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Abstract

To promote the developments of object detection, track-

ing and counting algorithms in drone-captured videos, we

construct a benchmark with a new drone-captured large-

scale dataset, named as DroneCrowd, formed by 112 video

clips with 33, 600 HD frames in various scenarios. Notably,

we annotate 20, 800 people trajectories with 4.8 million

heads and several video-level attributes. Meanwhile, we

design the Space-Time Neighbor-Aware Network (STNNet)

as a strong baseline to solve object detection, tracking and

counting jointly in dense crowds. STNNet is formed by the

feature extraction module, followed by the density map es-

timation heads, and localization and association subnets.

To exploit the context information of neighboring objects,

we design the neighboring context loss to guide the asso-

ciation subnet training, which enforces consistent relative

position of nearby objects in temporal domain. Extensive

experiments on our DroneCrowd dataset demonstrate that

STNNet performs favorably against the state-of-the-arts.

1. Introduction

Drones, or general unmanned aerial vehicles (UAVs),

equipped with cameras have been fast deployed to a wide

range of applications, such as video surveillance for crowd

control [45] and public safety [22]. In recent years, many

massive stampedes have taken place around the world that

claimed many victims, making the automatic density map

estimation, counting and tracking in crowds on drones im-

portant tasks, which draw great attention from the computer

vision community.
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Despite significant progress, crowd counting and track-

ing algorithms still have room for improvement to deal with

drone-captured videos due to various challenges, such as

view point and scale variations, background clutter, and

small scales. Developing and evaluating these algorithms

for drones are impeded by the lack of publicly available

large-scale benchmarks. Some recent efforts [40, 44, 10, 41,

5, 35] have devoted to construct datasets for crowd count-

ing. However, the majority of them focus on crowd count-

ing with still images or inconsistent frames by surveillance

cameras, due to difficulties in data collection and annotation

for drone-based crowd counting and tracking.

To fill this gap, we collect a large-scale drone-based

dataset for density map estimation, crowd localization and

tracking. Our DroneCrowd dataset consists of 112 video

clips formed by total 33, 600 frames, captured by various

drone-mounted cameras, in 70 different scenarios across 4
different cities in China (i.e., Tianjin, Guangzhou, Daqing,

and Hong Kong). These video clips are annotated with more

than 4.8 million head annotations and several video-level

attributes. To the best of our knowledge, this is the largest

and most thoroughly annotated density map estimation, lo-

calization, and tracking dataset to date, see Table 1.

To handle this challenging dataset, we design a Space-

Time Neighbor-Aware Network (STNNet) as a strong base-

line, which solves the density map estimation, localization,

and tracking simultaneously. Specifically, the proposed

STNNet is formed by four modules, i.e., the feature extrac-

tion subnetwork, followed by the density map estimation

heads, the localization, and the association subnets. The

feature extraction subnetwork first uses two-branch CNNs

to extract multi-scale features, and then computes the cor-

relations between the extracted features in consecutive two

frames to exploit the temporal relations. Using density map

estimation heads, we can estimate the density of objects in

video frames to perform crowd counting. Inspired by object

detection [25, 26, 42], we introduce the localization subnet,

formed by the classification and regression branches, to out-

put accurate locations of targets in each individual frames.

7812



Table 1. Comparison between the DroneCrowd dataset and existing datasets.

Dataset Type Trajectory Resolution Frames Max count Min count Ave count Total count Year

