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Abstract

Generative models for 3D point clouds are extremely im-

portant for scene/object reconstruction applications in au-

tonomous driving and robotics. Despite recent success of

deep learning-based representation learning, it remains a

great challenge for deep neural networks to synthesize or

reconstruct high-fidelity point clouds, because of the dif-

ficulties in 1) learning effective pointwise representations;

and 2) generating realistic point clouds from complex dis-

tributions. In this paper, we devise a dual-generators frame-

work for point cloud generation, which generalizes vanilla

generative adversarial learning framework in a progressive

manner. Specifically, the first generator aims to learn effec-

tive point embeddings in a breadth-first manner, while the

second generator is used to refine the generated point cloud

based on a depth-first point embedding to generate a robust

and uniform point cloud. The proposed dual-generators

framework thus is able to progressively learn effective point

embeddings for accurate point cloud generation. Exper-

imental results on a variety of object categories from the

most popular point cloud generation dataset, ShapeNet,

demonstrate the state-of-the-art performance of the pro-

posed method for accurate point cloud generation.

1. Introduction

3D data representation has received increasing attention

from the community due to the rapid development of robot

perception and scene/object reconstruction technologies,

especially in autonomous driving, robotics, and augmented

reality applications [29, 24]. As a simple yet effective 3D

data format, 3D point clouds can capture much more so-

phisticated surface geometry of different objects than voxel

grids and are suitable for large-scale rendering [13]. How-

ever, the surface-centric nature of point clouds also poses

challenges to scanning the objects, such as the issues of

occlusion and distance. Therefore, high-fidelity 3D point

cloud generation is of great importance for a variety of 3D

applications. For example, the generated large-scale 3D

Figure 1. The proposed dual-generators framework for 3D point

cloud generation. The overall pipeline mainly consists of two

generators accompanying with a shared discriminator to generate

point clouds in a progressive manner.

data can be used in the learning of different 3D tasks, such

as segmentation [29, 21], volumetric shape estimation [44],

object detection [28], and scene understanding [26].

With the great success of deep learning in 2D image

data, deep learning-based 3D data generation has attracted

increasing attention, and a wide range of generative ap-

proaches have been intensively investigated from different

perspectives, such as image to point cloud [7, 16], im-

age to voxel [42, 45], image to mesh [39, 41], image to

SDF [27], point cloud to voxel [51], and point cloud to

point cloud [47, 48, 35, 14]. With a better prior of point

clouds, a point cloud generation model can benefit a va-

riety of synthesis tasks such as reconstruction and super-

resolution. Recently, several typical deep architectures such

as auto-encoders [19] and generative adversarial networks

(GANs) [11] have been very successful in learning effective

representations and generating realistic samples from com-

plex distributions. For example, GAN-based methods have

been explored in transforming random latent codes into 3D

point clouds [1, 37]. In this paper, we focus on the learn-

ing of point cloud generation models under the generative

adversarial learning framework: given a sparse, noisy, and

non-uniform latent code, the target is then to generate point

clouds that are dense, complete, and uniform, as a faithful

representation of the underlying 3D object surface.

To generate high-quality point clouds, we progressively

learn effective point embeddings and generate point clouds

in a coarse-to-fine manner. Specifically, the idea of pro-
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gressive generation/refinement has been widely used in very

challenging 2D image and video tasks, such as image gen-

eration, object detection, and semantic landmark localiza-

tion. Motivated by this, we devise a dual-generators frame-

work for point cloud generation. As shown in Fig. 1, a

stack of two generators sequentially transform the input la-

tent variables into a suitable 3D representation, such that the

discriminator cannot distinguish between the ground truth

and the generated point clouds. The overall dual-generators

framework for point cloud generation contains two main

steps: (1) the first generator generates a dense point cloud

to sketch the primitive geometry of the underlying object

using an oversampling operation; and (2) the second gener-

ator is an encoder-decoder network, which refines the point

cloud of the first step to obtain the final high-fidelity point

cloud. The main contribution of the proposed method for

point cloud generation is threefold:

1. We propose the dual-generators architecture to learn

effective point embeddings and generate high-quality

point clouds in a progressive manner;

2. The discriminator simultaneously considers two kinds

of discriminative cues on point cloud generation:

shapewise and pointwise, which facilitates the genera-

tor to generate more realistic point clouds;

3. We devise an oversampling conception in regard to

point cloud generation. Different from previous meth-

ods, the proposed method generates point clouds via a

dense-to-sparse process.

