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Abstract

The 3D world limits the human body pose and the hu-

man body pose conveys information about the surrounding

objects. Indeed, from a single image of a person placed in

an indoor scene, we as humans are adept at resolving am-

biguities of the human pose and room layout through our

knowledge of the physical laws and prior perception of the

plausible object and human poses. However, few computer

vision models fully leverage this fact. In this work, we pro-

pose a holistically trainable model that perceives the 3D

scene from a single RGB image, estimates the camera pose

and the room layout, and reconstructs both human body

and object meshes. By imposing a set of comprehensive

and sophisticated losses on all aspects of the estimations,

we show that our model outperforms existing human body

mesh methods and indoor scene reconstruction methods. To

the best of our knowledge, this is the first model that outputs

both object and human predictions at the mesh level, and

performs joint optimization on the scene and human poses.

1. Introduction

Holistic scene perception is key to our human ability to

accurately interpret and interact with the 3D world. The hu-

man visual system naturally integrates context from actors,

objects, and scene layout to infer realistic, robust estima-

tions of the world. Suppose a human is partially included

in an image because they are positioned behind a desk. We

can still effortlessly extract rich information from the static

scene to resolve ambiguities due to the occlusion. Like-

wise, the appearance of humans also provides useful infor-

mation about scenes, such as the ground plane and depth of

surrounding objects. Humans and objects in scenes jointly

manifest spatial occupancies that constrain their relative po-

sitions. For computer vision systems to achieve high accu-

racy in recognizing and interpreting complex scenes, it is

therefore important to develop approaches for holistic scene

perception and reasoning.

In recent years, holistic scene understanding from sin-

gle view images has gained increasing interest from com-

Figure 1. Given a single view RGB image of an indoor scene,

our model is able to (i) predict all aspects of the scene (3D ob-

ject bounding boxes, object and human meshes, 3D room layout,

camera pose), and (ii) jointly optimize over a comprehensive set

of global consistency losses. The final result is more physically

plausible and accurate.

puter vision researchers. [34] [14] proposed methods for

joint reasoning over inanimate scenes, and recovered room

layout and 3D object bounding boxes using consistency

losses such as a constraint for objects to be enclosed within

the room bounding box. [4] additionally discouraged in-

tersection between object bounding box estimations, and

was the first model to bring 3D human pose estimation into

the holistic scene understanding problem. It incorporated

human-object interaction priors to reason about approxi-

mate relations between humans and objects. However all

of these works still operate at the relatively coarser level of

bounding boxes and joint key points, and are therefore lim-

ited in their ability to use precise shapes, surfaces, and phys-

ical occupancies to design holistic scene constraints and im-

prove estimation accuracy.

In this work we propose the first single-view, holistic

scene understanding method that jointly optimizes over all

aspects of 3D human pose, objects, and room layout at the

mesh level, to produce state-of-the-art mesh estimations of

the scene. Our approach builds on recent advances in mesh

prediction. [5] [7] [29] proposed methods for reconstruct-

ing the individual object meshes with varying topological
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structures. [27] builds on [29] and proposed the first holistic

3D scene understanding method with mesh reconstruction

at the instance level, however they did not consider humans.

Recently, [11] introduced a method for 3D mesh-based hu-

man pose estimation, that utilizes physical occupancy in-

formation of the static scene to discourage body penetration

into the scene. However, [11] requires the ground truth 3D

scans of the scene, and does not perform joint human and

scene estimation.

Given a single RGB image, our method simultaneously

reconstructs the human body mesh and multiple aspects of

the scene – 3D object meshes and bounding boxes, room

layout, and camera pose – all in 3D (Figure 1). Our ap-

proach outputs the SMPL-X (SMPL eXpressive) [30] hu-

man mesh model, which fully parameterizes the 3D surface

of the human body. It also leverages a variant of the Topol-

ogy Modification Network (TMN) [5], proposed in [27],

as the base model for static object mesh and scene recon-

struction. Importantly, we introduce a joint optimization

process that incorporates a comprehensive set of physical

constraints and priors including 2D/3D reprojection con-

straints, object-object mesh constraints, object-human mesh

constraints, and object/human - room layout constraints, to

obtain robust, physically plausible predictions. We perform

experimental evaluation on the PiGraphs [33] and PROX

[11] datasets and demonstrate that our model outperforms

state-of-the-art methods on either 3D scene understanding

or 3D human pose estimation.

In summary, our contributions are the following:

• We propose a holistic trainable model for jointly re-

constructing 3D human body meshes and static scene

elements (3D object meshes and bounding boxes,

room layout, and camera pose) from monocular RGB

images. To the best of our knowledge, we are the first

to jointly estimate this rich scene understanding at the

mesh level.