UCF CC 50 [9] image - 50 4, 543 94 1, 279.5 63, 974 2013

Shanghaitech A [44] image - 482 3, 139 33 501.4 241, 677 2016

Shanghaitech B [44] image 768× 1024 716 578 9 123.6 88, 488 2016

AHU-Crowd [7] image 576× 720 107 2, 201 58 420.6 45, 000 2016

CARPK [6] image 1280× 720 1, 448 188 1 62.0 89, 777 2017

Smart-City [41] image 1920× 1080 50 14 1 7.4 369 2018

UCF-QNRF [10] image - 1, 535 12, 865 49 815.4 1, 251, 642 2018

NWPU [35] image 2191× 3209 5, 109 20, 033 0 418.0 2, 133, 375 2020

UCSD [3] video 158× 238 2, 000 46 11 24.9 49, 885 2008

Mall [19] video 640× 480 2, 000 53 13 31.2 62, 316 2013

WorldExpo [40] video 576× 720 3, 980 253 1 50.2 199, 923 2015

FDST [5] video 1920× 1080 15, 000 57 9 26.7 394, 081 2019

DroneCrowd video X 1920× 1080 33, 600 455 25 144.8 4, 864, 280 2021

To exploit the temporal consistency, the association subnet

is designed to predict motion offests of targets in consec-

utive frames for tracking. Besides, we develop the neigh-

boring context loss by integrating spatial-temporal context

of neighboring targets to guide the training of association

subnet. Specifically, the neighboring context loss penalizes

large displacements of the relative positions of adjacent ob-

jects in temporal domain, and guides the association sub-

net to generate accurate motion offsets. The whole network

is trained in an end-to-end manner with the multi-task loss

and Adam optimizer [12]. After that, multi-object tracking

methods [24, 1] are used to predict long trajectories of tar-

gets. Compared with 12 state-of-the-art algorithms, exten-

sive experiments on our DroneCrowd dataset demonstrate

the effectiveness of the proposed STNNet method for den-

sity map estimation, crowd localization and tracking tasks.

Contributions. (1) We collect a large-scale drone captured

dataset for density map estimation, localization, and track-

ing in dense crowd, which significantly surpasses existing

datasets in terms of data type and volume, annotation qual-

ity, and difficulty. (2) We propose a space-time neighbor-

aware network to solve the density map estimation, local-

ization and tracking tasks simultaneously. (3) To exploit the

spatial-temporal context, we design the neighboring context

loss to penalize large displacements of the relative positions

of adjacent objects in temporal domain for network training.

2. Related Work

Existing datasets. To date, there only exists a handful

of crowd counting, crowd localization, or crowd tracking

datasets. UCF CC 50 [9] is formed by 50 images contain-

ing 64, 000 annotated humans, with the head counts rang-

ing from 94 to 4, 543. Shanghaitech [44] includes 1, 198
images with a total number of 330, 165 labeled people. Re-

cently, UCF-QNRF [10] is released with 1, 535 images and

1.25 million annotated people’s heads in various scenarios.

Hsieh et al. [6] present a drone-based car counting dataset,

which approximately contains 90K cars captured in differ-

ent parking lots. Recently, Wang et al. [35] collect a large-

scale congested crowd counting and localization dataset,

which includes more than 5K images and 2 million anno-

tated heads with points and boxes. However, these datasets

are still limited in sizes and scenarios covered.

To evaluate counting algorithms in videos, Chan et al. [3]

present the UCSD counting dataset including low density

crowd and counting difficulty. Similar to the UCSD dataset,

Mall [19] is collected by the surveillance camera in a sin-

gle location. Zhang et al. [40] present the WorldExpo

dataset with 3, 980 annotated frames in total, which is cap-

tured in 108 different scenes during 2010 Shanghai World-

Expo. Fang et al. [5] collect a video dataset with 15K
frames and 394K annotated heads captured from 13 differ-

ent scenes. In contrast to the aforementioned datasets, our

DroneCrowd dataset is a large-scale drone-captured dataset

for density map estimation, crowd localization and tracking,

which consists of 112 sequences with more than 4.8 million

head annotations on 20, 800 people trajectories.

Crowd counting and density map estimation. Modern

crowd counting methods [14, 44, 29, 2, 15, 17, 20, 34] for-

mulate crowding counting as density map estimation. Lem-

pitsky and Zisserman [14] learn to infer the density esti-

mation by a minimization of a regularized risk quadratic

cost function. Zhang et al. [44] use the multi-column CNN

network to estimate the crowd density map, which learns

the features for different head sizes by each column CNN.

Sam et al. [29] develop the switching CNN model to han-

dle the variations of crowd density. Cao et al. [2] propose an

encoder-decoder network, where the encoder extracts multi-

scale features with scale aggregation and the decoder gen-

erates high-resolution density maps using transposed con-

volutions. Li et al. [15] employ dilated convolution layers

to enlarge receptive fields and extract deeper features with-

out losing resolutions. Liu et al. [17] adaptively encodes

the scale of the contextual information for accurate crowd
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Figure 1. Some annotated example frames in the DroneCrowd dataset. Different color indicates different object instance and the corre-

sponding trajectory. The video-level attributes are presented on the top-left corner in each video frame.

density prediction. In [16], the physically-inspired tempo-

ral consistency constraints are considered in the network to

handle the viewpoint changes by drones. Besides, Luo et

al. [20] propose the hybrid graph neural network to cap-

ture dependencies among multi-scale counting and local-

ization features. To avoid hurting the generalization bound

of a model, Wang et al. [34] propose the optimal transport

to measure the similarity between the normalized predicted

and ground-truth density maps.

In terms of crowd counting in videos, spatio-temporal

information is critical to improve the counting accuracy.

