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Abstract

Motion style transfer is an important problem in many

computer graphics and computer vision applications, in-

cluding human animation, games, and robotics. Most exist-

ing deep learning methods for this problem are supervised

and trained by registered motion pairs. In addition, these

methods are often limited to yielding a deterministic output,

given a pair of style and content motions. In this paper, we

propose an unsupervised approach for motion style trans-

fer by synthesizing stylized motions autoregressively using a

generative flow model M. M is trained to maximize the ex-

act likelihood of a collection of unlabeled motions, based on

an autoregressive context of poses in previous frames and

a control signal representing the movement of a root joint.

Thanks to invertible flow transformations, latent codes that

encode deep properties of motion styles are efficiently in-

ferred by M. By combining the latent codes (from an input

style motion S) with the autoregressive context and control

signal (from an input content motion C), M outputs a styl-

ized motion which transfers style from S to C. Moreover,

our model is probabilistic and is able to generate various

plausible motions with a specific style. We evaluate the pro-

posed model on motion capture datasets containing differ-

ent human motion styles. Experiment results show that our

model outperforms the state-of-the-art methods, despite not

requiring manually labeled training data.

1. Introduction

In computer graphics, there has been a long-standing in-

terest in motion style transfer, since this task benefits var-

ious applications including human animation, games, and

robotics, etc. Early methods rely on handcrafted features to
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Figure 1. Our stylized motion synthesis that transfers the style

from an input style motion to an input content motion. The gener-

ative flow model is trained via unsupervised learning on unlabeled

motion data of different styles. The trained model extracts the

style latent codes from the input style motion. Then, it outputs

a high quality stylized motion with the style latent codes (from

the input style motion), the autoregressive context and the control

signal (from the input content motion).

design different motion styles [38, 2]. To release the bur-

den of handcrafted feature design, data-driven motion style

transfer methods using deep learning models have been pro-

posed. They automatically learn useful features from the

input motion samples. However, most of the existing deep

learning methods [19, 36, 43, 35] are supervised and require

paired and registered data to perform style transfer. Such

methods also need a large number of motion samples to ex-

tract a specific style. Therefore, these methods are limited

by a tedious preprocess to collect a large amount of motion
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data for training. For example, actors have to perform sev-

eral motion cycles in different styles with almost identical

steps, followed by a motion registration step.

Recently, Aberman et al. [1] propose a style transfer

method, which does not require paired and registered train-

ing data. However, the method still requires motion samples

with manual labeling styles. It encodes input content and

style motions into latent codes for content and style, which

are then recombined and decoded to output a stylized mo-

tion. Since they use a deterministic model to extract style

and content latent codes, the output motion is also deter-

ministic. Moreover, their model is built upon 1D temporal

convolutional layers. Thus, its raw outputs have some arti-

facts, which should be resolved with additional efforts. For

example, the foot contact positions of the output motion are

corrected in accordance with the input content motion to

address the problem of foot skating during walking. Then,

dynamic time warping is used to make the global velocity of

the output motion to properly reflect the style of the input

style motion (e.g., when transferring the style from “old”

walking to “neutral” walking, the global velocity should de-

crease).

In this paper, we propose an unsupervised method

for motion style transfer by synthesizing stylized motions

based on a generative flow model M. M is trained to max-

imize the exact log-likelihood (rather than a lower bound of

it in other models such as variational autoencoders (VAEs))