• Our model does not require any ground truth anno-

tations of the 3D scene or the human poses, and can

be directly used on any indoor dataset to produce high

quality mesh reconstructions.

• Through our joint optimization process that incorpo-

rates a comprehensive set of physical constraints and

priors, we show that our model outperforms prior state-

of-the-art methods on either 3D scene understanding

or 3D human pose estimation, on the PiGraphs and

PROX Quantitative datasets.

2. Related Work

Single View 3D Human Pose Estimation. Previous 3D

pose estimation methods from single view RGB images can

be divided into two types: (i) directly learning 3D human

keypoints from 2D image features [38], and (ii) 2D pose

estimation with subsequent separate lifting of the 2D coor-

dinates to 3D via deep neural networks [31] [24]. Although

these works have showed impressive results on in-the-wild

images with relatively clean backgrounds, estimating 3D

poses with cluttered background and partial occlusions is

still very challenging. Recent works in human body models

[22] [30] and single view body mesh reconstruction meth-

ods [2] [19] have pushed the richness of body details avail-

able for reasoning, and provide opportunities for bringing

novel constraints to the training stage. Recently, [11] pro-

posed the first 3D human body mesh reconstruction method

that takes the static scene into consideration; however they

rely on ground truth 3-D scene scans. Our work builds on

these directions and is the first to leverage mesh representa-

tions of both human and scene in performing holistic esti-

mation of 3D human body and scene meshes jointly.

Holistic Scene Understanding. The 3D holistic scene

understanding problem, in particular 3D scene reconstruc-

tion from single view images, has received increasing at-

tention over the past few years. While most of these works

have focused on coarser bounding boxes and keypoints as

opposed to meshes, methods have differed in model outputs

and constraint formulations [14][27][4]. Works such as [14]

have focused on the static scene; [14] proposed an end-to-

end model that learns the 3D room layout, camera pose and

3D object bounding boxes. Drawing insight from the cam-

era projection process and and physical commonsense, [14]

encourages projected 3D bounding boxes to be close to their

2D locations on the image plane, and forces object bound-

ing boxes to be within the room layout bounding box.

Some works have attempted to incorporate scene/object

information in human pose estimation [42] [11] [26]

[43] and/or vice-versa [8]. [43] relies on mesh exem-

plars with annotated contact points, and does not perform

full layout/scene reconstruction. [26] uses a database of

“scenelets” and works with human skeletons. [11] utilizes

ground truth scene scans. In contrast to these, we consider

the more challenging setting of directly estimating scene

and human meshes (in general indoor settings), whereas

joint mesh estimation is beyond the scope of these works.

[4] jointly tackles two tasks from a single-view image: (i)

3D estimations of object bounding boxes, camera pose, and

room layout; and (ii) 3D human keypoints estimation. They

used an energy-based inference optimization process that

refines direct 3D outputs by jointly reasoning across aspects

of the objects and human keypoints. However, their con-

straint formulations based on 3D bounding boxes and hu-

man keypoints are still lacking in precision. Additionally,

energy-based models have the disadvantage of an expen-

sive inference step compared to feed-forward models, and

[4]’s MAP estimation method searches over a discrete set

of object locations which may give sub-optimal results. In

contrast, we impose precise physical constraints at the mesh

level in our joint optimization procedure and directly back-
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propagate the underlying neural networks.

Holistic Scene Mesh Reconstruction. An emerging

line of work attempts to reconstruct richer information

about objects in scenes such as depth [35], voxel [21] [39],

or mesh representations [7] [27]. Meshes contain much

richer 3D shape information about the objects, but are gen-

erally harder to reconstruct due to the diverse topology of

the shapes. Mesh-retrieval methods [16] [15] [17] retrieve

3D models from a large 3D model repository, however the

size of these repositories remain a bottleneck. Object-wise

mesh reconstruction methods [5] [41] [7] [29] take a differ-

ent approach using end-to-end prediction and refinement of

the target mesh of individual objects. Recently, [27] incor-

porated an object-wise mesh reconstruction module in their

holistic 3D understanding model for static scenes. How-

ever, they did not take advantage of the rich information

about object shapes that comes with the meshes, and their

reconstructed scene meshes are often physically implausi-

ble. Although a recent 3D human mesh estimation method

[11] takes advantage of precise object shapes in their con-

straint formulation, they use ground truth 3D scene scans.

In contrast, we estimate both humans and the static scene

jointly from single view images.

3. Model

We introduce a two-stage approach for joint 3D human

and scene mesh estimation. In Stage I, we separately parse

and reconstruct the human meshes and the 3D scene – 3D

object bounding boxes and meshes, camera pose, and 3D

room layout – to obtain initial estimates. In this stage, holis-

tic reasoning is limited to encouraging physical plausibil-

ity within the human only and within the static scene only.

