to some randomly chosen degree of openness in

[0, 1] and move the other M pickupable objects to arbitrary

locations within the room. The room’s current state is now

s⇤, the start state for the walkthrough stage.

Initial (s0) setup. We randomize the N sampled openable

objects’ openness and shuffle the position of each of the M
sampled pickupable objects once more. We are now in s0,

the start state for the unshuffle stage.

In the above process, we ensure that no broken objects are

in s0 or s⇤. While we provide a fixed number of datapoints

per room, this process can be used to sample a practically

unbounded number of rearrangements.

4.2. Dataset Properties

Rooms. There are 120 rooms across the categories of

kitchen, living room, bathroom, and bedroom (30 rooms

for each category). We designate 20 rooms for training, 5

rooms for validation, and 5 rooms for testing, across each

room category. Of the 6,000 unique rearrangements in our

dataset, 4000 are designated for training, 1000 are set in
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Figure 3: Distribution of object size. Each column con-

tains the cube root of every object’s bounding box volume

that may change in openness (red) or position (blue) for a

particular room. Notice that, across room categories, ob-

jects that change in position are significantly smaller than

objects that change in openness.

validation rooms, and 1000 are set in test rooms. For each

such split, there are 50 rearrangements per room.

Objects. There are 118 object categories (listed in Ap-

pendix F), among which 62 are pickupable (e.g. cup) and

10 are openable and non-pickupable (e.g. fridge). The set

of object categories that appear in the validation and testing

rooms is a subset of the object categories that appear during

training. Thus, if a plant appears in a validation or test-

ing room, then a plant is also present in one of the training

rooms. While all object categories are seen during training,

the physical appearance of object instances are often unique

in training, validation, and testing rooms. AI2-THOR pro-

vides annotation as to if an object is pickupable, openable,

movable, or static.

Across the dataset, there are 1895 pickupable object in-

stances and 1262 openable non-pickupable object instances

(an average of 15.7 and 10.5, respectively, per room). Fig. 2

shows the distance distribution (horizontal and vertical) of

objects between their initial and goal positions. It illustrates

the complexity of the problem, where the agent must travel

relatively far to recover the goal configuration. Fig. 3 shows

the distribution of these object groups and their sizes within

every room. Note that pickupable objects (e.g. apple, fork)

tend to be relatively small and hard to find, compared to

openable non-pickupable objects (e.g. cabinets, drawers).

Further, across room categories, the number of openable

non-pickupable objects varies considerably.

5. Model

In our experiments, Sec. 6, we consider two RoomR task

variants: 1-Phase and 2-Phase. In the 1-Phase task, the

agent completes the unshuffle and walkthrough stages si-
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