over unlabeled motions of different styles captured in re-

ality. Therefore, the synthesized motions from M are hu-

manlike and have no artifacts such as foot skating. Com-

pared to [1], the distinguishing feature of our method is to

be trained via unsupervised learning and output a high qual-

ity stylized motion in a probabilistic way. The probabilistic

nature of the generative flow model offers more flexibility

to remove the artifacts appearing in the deterministic results

in [1]. Through invertible flow transformations, the latent

codes that encode deep properties of motion styles are ef-

fectively inferred from the input style motion. Then, the

inferred latent codes are combined with the input content

motion for synthesizing various plausible stylized motions

directly. To the best of our knowledge, we are the first to

introduce the generative flow model for motion style trans-

fer. We improve the efficiency of M by performing the flow

transformation on one half of the motion features and keep-

ing the other half unchanged, based on the affine coupling

layers [6, 7, 22]. Furthermore, a Transformer is imposed

into the invertible flow transformation to extract autoregres-

sive features. Experiment results show that the Transformer

enables the generative flow model to learn a flexible latent

distribution, in which the latent vectors encode deep proper-

ties of the motion style that is even unseen during training.

Thus, M has a good scalability by transferring the unseen

style from the style motion to the content motion.

In summary, we make three contributions in this paper:

(1) We introduce a generative flow model for motion style

transfer by synthesizing stylized motions with input style

and content motions. The probabilistic nature of the model

offers more flexibility to generate high quality stylized mo-

tions. (2) Thanks to the invertible flow transformations in

the generative model, the latent codes are efficiently in-

ferred from the input style motion to encode deep style fea-

tures. (3) We impose a Transformer into each invertible flow

transformation in our generative model to learn a flexible

latent distribution for encoding deep properties of the mo-

tion style that is even unseen during training. Thus, our

proposed model is able to transfer the unseen style to the

content motion.

2. Related Work

2.1. Motion Synthesis

Motion synthesis methods can be broadly categorized

into deterministic and probabilistic methods. The determin-

istic methods [5, 15, 24, 44] yield a single motion for a given

condition (prior poses and/or control signals). They usually

regress towards the mean pose, failing to produce distinct

and lifelike motions. In contrast, the probabilistic motion

synthesis methods are able to generate a range of possible

output motions with the given information, by building mo-

tion models of all plausible pose sequences. Next, we focus

on the probabilistic motion synthesis methods, which are

closely related to our work.

Traditional methods [4, 30] assume a Gaussian or Gaus-

sian mixture distribution for motion samples, and use lo-

cal linear models for probabilistic motion synthesis. In re-

cent years, VAEs have been applied to model human mo-

tions along a given path [14] and to generate head mo-

tions from speech [11, 12]. Generative adversarial net-

works (GANs) [34], and adversarial training [9, 42] were

also applied to generate motions and similar tasks, such as

generating speech-driven videos of talking faces [40, 41,

32, 31]. GANs avoid regression towards the mean pose.

However, GANs still have some limitations, such as in-

tractable or ill-defined likelihoods [13]. On the contrary,

a less explored methodology normalizing flows (or flows),

especially a variant called generative flows, permit tractable

and efficient inference [23, 28, 16]. In particular, the gener-

ative flow model can be trained efficiently using exact max-

imum likelihood to describe highly complex motion distri-

butions. Normalizing flows have been used for motion syn-

thesis and motion reconstruction [16, 45]. The aforemen-

tioned researches mainly focus on motion synthesis given

the movement condition (prior poses and/or control sig-

nals). In our work, we develop a generative flow model

for stylized motion synthesis based on both the style from

the input style motion and the movement condition from the
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input content motion.

2.2. Motion Style Transfer

Early works for motion style transfer designed hand-

crafted features in the frequency domain [38] or in the time

domain [2] to manipulate styles. Instead of using the hand-

crafted features, machine learning methods that infer style

features from training data have been proposed [19, 36, 43,

35]. Hsu et al. [19] represented the relationships between

different styles with a linear time-invariant model [25]. Tay-

lor et al. [36] used restricted Boltzmann machines condi-

tioned on a specific style label to model motion styles. Xia

et al. [43] constructed a mixture of regression models by a

KNN search over a database of motions to transfer style be-

tween motion pairs. Smith et al. [35] later improved the

method [43] by using a neural network trained on regis-

tered motion pairs. All above methods required a complex

collection procedure for pair-wise motion samples in dif-

ferent styles. As a comparison, our proposed method uses

unpaired motion collections without style labels for train-

ing.