Xiong et al. [38] design a convolutional LSTM model to

fully capture both spatial and temporal dependencies for

crowd counting. Zhang et al. [43] combine fully convo-

lutional neural networks and LSTM by residual learning to

perform vehicle counting. Liu et al. [18] first compute peo-

ple flows between consecutive frames and then estimate the

densities from these flows. Different from existing meth-

ods, our STNNet can output both crowd density and target

locations in crowds using the proposed localization subnet.

Crowd localization and tracking. Besides crowd count-

ing, crowd localization and tracking are also important tasks

in safety control scenarios. Rodriguez et al. [27] formu-

late an energy minimization framework by jointly optimiz-

ing the density and location, with the temporal-spatial con-

straints of person tracks in video. Ma et al. [21] first obtain

local counts from sliding windows over the density map and

then use integer programming to recover the locations of in-

dividual objects. In [10], crowd counting and localization

tasks are simultaneously solved with a CNN model trained

by a composition loss. In contrast, our method captures

context information among neighbouring targets and esti-

mate motion offsets of targets between consecutive frames,

trained by the proposed neighboring context loss.

3. DroneCrowd Dataset

3.1. Data Collection and Annotation

Our DroneCrowd dataset is captured by drone-mounted

cameras (i.e., DJI Phantom 4, Phantom 4 Pro and Mavic),

covering a wide range of scenarios, e.g., campus, street,

Table 2. Statistics of each attribute in DroneCrowd.
Attribute Min count Max count Avg count Frames

Small 26 455 143.8 20, 700

Large 25 436 146.3 12, 900

Cloudy 25 436 144.9 18, 300

Sunny 26 455 153.3 12, 300

Night 40 167 109.1 3, 000

Crowded 129 455 225.6 13, 500

Sparse 25 170 90.5 20, 100

park, parking lot, playground and plaza1. The videos are

recorded at 25 frames per seconds (FPS) with a resolution

of 1920× 1080 pixels. As presented in Figure 2 (a) and (b),

the maximal and minimal numbers of people in each video

frame are 455 and 25 respectively, and the average num-

ber of objects is 144.8. Moreover, more than 20 thousands

of head trajectories of people are annotated with more than

4.8 million head points in individual frames of 112 video

clips. Over 20 domain experts annotate and double-check

the dataset using the vatic software [33] for more than two

months. Figure 1 shows some frames of video clips with

annotated trajectories of people heads.

We divide DroneCrowd into the training and

testing sets, with 82 and 30 sequences, respectively. No-

tably, training videos are taken at different locations from

testing videos to reduce the chances of algorithms to overfit

to particular scenes. It contains video sequences with large

variations in scale, viewpoint, and background clutters. To

analyze the performance of algorithms thoroughly, we de-

fine three video-level attributes of the dataset, described as

follows. (1) Illumination: under different illumination con-

ditions, the objects are assumed to be different in appear-

ance. Three categories of illumination conditions are con-

sidered in our dataset, including Cloudy, Sunny, and Night.

(2) Scale indicates the size of objects. Two categories of

scales are defined, including Large (the diameter of objects

> 15 pixels) and Small (the diameter of objects ≤ 15 pix-

1We strictly comply with local laws and regulations in China when us-

ing unmanned aircraft/drones, and avoid restricted areas to capture videos.

Since the scales of objects are extremely small, no identity information

such as faces and vehicle plates could be retrieved. After careful check,

we confirm that all data in our dataset would not leak any personal infor-

mation.
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Figure 2. (a) The distribution of the number of objects per frame, (b) the distribution of the length of object trajectories, and (c) the attribute

statistics, of the training and testing sets in the DroneCrowd dataset.

els). (3) Density indicates the number of objects in each

frame. Based on the average number of objects in each

frame, we divide the dataset into two density levels, i.e.,

Crowded (with the number of objects in each frame larger

than 150), and Sparse (with the number of objects in each

frame less than 150). The statistics on different attributes

are shown in Figure 2 (c) and Table 2.

3.2. Evaluation Metrics and Protocols

Density map estimation. Following the previous works

[40, 44, 10], the density map estimation task aims to com-

pute per-pixel density at each location in the image, while

preserving spatial information about distribution of peo-

ple. We use the mean absolute error (MAE) and mean

squared error (MSE) to evaluate the performance, i.e.,

MAE = 1∑
M
i=1

Ni

∑M

i=1

∑Ni

j=1
|zi,j − ẑi,j |, and MSE =

√

1∑
M
i=1

Ni

∑M

i=1

∑Ni

j=1
|zi,j − ẑi,j |2, where M is the num-

ber of video clips, Ni is the number of frames in the i-th

video. zi,j and ẑi,j are the ground-truth and estimated num-

ber of people in the j-th frame of the i-th video clip, re-

spectively. As stated in [44], MAE and MSE describe the

accuracy and robustness of the estimation respectively.