Extensive qualitative and quantitative experiments on the

ShapeNet dataset demonstrate the effectiveness of the pro-

posed method as well as each individual components, pro-

viding valuable insights on how to design effective point

cloud generation models.

2. Related Work

Deep learning for 3D point clouds. Deep learning-based

point cloud analysis has attracted more and more atten-

tion, and the publicly available point cloud datasets, such

as ModelNet [44], ShapeNet [3] and ScanNet [6], further

boost the research of deep learning on 3D point clouds.

Recently, an increasingly number of methods have been

proposed to address the problems in point cloud analysis,

including 3D point cloud classification and segmentation

[29, 22], 3D object detection and tracking [5, 51], point

set completion [14, 48]. For example, pointwise MLP net-

works [29, 30] have been widely used as the building blocks

to learn pointwise representations, while convolution-based

networks [23, 43, 36] achieve superior performance on ir-

regular 3D point clouds.

Different from images, a point cloud is a set of size-

varying and permutation-varying points on irregular do-

main. When introducing neural network to process point

clouds directly, learning-based methods face significant

challenges because of the unstructured nature of 3D point

clouds. For example, classical convolution and deconvo-

lution operation defined on regular domain can be applied

to 1D signal and 2D image directly, but for points scatting

in 3D space, it is intricate to define a proper operation to

extract high dimension features. Fortunately, there are al-

ready several works to explore the convolution operation on

points, such as [43], [36], [26], and [23]. Another problem

is that efficient evaluation metrics for different point cloud

tasks should be proposed. Although some emtrics such as

overall accuracy (OA), mean class accuracy (mAcc) and av-

erage precision (AP) have been frequently used in 3D shape

classification and 3D object detection, for point cloud gen-

eration, there is no universal accepted metrics.

In various methods, PointNet [29] is the pioneering work

in applying deep neural nets to point sets, which first em-

beds the inputs into high dimensional feature space point-

wisely and then uses a symmetric function to aggregate the

features for all points in a permutation-invariant manner.

However, relations between the points are not sufficiently

captured in this way. Following PointNet, some hierarchical

architectures have been developed to aggregate local neigh-

borhood information. For example, PointNet++ [30] in-

troduces a hierarchical structure based on Euclidean-space

nearest-neighbor graph, KdNet [21] designs spatial KD-

trees for efficient information aggregation, and DGCNN

[40] develops a graph neural network (GNN) approach with

dynamic graph construction.

Point cloud generation. Substantial progress has been

made in point cloud synthesis tasks such as auto-encoding

[1, 47], 3D reconstruction [7, 9], and point cloud comple-

tion [25, 48, 14]. Further, there are several widely used

frameworks for deep generative learning, including genera-

tive adversarial networks [11, 2], variational auto-encoders

(VAEs) [19], auto-regressive models [38], and flow-based

models [46, 31, 20]. For example, [9] and [49] apply varia-

tional auto-encoders and adversarial auto-encoders to point

cloud generation, respectively. [1] explores generative ad-

versarial networks for point clouds in both raw data space

and latent space with a pretrained auto-encoder.