More recently, deep learning has become popular to

tackle the problem of character animation controlled by

styles [17, 18]. Specifically, the flourishing image style

transfer techniques [10, 20] have been successfully adapted

to the task of motion style transfer [18, 17, 8, 1]. Gatys

et al. [10] showed that image styles can be described by

the statistics of features extracted from a pre-trained im-

age classification network. Inspired by the idea of Gatys

et al. [10] for image style transfer, Holden et al. [18] pro-

posed a deep learning framework, which enables motion

style transfer. They extracted style features by an au-

toencoder, which was pre-trained based on paired motion

clips. However, the method was not efficient, because

a slow optimization procedure was required for motion

style transfer between each pair of style and content mo-

tions. Holden et al. [17] and Du et al. [8] improved the

efficiency of the method [10] by replacing the optimiza-

tion with a feed-forward network for motion style trans-

fer. Huang et al. [20] proposed an Adaptive Instance Nor-

malization (AdaIN) layer to impose different style statistics

into a deep learning network, thus enabling apply different

styles to an image directly. Aberman et al. [1] proposed

to use temporally invariant AdaIN parameters to learn mo-

tion styles [20]. They constructed a style transfer network

to encode motions into two latent codes for the content

and style [1]. Specifically, the style code was extracted by

the AdaIN mechanism from the style motion to modify the

second-order statistics of the features of the entire content

motion.

The aforementioned methods either require a dataset of

paired and registered motion data [18, 17, 8], or a dataset of

labeled motion data [18, 17, 8, 1]. These methods are thus

not well suited for practical applications. In this paper, we

propose a generative flow model that can be trained via un-

supervised learning over a collection of unlabeled motions.

3. Method

Motion style transfer aims to transfer the style from an

input style motion S to an input content motion C, while

preserving the content of the latter. In this paper, we pro-

pose a new approach for motion style transfer by synthe-

sizing stylized motions based on a generative flow model

M. M enables maximisation of the exact log-likelihood of

data samples and efficient inference of latent codes in the

latent distribution (Sec. 3.1). To synthesize stylized mo-

tions (Sec. 3.2), M is trained on a collection of motion

samples in different styles. In more details, we train the

model to parameterise the conditional probability distribu-

tion of a pose based on an autoregressive context of the pre-

vious poses and a control signal of the root joint movement.

Then, a stylized human motion is synthesized autoregres-

sively, by generating poses from the probability distribution

with the latent codes from S , the autoregressive context and

the control signal from C. Specifically, the latent codes are

inferred from S efficiently (instead of random sampling),

because the generative flows in M are invertible. In addi-

tion, we propose a novel flow architecture to make M more

efficient and expressive for modeling motion samples in dif-

ferent styles, as demonstrated in our experiments (Sec. 4.2).

3.1. Generative Flow Model

In this subsection, we briefly review the notation of gen-

erative flows. Generative flows are conceptually attractive,

due to tractability of the exact log-likelihood and efficient

latent-code inference [22]. Specifically, a generative flow

model has been proposed for image style transfer [22].

Given a dataset X = {x1, ..., xN} with an unknown

complex distribution, it is typical to perform maximum

marginal likelihood to learn its parametric model [23]:

log p(X) =

N∑

i=1

log p(xi). (1)

To make the marginal likelihood easy to compute and dif-

ferentiate directly, normalizing flow (or flow) has been in-

troduced in previous works [33, 6, 7].