Crowd localization. The goal of crowd localization is to

detect the locations of all people in an image. Each evalu-

ated crowd localization algorithm is required to output a se-

ries of detected points with confidence scores for each test

image. The estimated locations determined by the confi-

dence threshold are associated to the ground-truth locations

using greedy method. Then, we compute the L-mAP at var-

ious distance thresholds (1, 2, 3, · · · , 25 pixels) to evaluate

the localization results. We also report the performance

with three specific distance thresholds, i.e., L-AP@10, L-

AP@15, and L-AP@20 pixels. These criteria penalize miss-

ing detection of people as well as duplicate detections.

Crowd tracking. Crowd tracking requires an algorithm to

recover the trajectories of people in video sequence, which

is evaluated on the metric in [23]. Specifically, each tracker

is required to output a series of head points with confidence

scores and the corresponding identities. We sort the track-

lets, formed by the locations with the same identity, based

on the average confidence of their detections. A tracklet

is considered to be correct if the matched ratio between

the predictions and ground-truth tracklets is larger than a

threshold. We use 3 thresholds in evaluation, i.e., 0.10,

0.15, and 0.20. The matching distance threshold between

the predicted and ground-truth locations on the tracklets is

set to 25 pixels. The T-mAP scores over different thresholds

(i.e., T-AP@0.10, T-AP@0.15, and T-AP@0.20) are used to

measure the performance.

4. Our Method

Our STNNet sequentially takes a pair of frames as input,

and outputs the density maps, the locations, and the motion

offsets of objects in these two frames, see Figure 3. After

that, the association method is used to generate long trajec-

tories of objects in videos.

4.1. Network Architecture

As shown in Figure 3, the Siamese feature extraction

subnetwork in our STNNet is constructed on the first 4
groups of convolution layers in the parameters shared two-

branch VGG-16 network [31] to extract multi-scale fea-

tures. Inspired by [28], the U-Net style architecture is used

to fuse multi-scale features for prediction. Using density

map estimation heads, we can determine the number of tar-

gets based on multi-scale features. Meanwhile, the correla-

tion operation [11] is conducted on the extracted features to

exploit the temporal coherence at different stage. In addi-

tion, the localization and association subnets are introduced

to predict the locations of target points and the correspond-

ing motion offsets, which are described as follows.

Localization subnet. The localization subnet consists of

the classification and regression branches. To generate ac-

curate locations of objects, we tile the object proposal in

each pixel. The classification branch aims to predict the

probability of each proposal to be an object, and the regres-

sion branch aims to generate the accurate locations of the

positive proposals. As shown in Figure 4, we fuse multi-

scale feature maps (i.e., f1, f2, f3) with both channel and

spatial attention [36] for each branch. After that, we resize

multi-scale feature maps and then output the fused classifi-
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Figure 3. The architecture of our STNNet. The yellow rectangles indicate the convolution groups in the VGG-16 backbone. The blue and

green rectangles indicate the localization subnet (see Figure 4) and association subnet (see Figure 5) respectively. Colourful circles indicate

feature maps at different stage. Note that the modules in the grey regions are removed in the testing phase.

Figure 4. (a) the localization subnet based on (b) channel and spa-

tial attention.

cation and regression maps. The classification map denotes

the probability that each proposal contains an object and the

regression map contains the regressed offsets of the positive

proposals. Finally, we perform non-maximal suppression to

predict the accurate object locations.

Association subnet. As mentioned above, we introduce

the association subnet to predict the motion offsets of each

object to complete the tracking task. As shown in Figure

5(a), given the M top scored post-processed object propos-

als generated by the localization subnet in the (t − 1)-th
frame and the fused multi-scale correlation features, we use

3 stacked PointConv [37] and multi-layer perceptron (MLP)

operations to construct the association subnet to generate

the motion offsets in a circle, i.e., from the (t− 1)-th frame

to t-th frame and vice versa. Note that, only the nearest β

points are considered in each PointConv operation.