To address the problem of point cloud generation, [7] in-

troduces two symmetric distance metrics, Chamfer distance

and Earth Mover’s distance, to measure the similarity be-

tween two point sets. These metrics are order-invariant,

which makes them suitable as loss function operated di-

rectly on point clouds. By taking advantage of these met-

rics, models have been proposed to address point cloud syn-

thesis problems under different settings [9, 24, 8, 16]. Given
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Figure 2. The main dual-generators framework. The proposed method mainly contains three components: one discriminator and two

different generators. The discriminator is shared by the two generators and the output of the first generator is fed into the second generator

to produce the final results. Consequently, the overall training method is a progressive process, i.e., we first train the discriminator and the

first generator, and then jointly train all three components in an end-to-end manner.

the difficulties in modeling details of the generated sam-

ples, several recent works, such as StackGAN [50] (for 2D

data), progressively growing GAN [17] (for 2D data) and

PDGN [15] (for 3D data), have been developed to improve

the generation quality, in which the difficult problem of gen-

erating high-fidelity samples is divided into multiple steps

and significantly improves the performance of data genera-

tion. Motivated by this, we uses a stack of two generators

in the proposed 3D point cloud generation method, accom-

panying with single discriminator, to generate robust and

accurate 3D point clouds. Also named progressive gener-

ation, our work is different from PDGN [15] in two as-

pects. The two generators in our network are supervised

by single discriminator, reducing the network parameters.

What’s more, our network produces high quality results in

a dense-to-sparse fashion, instead of the multi-step strategy

in PDGN [15].

3. Method

We introduce the proposed dual-generators point cloud

generation method as follows. Given a vector sampled from

the latent space, z ∼ pz , we aim to generate a point cloud

or a set of 3D points, P = {pi}
N
i , where N is the number of

points. Specifically, the generated points should fulfill the

following two requirements: 1) the generated points indi-

cate the underlying geometry structure of the target object,

i.e., all points in P should lie on and cover the surface of

the target object; and 2) the generated points in P should

be uniformly-distributed on the surface of the target object.

We demonstrate the main point cloud generation frame-

work in Fig. 2, where the proposed method contains three

main components (a shared discriminator and two genera-

tors) and is optimized using an end-to-end training strategy.

3.1. Discriminator

In adversarial learning, the discriminator distinguishes

whether the input (e.g., a point cloud) is produced by the

generator or sampled from the ground truth, while the gen-

erator requires to fool the discriminator by generating a

high-fidelity point cloud. Recently, [1] has investigated

GAN-based architectures for point cloud generation: the

discriminator first embeds the input points into high dimen-

sion in a pointwise manner, and then aggregates the feature

vectors of previous step to obtain the global features, e.g.,

using the symmetric operation [29]. However, the above

architecture usually fails to capture the local information

implied in geometry structures. To overcome this, we si-

multaneously extract global and local point features to learn

effective point representations.

As shown in Fig.2, to extract effective feature represen-

tations from point clouds, we utilize multiple MLP blocks

with residual connections to learn both low- and high-level

features in a pointwise manner. The input of each pointwise
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Figure 3. The extraction of local point features. Specifically, points

are first sampled (the orange point) and then grouped (the gray

points in the circle) together in 3D space. Point features then can

easily be retrieved through the grouped point.

MLP block is a set of point features with the size N × Cin

and the output size N × Cout, where Cin and Cout denote

the numbers of channels in the input and output feature at-

tributes, respectively. After each MLP block, we also attach

a point convolution layer or the set abstraction (SA) layer

[30] to extract local features by aggregating the informa-

tion of neighbor points. Specifically, each point convolu-

tion layer consists of a sampling operation and a grouping

operation, as shown in Fig. 3. The input size of this layer

is N × C
′

in and the output size is Ns × C
′

out, where Ns

indicates the number of sampled points.

Unlike 2D image generation, 3D point cloud generation

involves a more immense spatial domain. Considering the

nature of point clouds, we utilize two different kinds of su-

pervision, shapewise and pointwise, to enhance the training

process of the discriminator. Specifically, for the shapewise

regression, we concatenate the output of each SA layer to

obtain hierarchical features with the size Ns ×
∑

i Ci. We

then apply the max pooling operation to aggregate the in-

formation from all points to obtain the final permutation-

invariant features for shapewise regression. For the point-

wise regression, it is used to synthesize globally and locally

coherent point clouds. We first employ the max pooling

operation after the last SA layer. We then concatenate N

copies of the output with the per-point features from the last

residual block as the enhanced pointwise features with the

size N × (Crb +Csg), where Crb and Csg indicate the out-

put channels of the last residual block and the last SA layer,

respectively. We then embed the per-point features to a high

dimensional space for pointwise regression. Therefore, the

discriminator not only maintains the global geometry coher-

ence of synthesized point clouds but also provides detailed

per-point representation to the generator, thus contributing

to produce high-fidelity point clouds. Lastly, the discrimi-

nator can be jointly optimized by the shapewise regression

loss Ls and the pointwise regression loss Lp as follows:

Ldis = Ls(p, p̃) + Lp(E[pi],E[p̃i]), (1)

where p and p̃ indicate the real samples and the generated

samples, respectively, pi is the i-th point of the point cloud

p, E[pi] indicates the mean decision of discriminator over

all points, and E[p̃i] can be defined in a similar way. For

Ls(·) and Lp(·), we use the similar loss function L(·) de-

fined in [2, 12],

L(x, x̃) = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

+ λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2],
(2)

where Pr indicates the data distribution, Pg indicates the

generator distribution, Px̂ is defined as the uniform sam-

pling along the straight lines between pairs of points from

Pr and Pg , and D is the set of 1-Lipschitz functions.

3.2. Dual­Generators

Progressive image generation pipelines have been inten-

sively explored to generate high-resolution images [50, 17].

Inspired by this, we devise the dual-generators method to

generate high-quality point clouds as follows: the first gen-

erator learns a dense point cloud to sketch the underlying

structure of the object, while the second generator down-

samples and refines the dense point cloud generated by the

first generator.

Figure 4. The detailed structure of the upsampling layer used in our

method. The input features are embedded by two branch, i.e., the

fully-connected branch and the matrix multiplication branch. The

matrix multiplication branch aims to learn an affine transformation

matrix to align the input features. k indicates the upsampling rate.

As shown in Fig. 2, in the first generator, the latent vec-

tor z is transformed by several upsampling layers with up-

sampling rate k. We demonstrate the structure of the up-

sampling layer in Fig. 4. At the end of the first generator,

there is an upsampling layer to generate a dense point cloud

with rN points. We refer to this upsampling layer as the

oversampling layer since our target is to generate a set of

N points. After that, we randomly sample N points from

the rN dense point cloud, and then feed it into the discrim-

inator. Intuitively, the above random sample operation per-

forms like a dropout layer [34]. Here, we adopt the idea

of dropout for point cloud generation, and the motivation is
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that if the downsampled point cloud is deemed real by the

discriminator, the dense point cloud is also real. This simple

yet effective step makes the generation process more robust

and steady. The loss function of the first generator can be

defined as

Lgen1 = Gs(p̃) +Gp(E[p̃i]), (3)

where Gs(·) and Gp(·) share the same form with G(·), i.e.,

G(x̃) = − E
x̃∼Pg1

[D(x̃)], (4)

where Pg1 indicates the distribution of the first generator.

For the second generator, we embed the rN input points

into a high dimensional space using a way similar to the

discriminator. The loss function of the second generator,

Lgen2, keeps the same form with the first generator. In ad-

dition, we introduce the reconstruction loss Lrec as a reg-

ularizer to enhance the quality of generated point clouds.

The reconstruction loss is then defined by the Chamfer dis-

tance [7] as follows:

Lrec =
∑

p∈P

min
q∈Q

‖p− q‖2
2
+

∑

q∈Q

min
p∈P

‖p− q‖2
2
, (5)

where P,Q ∈ R
3 indicate the source and target point sets,

respectively. The overall loss function for the second gen-

erator can be defined as:

L̂gen2 = λ1Lrec + λ2Lgen2. (6)

Furthermore, the second generator also can be explained as

a filter or a denoising auto-encoder, for it is natural to regard

the input as a point cloud with noise and outliers.

4. Experiments

In this section, we first introduce the implementation de-

tails of the proposed method, including datasets and hyper-

parameters. We then compare the proposed method with re-

cent state-of-the-art point cloud generation methods. Lastly,

we perform ablation studies on several important compo-

nents.