The key idea of the flow is to transform a simple, fixed

distribution Z to obtain a new, more complex distribution

X . In flow-based generative models [33, 6, 7], a data sam-

ple x from the complex distribution can be generated as:

x = gθ(z). Here, z is a latent variable from the simple

distribution Z modeled as pθ(z), which has tractable den-

sity with parameters θ. The function gθ is invertible to

allow not only efficient sampling but also efficient infer-
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ence. Then, the inference of the latent variable z is done

by z = g−1

θ (x) = fθ(x).
To make the invertible function f (with parameter θ

omitted for brevity) flexible and expressive, numerous sim-

pler nonlinear transformations {fk}
K
k=1

are chained to-

gether: f = f1◦f2◦ ...◦fK . Thus, the relationship between

x and z can be defined as follows:

z
fK
−→ hK−1

fK−1

−→ ...
f2
−→ h1

f1
−→ x, (2)

x = f(z) = f1(f2(...fK(z))), (3)

z = f−1(x) = f−1

K (f−1

K−1
(...f−1

1 (x))), (4)

where the transformation fk is named as flow and parame-

terized by θk (omitted in fk for brevity). Using the change-

of-variables formula [27], the log-likelihood of a data sam-

ple x can be computed as:

log pθ(x) = log pθ(z) +
K∑

k=1

log | det
∂hk

∂hk−1

|, (5)

where log | det ∂hk

∂hk−1

| (called log-determinant) is the log-

arithm of the absolute value of the determinant of the Ja-

cobian matrix ∂hk

∂hk−1

. Computing the log-determinant in-

curs the complexity close to O(D3), which is infeasible

for data of high-dimension D [27]. Many flow transfor-

mations [33, 23, 22] have been explored to reduce the com-

putation complexity. Based on these works, we propose a

novel generative flow architecture for learning motion sam-

ples, and it will be described in the following subsection.

3.2. Stylized Motion Synthesis

Here, we introduce how to design the architecture of our

network based on the notation of generative flows to syn-

thesize realistic stylized human motions.

Motion Representation. We represent the motion data by

3D Cartesian coordinates of all joint positions in a skeleton.

Specifically, the coordinates are expressed in a root-relative

coordinate system, whose origin is on the floor below the

root joint. In our implementation, there are in total 21 joints

in a human skeleton, resulting in 63 degrees of freedom for

the motion. Thus, a motion clip m ∈ R
T×d is represented

as a sequence of T frames, where each pose mt has d = 63
channels. Moreover, we use a control signal c ∈ R

T×3

to represent the movement of the root joint, which is en-

coded by the forward, sideways, and angular velocity of the

root [18].

Motion Generative Model. Similar to previous autoregres-

sive generative models [23, 28, 16], our model for motion

synthesis is developed as:

p(m|c) = p(m1:τ |c1:τ )Π
T
t=τ+1p(mt|mt−τ :t−1, ct−τ :t),

(6)

Generative 

Flow

tc1-tc 1+tc 2+tc2-tc⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅

Control Signal

{

Autoregressive 

Context

Synthesized Pose

tm1-tm 1+tm 2+tm2-tm

Figure 2. Illustration of our autoregressive motion generative

model. The output motion (in orange) mt at time t is synthesized

by the generative flow model with the inputs (in purple) including

the autoregressive context of previous poses and the control signal.

where the motion distribution mt at frame t depends only on

τ previous motions mt−τ :t−1 and the control signal values

from the current and previous frames ct−τ :t, as illustrated

in Figure 2. Next, we describe how to use flows to learn the

generative model effectively.

Flow Architecture. Real-valued non-volume preserv-

ing (RealNVP) models [6, 7] adopt a type of bipartite flow,

which performs nonlinear transformations to one part of the

input. It is efficient to do the flow transformation by using

one part of the input, because the remaining part is kept un-

changed. Inspired by these models, we propose a new type

of flow for motion generation, and show its architecture in

Figure 3.