4.2. Multi­Task Loss Function

We use the multi-task loss to guide the training of our

STNNet method, which consists of three terms, includ-

ing the neighboring context loss Lass(P̂k,P
∗
k ,Ok), the lo-

calization loss Lloc(Ĉk,C
∗
k , R̂k,R

∗
k), and the density loss

Lden(Φ̂k,Φ
∗
k), i.e.,

L = 1

K

∑

K

k=1

(

Lden(Φ̂k,Φ
∗
k) + Lloc(Ĉk,C

∗
k , R̂k,R

∗
k)

+
∑

K

k Lass(P̂k,P
∗
k ,Ok)

)

,
(1)

where k is the index of the batch, K is the batch size. Φ̂k

and Φ∗
k are the predicted and ground-truth density maps. Ĉk

and C ∗
k are the predicted and ground-truth labels (i.e., ob-

jects or background) of the object proposals, R̂k and R∗
k are

the predicted and ground-truth offsets of the object propos-

als. P̂k and P∗
k are the predicted and ground-truth locations

of the objects, and Ok is the prediction motion offsets of the

objects. In the following sections, we would like to discuss

each loss term in details.

Density loss. Inspired by [44], we use the pixel-wise Eu-

clidean loss for the density loss. The geometry-adaptive

Gaussian kernel method is used to generate the ground-truth

density map Φ∗
k. The density loss term is computed as

Lden(Φ̂k,Φ
∗
k) =

1

2·L

∑

2

t=1

∑L

l=1

∑Wl

i=1
∑Hl

j=1
ωl · ‖φ̂k,t(i, j, l)− φ∗

k,t(i, j, l)‖
2

2
,

(2)

where φ̂k,t(i, j, l) and φ∗
k,t(i, j, l) are the values of the pre-

dicted and ground-truth density maps at (i, j) of layer l at

time t of the k-th batch, and ωl is the parameter to balance

the influence of each layer.

Localization loss. Motivated by object detection [25, 26,

42], the localization loss is formed by the classification loss

and regression loss. We tile the point proposals on each

7816



Figure 5. (a) the association subnet using (b) the neighboring context loss. Notably, the dashed modules in (a) are only used in the training

phase. For clarity, we only display the calculation of the terms from time t− 1 to time t in the neighboring context loss.

pixel and match the proposal to the ground-truth points.

If the proposal locates in the neighboring regions of the

ground-truth points, we assign it to be the positive pro-

posal (i.e., sk(i, j, l) = 1 for the proposal at (i, j) in the

l-th layer in the k-th batch); otherwise the background (i.e.,

sk(i, j, l) = 0). Thus, the localization loss is computed as

Lloc(Ĉk,C
∗
k , R̂k,R

∗
k)

= 1

L

∑L

l=1

∑Wl

i=1

∑Hl

j=1

(

Lcls(ĉk(i, j, l), c
∗
k(i, j, l)),

+sk(i, j, l) · Lreg(r̂k(i, j, l), r
∗
k (i, j, l))

)

,
(3)

where ĉk(i, j, l) and c∗k(i, j, l) are the predicted and ground-

truth labels at (i, j) of layer l. r̂k(i, j, l) and r∗k (i, j, l) are

the predicted and ground-truth offsets at (i, j) of layer l.

We use the log loss to compute Lcls, and the squared loss

to compute Lreg. Notably, the regression loss Lreg is only

activated for the positive proposals.

Neighboring context loss. In crowded scenes, the objects

are generally clustered in a small region and usually share

similar motion patterns in consecutive frames. To exploit

the motion consistency of neighboring objects, we design

a neighboring context loss, which is formed by two parts,

i.e., the temporal prediction constraint, and the relation con-

straint, see Figure 5(b).

Specifically, the temporal prediction constraint enforces

the proposals in the consecutive frames projected by the

predicted motion offsets to approach the ground-truth

points. Let pi,t−1 be the location of the i-th proposal

at time t − 1, pj,t−1 ∈ Npi,t−1
be the object location

in the neighboring region of the proposal at pi,t−1, and

oi,t−1 be the predicted offset corresponding to the pro-

posal at pi,t−1 from time t − 1 to t. Thus, the tempo-

ral prediction constraint aims to minimize the ℓ1-norm of

the differences, i.e., ‖(pi,t−1 − oi,t−1) − p∗i,t‖1. Mean-

while, the relation constraint enforces the relation vectors

between the target and neighboring objects to approach

to the relation vectors of their corresponding associated

ground-truth points. Let ~v(pi,t−1 − oi,t−1, pj,t−1 − oj,t−1)
be the relation vector2 between the target and neighbor-

ing objects projected to the second frame, and ~v(p∗i,t, p
∗
j,t)

2The relation vector is computed as ~v(pi,t−1 − oi,t−1, pj,t−1 −

oj,t−1) = (pj,t−1 − oj,t−1)− (pi,t−1 − oi,t−1).