4.1. Implementation Details

Point clouds are usually obtained by uniformly sampling

from mesh objects, e.g., ShapeNet [3]. For fair comparison,

we use three widely-used object categories, chair, car and

airplane, in our experiments. Following the evaluate metrics

used in previous works [1, 46], we use 2,048 points for each

category in both training and testing stages.

The discriminator takes a point cloud containing 2,048

points as the input, which is then embedded into high di-

mension pointwisely by four MLP and SA layers. We

demonstrate the configurations of each layer in Fig. 2.

Specifically, the max pooling is used in the network to re-

duce the impact of different point permutations. Note that,

we use WGAN [2] as our basic framework, and thus there is

no batch normalization layer in the discriminator. The first

generator transforms the latent vector to a fixed-size fea-

ture using five upsampling layers whose upsampling rates

are (1, 2, 8, 16, 8) and following the oversampling layer

embed these features to size rN × 3. If not mentioned, the

oversampling layer in our experiment is another upsampling

layer and we set r = k = 4 in our experiments. The second

generator mainly refine the result from the first step. For

the backbone network in the second generator, we adopt

four MLP blocks as in the discriminator, shown in Fig. 2.

We implement the proposed method for point cloud gener-

ation using TensorFlow. All our models are trained on one

NVIDIA GeForce RTX 2080Ti GPU. The training process

consists of two steps: 1) we first train the discriminator and

the first generator; and then 2) we simultaneously train all

three components in our network. We use the Adam opti-

mizer with β = 0.5 and the initial learning rate is 0.0001.

4.2. Comparison with Recent State­of­the­Arts

In this subsection, we compare the proposed method

with recent state-of-the-art point cloud generation meth-

ods. We demonstrate the point cloud generation perfor-

mance using different object categories and provide quan-

titative comparisons with the following six methods, raw-

GAN [1], latent-GAN [1], GraphCNN-GAN [37], Point-

Flow [46], tree-GAN [33], and PDGN [15], using their offi-

cial implementations with default training parameters. For

fair comparison, we adopt five popular evaluation metrics

used by Achlioptas et al. [1], (i.e., JSD, MMD-CD, MMD-

EMD, COV-CD, and COV-EMD) and 1-NNA recently pro-

posed by [46]. The experimental results on three different

categories, chair, car and airplane, are shown in Table 1.

Specifically, our model outperforms raw-GAN across all

three categories with a large margin and obtains either com-

parable or the best score under all evaluation metrics.

We also demonstrate some samples generated by our

model for all three categories in Fig. 5, where our proposed

method are able to generate uniformly distributed and di-

verse typologies of point clouds.

4.3. Ablation Studies

To better understand the proposed method, we perform

ablation studies on several important components used in

our method, including the architecture of the discrimina-

tor, the oversampling refinement operation, and the dual-

generators structure.

Discriminator Architecture. For the discriminator in the

raw-GAN [1], it only uses MLP blocks to embed the in-

put points into high dimensional space and then utilize the

max pooling operation to extract global features. Differ-
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Class Model JSD(↓)
MMD(↓) COV(↑, %) 1-NNA(↓, %)