In our flow, we denote its input motion features and out-

put latent codes as a and b, respectively. Firstly, the input

features are split into two equal parts a = [a′, a′′]. Then, we

transform half of the input based on the scale and translation

parameters extracted from the remaining half with an affine

coupling layer, similar to the bipartite flow [6, 7]. Mathe-

matically, the affine coupling operation is defined as:

[b′, b′′] = [a′, (a′′ + µ)⊙ δ], (7)

where δ > 0 and µ denote the scaling and translation pa-

rameter terms, respectively. The transformation with the

affine coupling is invertible as: a′′ = δ−1b′′ − µ. In ad-

dition, the calculation of its log-determinant is efficient for

training and evaluation [23, 28].

The flow described above is not expressive, because a

stack of flows alone compute only an affine transforma-

tion on half of the input, while doing nothing to the other

half [6, 7]. Dinh et al. [6] proposed to shuffle the order of

variables between each flow to learn more flexible distribu-

tions. Since a linear transformation with equal number of

input and output channels can be seen as a generalization

of a permutation operation [22], we use a linear transforma-

tion W between coupling layers. As illustrated in [22], W
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Transformer

ConcatSplit

a'

a''

b'

b''

δ

μ
mt-τ:t-1,ct-τ:t

Figure 3. Architecture of our proposed flow. The input motion fea-

tures of the flow are firstly split into two parts a′ and a′′. A cou-

pling layer applies a Transformer to a′, mt−τ :t−1 and ct−τ :t, to

extract two transformation parameters, consisting of a translation

µ and a scaling δ. The output of the transformations is b′′ from a′′.

Finally, b′′ is concatenated with the other part b′, which keeps the

same as the input part a′. The direction of each arrow shows the

transformation of features in the forward propagation. ⊙ denotes

element-wise product and ⊕ denotes element-wise sum.

is defined by an LU-decomposition W = LU to simplify

the log-determinant. The non-fixed elements in L and U

are trainable parameters.

To make our flow more expressive, we further improve

the affine coupling by imposing a Transformer [39] to ex-

tract parameters for the invertible transformation. In more

details, the invertible transformation is proposed based

on autoregressive functions, such as recurrent neural net-

works (RNNs) and Transformers [39]. The autoregressive

functions have been successfully applied to many domains

for modeling sequential data [26, 3, 37]. Specifically, RNNs

have been widely used for the task of modeling motion se-

quences [26, 3]. However, RNNs generally have a critical

drawback of error accumulation. Transformers outperform

RNNs by constructing long-range dependencies based on

attention mechanisms, and enabling parallelizable training.

In this way, we use the Transformer for encoding autore-

gressive information and extracting transformation parame-

ters, i.e., µ, δ = T (a′,mt−τ :t−1, ct−τ :t). Specifically, the

Transformer T (Figure 3) computes a location-scale trans-

formation based on the input motion features a′, the autore-

gressive context mt−τ :t−1 and the control signal ct−τ :t.

In our model, we improve the flow by imposing the

Transformer into the coupling layer. Moreover, the linear

transformation is adopted between the coupling layers. Fi-

nally, we apply a normalization operation to the whole cou-

pling output to facilitate a deeper architecture and avoid in-

stability problems [6, 7]. Specifically, we adopt an affine

transformation using a scale and bias parameter per chan-

nel [22] to normalize the output, instead of using batch nor-

malization [6, 7], to save the memory consumption.

Style Inference and Transfer. The proposed flow-based

generative model M is trained to learn the distribution of

pose at frame t with previous poses mt−τ :t−1 and con-

trol signal values in the current and previous frames ct−τ :t.

Thus, we can use M to synthesize poses autoregressively.

To control the style of the synthesized motion, we use the la-

tent code z inferred from the input style motion S , instead of

a random variable or sampling from a reduced-temperature

model [29]. As discussed in Sec. 3.1, invertible flows enable

efficient inference (Eq. 4). Given the input style motion S ,

its latent code can be inferred by M efficiently. Then, the

style is transferred to the input content motion C by using

the latent code of S, the autoregressive context and the con-

trol signal of C to synthesize output motions. Moreover,

we can edit the style latent code inferred from S in the la-

tent space to generate various plausible stylized motions.