be the relation vector between the ground-truth points at

p∗i,t and p∗j,t. Thus, the relation constraint aims to mini-

mize
∑

pj,t−1∈Npi,t−1

‖~v(pi,t−1−oi,t−1, pj,t−1−oj,t−1)−

~v(p∗i,t, p
∗
j,t)‖1. The cycle strategy is used to compute the

neighboring context loss, i.e.,

Lass(P̂k,P
∗
k ,Ok) =

1

2·M

∑M

i=1

(

‖p′i,t−1
− p∗i,t‖1

+
∑

pj,t−1∈Npi,t−1

‖~v(p′i,t−1
, p′j,t−1

)− ~v(p∗i,t, p
∗
j,t)‖1

+‖p′i,t − p∗i,t−1
‖1

+
∑

pj,t∈Npi,t
‖~v(p′i,t, p

′
j,t)− ~v(p∗i,t−1

, p∗j,t−1
)‖1

)

,

(4)

where p′i,t = pi,t − oi,t and p′j,t = pj,t − oj,t are the pro-

jected targets.

4.3. Optimization

To increase diversity in training data, we randomly flip

and crop the training images. Due to limited computation

resources, we equally divide each frame into 2× 2 patches,

and use the divided 4 patches with the resolution of 960 ×
540 for training. For the Pointconv layer, we use β = 8
nearest points to capture the context information. In (2), the

pre-set weights ωl are set to {2.0, 0.5, 0.05}. The matching

threshold between the proposals and ground-truth points is

set to 10 pixels. Meanwhile, the threshold used to determine

the neighboring regions of pixels Npi
is set to 50 pixels.

The total number of proposal objects M is set to 128. In

addition, we set the batch size K = 4 in the training phase.

Two-stage training. We use the two stage strategy to train

our network. For the first stage, we remove the association

subnet and train the network to generate accurate density

map and object proposals. After that, we fixed the param-

eters in the density map estimation heads, and add the as-

sociation subnet to fine-tune the whole network. We use

the Adam optimization algorithm [12] with the learning rate

10−6 in both stages.

5. Experiment

As discussed above, we conduct the experiment on our

DroneCrowd for crowd counting, localization and tracking.

We report the density map estimation results and speeds of

STNNet and 12 existing methods. Meanwhile, the ablation
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Figure 6. Qualitative results of DM-Count [34], CSRNet [15], CAN [17], and our STNNet on DroneCrowd. Best view in color version.

study is conducted to verify the effectiveness of important

components in our method. Besides, some visual results are

shown in Figure 6.

Density map estimation. As shown in Table 3, our

STNNet performs favorably against the state-of-the-art

methods, with an improvement of 2.6 MAE and 8.3 MSE in

comparison to the second best DM-Count [34] in the overall

testing set. It indicates that our method generates more

accurate and robust density maps in different scenarios. To

further analyze the results, we report the performance on

several subsets based on the video-level attributes (see Sec-

tion 3.1). LCFCN [13] and AMDCN [4] perform not well

in the Crowd subset, producing the two worst MAE and

MSE scores. This is maybe because LCFCN [13] uses a

loss function to encourage the network to output a segmen-

tation blob for each object in crowd counting. However,

in drone-captured scenarios, each object may contain only

few pixels, making it difficult to separate objects accurately.

AMDCN [4] uses multiple columns of large dilation convo-

lution operations, which inevitably integrates considerable

background noise, affecting the accuracy in density map es-

timation. In contrast, MCNN [44] uses multi-column CNNs

to learn the features adaptive to variations in object size due

to perspective effect or image resolution, resulting in better

performance. CAN [17] achieves the best performance in

both Cloudy and Crowded subsets by exploiting multi-scale

contextual information in density maps. DM-Count [34]

obtains the best MAE and MSE scores in the Sunny subset

without imposing Gaussians to annotations. Our STNNet

achieves the best result in other four subsets, which demon-

strates the effectiveness and importance of exploiting multi-

scale features in density map estimation.

Furthermore, to study the effectiveness of the localiza-

tion subnet in STNNet for density map estimation, we con-

struct a variant of STNNet, i.e., STNNet (w/o loc), which

removes the localization subnet from STNNet. As shown in

Table 3, our STNNet achieves better results than STNNet

(w/o loc) by decreasing 2.8 MAE score and 3.5 MSE score,

which validates the importance of the localization subnet.