CD EM CD EM CD EM

Chair

raw-GAN 0.1266 0.2417 11.12 46.25 32.38 73.20 97.36

latent-GAN 0.0728 0.2397 8.72 50.49 34.21 61.52 84.31

GraphCNN-GAN 0.1542 0.3584 11.98 23.30 13.58 - -

PointFlow 0.0957 0.8096 11.92 46.15 43.14 62.58 63.24

tree-GAN 0.1438 1.2690 10.78 37.35 33.50 - -

PDGN 0.0827 0.2069 7.51 53.09 47.57 52.38 57.14

Ours 0.0716 0.2036 8.04 51.30 49.22 49.90 55.31

Car

raw-GAN 0.0820 0.0907 7.42 35.18 19.43 93.68 96.98

latent-GAN 0.0632 0.0781 6.31 40.49 21.72 65.64 85.10

GraphCNN-GAN 0.0787 0.1235 7.46 15.27 7.36 - -

PointFlow 0.0971 0.2203 6.35 20.33 20.15 61.53 61.22

tree-GAN 0.1136 0.1555 11.18 25.50 18.64 - -

PDGN 0.0607 0.0721 6.03 41.33 31.82 53.34 56.06

Ours 0.0531 0.0713 5.91 39.21 30.59 52.10 55.12

Airplane

raw-GAN 0.1047 0.0785 7.54 35.80 16.44 90.46 96.71

latent-GAN 0.0841 0.0690 7.22 36.41 30.02 85.32 93.25

GraphCNN-GAN 0.1952 0.1124 8.59 18.38 7.85 - -

PointFlow 0.0946 0.1294 7.44 30.22 28.10 77.39 76.16

tree-GAN 0.1423 0.1660 10.50 15.73 17.89 - -

PDGN 0.0732 0.1211 6.91 40.54 38.34 63.15 60.52

Ours 0.0719 0.0646 7.16 42.03 39.32 61.10 60.34

Table 1. Quantitative comparisons with recent state-of-the-art point cloud generation methods. ↑: the higher the better, ↓: the lower the

better. The best scores are highlighted in bold. MMD-CD and MMD-EMD scores are multiplied by 10
3 and 10

2 respectively.

Figure 5. Examples of point cloud generated by our model. From top to bottom: chair, car and airplane.

ent from that, our method further attaches a “SA" layer af-

ter each residual MLP block, and concatenate their outputs

as the global features. The structure of “MLP + SA" then

works as the basic component of feature extraction process

for our discriminator. Therefore, we compare the original

raw-GAN and the modified raw-GAN (built on the “MLP

+ SA" structure) in Fig. 6. It is clear that the results of

raw-GAN tend to be clustering at some parts of the output,

resulting in an uneven distribution, while the modified one

can generate more uniform point clouds. An intuitive ex-

planation might be: when embedding the input point cloud

into high dimensional space pointwisely, the raw-GAN fails
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Figure 6. Comparisons between the original raw-GAN (left) and

the modified raw-GAN (right). It is clearly shown that there are

always some clusters in the raw-GAN’s output, while the modified

raw-GAN can generate more uniformly distributed point clouds

because of local feature extraction.

to extract the local feature information. With the global fea-

ture aggregated by the max pooling layer, the results can

only represent the underlying object, but it does not imply

any distribution of the output points. Different from that,

our discriminator is designed to extract global and local fea-

tures simultaneously and thus facilitates the discriminator

to help the generator to produce uniformly distributed point

clouds. The same phenomenon also appears in GraphCNN-

GAN [37] and tree-GAN [33] as shown in Fig. 7, in which

both of them use similar discriminator architectures.

Figure 7. The clustering points also occur in GraphCNN-GAN

(top) and tree-GAN(bottom). They both use the similar discrimi-

nators as raw-GAN does, and thus fail to extract local feature in-

formation which can be used for uniform point cloud generation.

Furthermore, in our discriminator, the network simul-

taneously gives both shape and point decision of the out-

put belonging to either the real or the fake class. This ar-

chitecture empowers a stronger discriminator and makes it

more challenging for the generator’s to fool the discrimi-

nator, thus improving the quality of generated samples. It

contributes to maintain a more powerful data representation

and encourages to produce global and local coherent results.

In Fig. 8, we visualize the per-point confidence during train-

ing phase and in Fig. 9, the pointwise feedback can be used

to guide the generator to refine the per-point generation.

Figure 8. With training, the generator output high per-point con-

fidence results gradually, best viewed in color. Low confidence

points are in blue and high ones in red.

Figure 9. The discriminator gives unrealistic points low confi-

dence. With pointwise feedback, the generator can output more

detail confident results.

Figure 10. Comparison between the outputs (2048 points) of first

generator (top) and second generator (bottom). It is clearly shown

that the second generator produce more uniformly distributed

point clouds than the first generator.