4. Experiment and Evaluation

4.1. Implementation Details

We use two different datasets with various types of mo-

tions [1] to train our generative flow model. The first

dataset, captured by Xia et al. [43], contains eight types

of motion sequences with different contents (e.g., walking

and jumping). The second dataset [1] contains more mo-

tion samples, which were performed by a single person in

16 distinct styles. In the following discussions, we refer to

the first and second datasets as A and B, respectively. All

the motion sequences in both the datasets are downsampled

to 30 frames per-second, and sliced into short overlapping

clips of 32 frames with overlap of 8. As a result, there are

about 1500 motion clips in dataset A, and the clips are split

into a train set and a test set with the split ratio of 9:1. In

dataset B, the motion clips are split into a train set (18830

clips) and a test set (256 clips).

In the whole network, 16 steps of flow are used in the

generative model. The Transformer in each coupling layer

consists of two layers, followed by a linear transformation.

We implement the model in PyTorch, and train the model

to maximize the log-likelihood (minimize the negative log-

likelihood) on motion samples of the train set by the Adam

optimizer.

4.2. Latent Code Visualization

We show several representative results of stylized motion

synthesis by our model in Figure 4. Please find the full

motion clips in the supplementary video. The results show

that our model can synthesize a motion sequence based on

a given style from an input style motion, while retaining the

content of an input content motion.

We infer the latent codes by our proposed generative flow

model from walking motion samples of dataset A. Then,

the latent codes are projected onto a 2D space by using t-

distributed stochastic neighbor embedding (t-SNE) [1]. We

plot the projected latent codes in 2D to get a better under-
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(a) (b) (c)

Figure 4. Samples of two representative style transfer results. In each example, a style motion input (a) and a content motion input (b)

are used to synthesize an output motion (c). The style of a kicking motion (in a “strutting” style) is transferred to a jumping motion (in a

“sexy” style) in the first row, and the style of a running motion (in an “old” style) is transferred to a walking motion (in an “angry” style)

in the second row.

(a) (b) (c)

Figure 5. Style latent codes extracted by our generative flow model are projected onto 2D space using t-SNE, and colored according to their

style labels. In the generative flow model, different settings of the coupling layer (i.e., without imposing an autoregressive function (a),

with an autoregressive LSTM (b) and with a Transformer (c)) are evaluated. The model is trained on dataset A, which has eight different

styles of motions. The latent codes of motions in “sexy” style are clustered more properly by imposing the Transformer into the coupling

layer, compared to the other settings.

standing of how the generative flows learn to synthesize

stylized human motions.

Latent Style Code. As previously discussed (Sec. 3.2), we

use the latent codes inferred from the generative flow model

to control motion styles. We project style latent codes onto

2D space, and color each action sample based on its style

label. As shown in Figure 5, the latent codes are clustered

into groups of different styles. It demonstrates that our pro-

posed generative flows can learn distributions of motions in

different styles, and the latent codes encode deep properties

of motion styles. Thus, the motions in the same style may

be manipulated in a similar way based on the corresponding

latent codes. What’s more, it is obvious that the latent codes

of the “neutral” style are more centralized in the style latent

space than the other styles (as shown in Figure 5). It demon-

strates that generative flows tend to learn to branch from the

neutral style into the other styles, and it is consistent with

common sense.

Next, we evaluate different settings (i.e., without im-

posing an autoregressive function, with an autoregressive

LSTM and with a Transformer) of the flow architecture,

as illustrated in Figure 5. We use the flow architecture,

in which the coupling layer has no autoregressive function

as the baseline. As shown in Figure 5, the latent codes

of motions with the “sexy” label are clustered more prop-

erly by the generative model with the Transformer, com-

pared to the other two settings. Specifically, we calcu-

late Silhouette Coefficient (SCoeff) and Calinski-Harabaz

13617



Setting SCoeff CHI

Baseline 0.36 727.51
LSTM 0.42 1049.95
Transformer 0.48 1245.48

Table 1. Evaluation of clustering results of latent codes inferred

by our generative flow model with different settings. Silhouette

Coefficient (SCoeff) and Calinski-Harabaz Index (CHI) are used

for the evaluation. Higher SCoeff and CHI values represent better

clustering results.