Crowd localization. As presented in Table 4, we com-

pare the localization results of 4 methods with top density

estimation results (i.e., MCNN [44], CSRNet [15], CAN

[17], and DM-Count [34]) and our STNNet variants, i.e.,

STNNet (w/o loc), STNNet (w/o ass) and STNNet (w/o

cyc). STNNet (w/o loc) denotes the method that removes

both the association and localization subnets from STNNet,

STNNet (w/o ass) denotes the method that removes the as-

sociation subnet from STNNet, and STNNet (w/o cyc) de-

notes the method that only considers the forward motion

offsets in neighboring context loss computation. Mean-

while, for the density map estimation based methods such

as MCNN, CSRNet, CAN, DM-Count, and STNNet (w/o

loc), similar to [10], we post-process the predicted density

maps to find local peaks using a preset threshold.

As shown in Table 4, we find that STNNet achieves

the best accuracy with 40.45% L-mAP and surpasses the

second best DM-Count [34] 22.28% L-mAP. It indicates

that our method can generate more accurate localizations of

each target. Compared to STNNet (w/o cyc), STNNet im-

proves the localization accuracy by 0.22%, which shows the

effectiveness of cycle strategy in the neighboring context

loss for the localization task. Without the association sub-

net, the L-mAP score decreases 0.68% (40.45% of STNNet

vs. 39.77%), indicating that temporal coherence facilitates

improve the localization accuracy. If we remove both asso-

ciation and localization subnets, the L-mAP score decreases

more than 8%. It demonstrates that the localization subnet

enforces the network to focus on more discriminative fea-

tures to localize people’s heads.

Crowd tracking. For object tracking, two association

methods, i.e., the min-cost flow method [24] and the social-

LSTM method [1], are used to generate long trajectories

of objects. To validate the effectiveness of STNNet for

crowd tracking, we compare it to several methods includ-

ing MCNN, CSRNet, CAN, DM-Count, STNNet (w/o loc),

STNNet (w/o ass), STNNet (w/o cyc) and STNNet. It is
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Table 3. Estimation errors of density maps on DroneCrowd.

Method
Speed Overall Large Small Cloudy Sunny Night Crowded Sparse

FPS MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [44] 28.98 34.7 42.5 36.8 44.1 31.7 40.1 21.0 27.5 39.0 43.9 67.2 68.7 29.5 35.3 37.7 46.2

C-MTL [32] 2.31 56.7 65.9 53.5 63.2 61.5 69.7 59.5 66.9 56.6 67.8 48.2 58.3 81.6 88.7 42.2 47.9

MSCNN [39] 1.76 58.0 75.2 58.4 77.9 57.5 71.1 64.5 85.8 53.8 65.5 46.8 57.3 91.4 106.4 38.7 48.8

LCFCN [13] 3.08 136.9 150.6 126.3 140.3 152.8 164.8 147.1 160.3 137.1 151.7 105.6 113.8 208.5 211.1 95.4 110.0

SwitchCNN [29] 0.01 66.5 77.8 61.5 74.2 74.0 83.0 56.0 63.4 69.0 80.9 92.8 105.8 67.7 79.8 65.7 76.7

ACSCP [30] 1.58 48.1 60.2 57.0 70.6 34.8 39.7 42.5 46.4 37.3 44.3 86.6 106.6 36.0 41.9 55.1 68.5

AMDCN [4] 0.16 165.6 167.7 166.7 168.9 163.8 165.9 160.5 162.3 174.8 177.1 162.3 164.3 165.5 167.7 165.6 167.8

StackPooling [8] 0.73 68.8 77.2 68.7 77.1 68.8 77.3 66.5 75.9 74.0 83.4 65.2 67.4 95.7 101.1 53.1 59.1

DA-Net [46] 2.52 36.5 47.3 41.5 54.7 28.9 33.1 45.4 58.6 26.5 31.3 29.5 34.0 56.5 68.3 24.9 28.7

CSRNet [15] 3.92 19.8 25.6 17.8 25.4 22.9 25.8 12.8 16.6 19.1 22.5 42.3 45.8 20.2 24.0 19.6 26.5

CAN [17] 7.12 22.1 33.4 18.9 26.7 26.9 41.5 11.2 14.9 14.8 17.5 69.4 73.6 14.4 17.9 26.6 39.7

DM-Count [34] 10.04 18.4 27.0 19.2 29.6 17.2 22.4 11.4 16.3 12.6 15.2 51.1 55.7 17.6 21.8 18.9 29.6

STNNet (w/o loc) 3.65 18.6 22.2 17.1 20.5 21.0 24.6 14.7 19.9 21.4 23.3 24.7 26.3 24.2 27.3 15.4 18.7

STNNet 3.41 15.8 18.7 16.0 18.4 15.6 19.2 14.1 17.2 19.9 22.5 12.9 14.4 18.5 21.6 14.3 16.9

Table 4. Localization accuracy on DroneCrowd.