Dual-Refinement. Different from images, point clouds al-

ways scatter in 3D space irregularly and the output of the

generator is inevitable with noise and outliers. To further

enhance the output, we apply the two-generator structure to

refine the generated point clouds. In the first generator, the

over-sampling layer works in a similar way to the dropout

operation, which mainly contributes to robust point cloud

generation and network training. The second generator per-

forms like the auto-encoder that removes the noise and out-
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Class Model JSD(↓)
MMD(↓) COV(↑, %) 1-NNA(↓, %)

CD EM CD EM CD EM

Chair

Gen_One 0.0812 0.2903 13.85 46.21 43.64 53.78 58.20

Gen_One_OS 0.0776 0.2558 11.05 46.49 44.51 52.91 56.19

Gen_Two 0.0716 0.2169 9.34 48.30 46.22 49.90 55.31

Car

Gen_One 0.0621 0.0801 8.43 35.72 28.37 54.06 60.61

Gen_One_OS 0.0592 0.0752 7.20 37.16 28.86 53.77 58.32

Gen_Two 0.0531 0.0713 5.91 38.21 30.59 52.10 55.12

Airplane

Gen_One 0.0845 0.0764 8.63 38.41 27.91 64.38 63.78

Gen_One_OS 0.0817 0.0691 7.97 40.64 29.26 62.73 63.55

Gen_Two 0.0719 0.0646 7.16 42.03 30.32 61.10 60.34

Table 2. Quantitative comparison of three generators. The evaluation metrics are the same as that in Table 1. It is shown that each operation

in our dual-generator structure plays its role in the whole pipeline.

Model MN10(%) MN40(%)

SPH [18] 79.8 68.2

LFD [4] 79.9 75.5

T-L Network [10] - 74.4

VConv-DAE [32] 80.5 75.5

3D-GAN [42] 91.0 83.3

MRTNet [9] 91.7 86.4

PointFlow [46] 93.7 86.8

PDGN [15] 94.2 87.3

Ours 94.1 87.6

Table 3. Classification results on ModelNet10 (MN10) and Model-

Net40 (MN40). Models are first trained on ShapeNet to learn point

cloud representations, and then evaluated on MN10 and MN40 by

object classification accuracy using linear SVM classifier.

liers from the input to refine the final results. In Table 2,

we quantitatively compare the outputs (2048 points) of first

generator without oversampling layer (Gen_One), first gen-

erator with oversampling layer (Gen_One_OS) and second

generator using evaluation metrics mentioned before. From

the table, we can conclude that each component in our dual-

generator structure works closely with the other two and

progressively contributes to producing high quality point

clouds. In Fig. 10, we show the visual results of the first

generator and the second generator. Because the second

generator learns to refine the outputs from the first gener-

ator, its output are more uniform than the previous step.

4.4. Other Experiments

Similar to [42], we evaluate the unsupervised represen-

tation learning ability of our proposed method. A general

way to evaluate the learned representations is to conduct the

3D object classification experiments. Following the com-

mon practice, we train our network on ShapeNet [3] and

test it on two popular subsets of ModelNet [44], Model-

Net10 and ModelNet40. Specifically, we first feed our net-

work with the full ShapeNet dataset and then extract the

embedded features of the trained discriminator to learn a

linear SVM for classification on ModelNet10 and Model-

Net40. We compare our network with recent state-of-the-art

point cloud generation methods and demonstrate per-class

classification results in Table 3. It can be seen that our

method achieves close performance with PDGN [15] and

outperforms most other generation methods on both Mod-

elNet10 and ModelNet40 datasets. The results demonstrate

that our discriminator architecture can extract discrimina-

tive features and thus supervise the generators to produce

high-quality 3D point clouds.

5. Conclusion and Future Work

In this paper, we devise a new point cloud generation

framework with three main components: a shared discrim-

inator and two generators working in a progressive man-

ner. To generate realistic and robust point clouds, we em-

bed the points in two different fashions. Extensive exper-

iments show that the proposed method enables the gener-

ative adversarial learning pipeline to produce high-fidelity

point sets, and outperforms most recent point cloud genera-

tion methods under various evaluation metrics. In addition,

most existing evaluation metrics for point cloud generation

have inherent limitations, which will also be the subject of

feature study.
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