(a) (b)

Figure 6. Illustration of latent codes from unseen styles. The latent

codes are extracted by the network of Aberman et al. [1] (a) and

our generative flow model (b). Both of the models are trained on

dataset A excluding the action samples in the “strutting” style to

evaluate their generalization abilities.

Method CC SC

Holden et al. [18] 21.6± 6.6 11.3± 5.0
Aberman et al. [1] 57.9± 21.4 69.5± 18.1
Ours (Zero Initialize) 20.0± 5.2 23.3± 5.5

Table 2. Quantitative comparison of our method to the approaches

of Holden et al. [18] and Aberman et al. [1]. Content consis-

tency (CC) and style consistency (SC) are used as evaluation met-

rics. Lower CC and SC values represent better results .

Index (CHI), to evaluate the clustering results of the la-

tent style codes, which are extracted by our generative flow

model with different settings. The clustering results are bet-

ter with higher values of SCoeff and CHI. In Table 1, it

shows that the clustering results of the latent style codes in-

ferred from our generative flow model with the Transformer

outperform the other settings. As illustrated in Sec. 3.1,

flows are defined to transform a simple, fixed distribution to

obtain a more complex distribution. The more flexible the

latent distribution, the better the generative model for pa-

rameterising the exact distribution of real motion samples.

Consequently, the more proper clustered latent codes (mo-

tions in the same styles are close to each other in the la-

tent space) can be inferred from the generative flows. The

comparison results of latent codes (shown in Table 1 and

Figure 5) confirm that our proposed flow transformations

with the Transformer is more expressive for encoding mo-

tion styles in latent space.

Unseen Styles. In practice, our model may be used to ex-

tract styles from arbitrary motions. However, it is uncer-

tain whether the model can be successfully used for daily

applications, when it is trained on motion samples in lim-

ited styles. To verify this, we train our model on dataset

A without the motions that are labeled by the “strutting”

label, and then test it using the motions including the “strut-

ting” style. As seen in Figure 6, the network of Aberman

et al. [1] successfully clusters the samples with styles that

can be seen during training. However, the motions in style

“strutting” that is never seen during training are adapted to

a visually similar style “proud”. For example, the “proud”

style codes are close to those of “strutting” in Figure 6 (a).

On the contrary, our generative flows can not only learn to

cluster the action samples in the same style, but also gener-

alize to the samples in an unseen style during training. The

experiment demonstrates that the generative flows can infer

latent style properties from even unseen style motion sam-

ples, implying that the proposed generative flow model has

a good generalization ability. We also notice that the latent

codes of the same style extracted by the method of Aberman

et al. [1] are closer to each other, compared to those inferred

from our model. The reason is that Aberman et al. [1] train

their model on motion samples with style labels and intro-

duce a triplet loss to make the latent code clusters tighter,

while our model is trained in an unsupervised manner.

4.3. Comparison

We compare our method with the related works of

Holden et al. [18] and Aberman et al. [1], both of which

perform a similar task for motion style transfer. Similar to

the seminal work of Gatys et al. [10] for image style trans-

fer, Holden et al. [18] perform style transfer by optimizing

a motion sequence to satisfy the constraints of both the con-

tent and the style. Aberman et al. [1] perform style transfer

by encoding motions into two latent codes, one for content

and the other for style. During the process of style transfer,

the style code modifies the content features by adopting the

temporally invariant AdaIN [21]. Then, a post processing is

required to match the foot contact and global velocity of the

output motion and those of the input motions.