Methods L-mAP L-AP@10 L-AP@15 L-AP@20

MCNN [44] 9.05% 9.81% 11.81% 12.83%

CAN [17] 11.12% 8.94% 15.22% 18.27%

CSRNet [15] 14.40% 15.13% 19.77% 21.16%

DM-Count [34] 18.17% 17.90% 25.32% 27.59%

STNNet (w/o loc) 32.19% 33.88% 39.56% 43.22%

STNNet (w/o ass) 39.77% 42.06% 50.00% 54.88%

STNNet (w/o rel) 40.00% 42.29% 50.31% 55.11%

STNNet (w/o cyc) 40.23% 42.57% 50.64% 55.42%

STNNet 40.45% 42.75% 50.98% 55.77%

Table 5. Tracking accuracy on DroneCrowd in terms of min-cost

flow/social-LSTM.
Methods T-mAP T-AP@0.10 T-AP@0.15 T-AP@0.20

MCNN [44] 9.16/8.96 11.47/10.45 9.65/9.91 6.36/6.51
CAN [17] 4.39/4.13 6.97/5.48 4.72/5.26 1.48/1.65

CSRNet [15] 12.15/11.66 17.34/14.63 12.85/13.74 6.26/6.16
DM-Count [34] 17.01/16.54 22.38/19.72 18.34/19.13 10.29/10.77

STNNet (w/o loc) 28.72/28.55 32.52/32.50 30.84/30.65 22.80/22.51
STNNet (w/o ass) 31.44/30.90 34.59/34.08 32.94/32.32 26.77/26.30
STNNet (w/o rel) 32.26/31.60 35.20/34.78 33.78/33.12 27.80/26.89
STNNet (w/o cyc) 32.50/31.44 35.45/34.53 33.99/32.79 28.05/26.99

STNNet 32.32/31.58 35.29/34.82 33.78/33.00 27.90/26.92

worth mentioning that STNNet (w/o loc) performs crowd

tracking based on the localized points from density maps,

similar to MCNN, CSRNet, CAN, and DM-Count. With-

out predicting motion offsets, STNNet (w/o ass) directly

associates the targets from the localization results. STNNet

(w/o cyc) and STNNet first connect short tracklets in two

consecutive frames based on the predicted offsets, and then

generate long trajectories using the same data association

methods [24, 1].

From Table 5, we notice that STNNet achieves 32.50%
T-mAP score, which is 15.49% higher than the second

best DM-Count. Meanwhile, STNNet (w/o cyc) produces

0.11% higher T-mAP score than our method. STNNet (w/o

ass) produces inferior results than STNNet, i.e., 31.44% vs.

32.32%. The T-mAP score of STNNet (w/o loc) decreases

3.60% compared to STNNet (w/o ass). These results in-

dicate that association and localization subnets are critical

in crowd tracking. However, these results are still far from

satisfactory. Besides, we find that the method using social-

LSTM [1] performs comparably with that using min-cost

flow [24]. It indicates that it is possible to predict the motion

patterns of objects based on the observed trajectories. In

summary, our DroneCrowd dataset is extremely challeng-

ing for crowd tracking and much effort is needed to develop

more effective methods in real scenarios.

Effectiveness of neighboring context loss. To further

demonstrate the effectiveness of the relation constraint in

the neighboring context loss, we construct a variant STNNet

(w/o rel) by removing the relation constraint in STNNet

(w/o cyc). As shown in Table 4 and 5, STNNet (w/o rel)

produces 40.00% and 32.26% L-mAP and T-mAP scores,

respectively. STNNet (w/o cyc) improves 0.23% and 0.24%
L-mAP and T-mAP scores compared with STNNet (w/o

rel).

6. Conclusion

In this work, we propose the STNNet method to jointly

solve density map estimation, localization, and tracking in

drone-captured crowded scenes. Notably, we design the

neighboring context loss to capture relations among neigh-

boring targets in consecutive frames, which is effective for

localization and tracking. To better evaluate the perfor-

mances on drones, we collect and annotate a new dataset,

DroneCrowd. To the best of our knowledge, it is the largest

dataset to date in terms of annotated trajectories of heads for

density map estimation, crowd localization, and tracking on

drones. We hope the dataset and the proposed method can

facilitate the research and development in crowd localiza-

tion, tracking and counting on drones.
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