Quantitative Evaluation. If the input content motion and

the input style motion share the same style label, it is more

reasonable that the output motion of style transfer is more

close to the content motion. With this observation, we

use all pair-wise motion sequences from the test collec-

tion (containing 56 motion sequences) in dataset A with

the same style labels to generate output motions. Then, we

compute the average Euclidean distance between the out-

put motions and the corresponding content motions along

the temporal dimension, to evaluate the content consis-

tency (CC). Since the test motion clips in dataset A may

have different lengths, we make the pair-wise test motions
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Input Style Input Content Aberman et al.[2020]Holden et al.[2016] Ours

Figure 7. Qualitative comparison of our method to the approaches of Holden et al. [18] and Aberman et al. [1]. The input and content

motions are from dataset B. The full video sequences and more results can be found in the supplemental video.

with the same style labels consistent in length for evaluating

the SC.

We compare the CC of our method with the state-of-

the-art methods [18, 1] to evaluate the superiority of our

method. As shown in Table 2, the stylized motions synthe-

sized by our model outperform those by the other methods

in retaining the content input. Specifically, we can gener-

ate plausible results with different motions in the initialized

frames, such as initialized to zero. As the generative flows

learn to maximise the exact log-likelihood on motion data

samples, the output motion is realistic and retains content

consistency very well for the same label. Similarly, we also

evaluate the style consistency (SC). In case the content in-

put and the style input share the same content, it is expected

that the output motion of style transfer is close to the style

motion.

In Table 2, it can be seen that the approach of Holden

et al. [18] can keep the style consistency well, but struggles

to keep the content consistency. The main reason is that

both content and style representations are manually defined

and derived from the same deep features. Specifically, they

represent the content as a set of deep features that are ex-

tracted by a motion autoencoder, and describe the style by

the Gram matrix of those features. This may lead to a de-

pendency of the content and style. Generally, the method

of Holden et al. [18] tends to produce an output motion that

is more consistent with the input style motion. Aberman

et al. [1] impose a content consistency term into their loss

function to extract deep properties that are shared among

samples of the same style in a more proper way. And, their

method performs better in keeping the content consistency

than keeping the style consistency. However, the CC and SC

values of the method are higher compared to the other two

methods. The main reason is that the method performs a

global velocity warping, which has great effect on the whole

motions.

Qualitative Evaluation. Qualitatively, we perform the

comparison with the related approaches [18, 1] for motion

style transfer. We choose input style and content motions

from dataset B, in which the motion samples have complex

rotations in the root joint. We use the motions from dataset

B to evaluate the superiority of our model to control the

motion content. As shown in Figure 7, the content of the

motion sequence generated by our method is retained better

than the previous works [18, 1]. Specifically, the root ro-

tation movements of our synthesized motion are more sim-

ilar to those of the content motion compared to the results

of the other two methods. What’s more, the output mo-

tion is generated by our model directly, without any further

steps for manipulating the global velocity. Moreover, the

motions generate by the related method [1] may have some

artifacts like crossing hands, while the motions generated

by our model are more realistic.

5. Conclusion

In this paper, we present a novel method based on gen-

erative flows for motion style transfer by synthesizing styl-

ized motions directly, with the latent code (inferred from

the input style motion), the autoregressive context and the

control signal (from the input content motion). Specifically,

our model can be trained on a collection of motion samples

in different styles in an unsupervised manner. As no style

labels are required during training, the model can be easily

applied in daily life. Moreover, our experiments show that

the proposed generative flow model has a good generaliza-

tion capability for encoding latent style codes, so it can suc-

cessfully synthesize motions in styles that are unseen during

training.

Our model has a limitation in synthesizing stylized mo-

tions of characters that have body proportions from those

who are not seen during training. However, the problem

can be solved by performing motion retargeting before mo-

tion synthesis. We notice that motion retargeting is another

important topic in the scope of human motion study, and we

will study it in the future work. Another future work is to

solve the problem of synthesizing stylized human motions

in different skeletal structures in an end-to-end manner.
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