Then in Stage II, we jointly minimize global consistency

losses across humans and the static scene together, which

extends the holistic reasoning to simultaneously improve

performance of all sub-tasks.

An overview of our method is illustrated in Figure 2. In

Section 3.1, we first define our notation and representation

of the 3D scene and our human body mesh model. In Sec-

tion 3.2, we describe the model architectures we use for pro-

ducing each part of the body and scene estimations. Based

on these, in Section 3.3, we present our joint optimization

process that incorporates a comprehensive set of physical

rules and priors – including reprojection constraints, object-

object mesh constraints, object-human mesh constraints,

and object/human - room layout constraints – to perform

holistic estimation of both human and scene meshes.

3.1. Representation

3D Scene. The input to our model is a 2D image I ∈
R

(h,w,3). We use a pre-trained Faster R-CNN [32] to obtain

initial 2D bounding box estimates b ∈ R
(4,2) for each of

the nobj objects in the scene. The 2D bounding box centers

are represented as c ∈ R
2. Our representation for the cam-

era pose, room layout, and 3D object bounding boxes and

meshes in a scene follows the notation used in [14][27]. The

camera pose is a 3 × 3 rotation matrix defined by the pitch

and roll angles of the camera system relative to the world

system. In the world system, an object bounding box is rep-

resented by a 3D bounding box X ∈ R
(8,3), which can be

determined from its 3D center C ∈ R
3, spatial size s ∈ R

3,

and orientation angle θ ∈ [−π, π). The cuboid room layout

is also represented by a 3D box XL ∈ R
(8,3), and is param-

eterized in the same manner as an object bounding box. The

triangular mesh for object i in the image is represented by its

vertices and faces Mi = (Vi, Fi), where Vi ∈ R
(Ni,3). Ni

is the number of vertices and Fi defines the triangular faces

of the mesh. Mi is normalized to fit in a unit cube, and the

vertices of the mesh can be converted to the 3D camera co-

ordinate system by translation and rotation as specified by

the 3D bounding box parameters.

Human Body Model. We represent the human body us-

ing SMPL-X (SMPL eXpressive) [30], a generative model

that captures how the human body shape varies across a

human population, learned from a corpus of registered 3D

body, face and hand scans of people of different sizes, gen-

ders and nationalities in various poses. SMPL-X extends

the SMPL model [22] with fully articulated hands and an

expressive face. It is essentially a differentiable function pa-

rameterized by shape βb, pose θb, facial expressions ψ and

translation γ of the body. The output of SMPL-X is a 3D

triangular mesh Mb = (Vb, Fb) that contains Nb = 10475
vertices Vb ∈ R

(Nb,3) and triangular faces Fb.

3.2. Model Architecture

Body Model. Since the SMPL-X [30] body model is a

fully differentiable function, we simply compute the body

loss terms (Section 3.3) that are formulated in terms of the

vertices and faces of the output human body mesh, and

back-propogate the SMPL-X model to find the optimal set

of parameters such as the shape and pose of the human

body. As in [30], the parameters of the SMPL-X model

are regularized with a set of body priors including a VAE-

based body pose prior, and L2 priors on hand pose, facial

pose, body shape and facial expressions, penalizing devia-

tion from the neutral state.

Scene Models. We use three sub-modules to predict 3D

object boxes, camera pose and 3D room layout, and 3D

object meshes in the scene, respectively. Specifically, we

adopt the Object Detection Network (ODN), Layout Es-

timation Network (LEN), and Mesh Generation Network

(MGN) from [27]. For 3D object box prediction, the ODN

first takes 2D detections of a Faster R-CNN model trained

on LVIS [10], extracts appearance features in an object-wise

fashion using ResNet-34 [12], and encodes the relative po-

sition and size between 2D object boxes into geometry fea-
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Figure 2. Overview of our model. Given a single RGB image, we first use off-the-shelf 2D detectors to predict the 2D human keypoints

and 2D bounding boxes of the objects in the scene. Then, the body mesh network reconstructs a SMPL-X body mesh model through the

human keypoints re-projection loss and the human body prior losses. The Mesh Generation Network (MGN) reconstructs the object-wise

meshes. 3D Object Detection Network (ODN) predicts the 3D bounding boxes of the objects. Layout Estimation Network (LEN) predicts

the camera pose and the 3D room bounding box. In Stage I, the individual modules are optimized with within-body and within-scene

losses. In Stage II, the modules fine-tune with the additional human-scene joint losses to achieve consistency and physical plausibility

across all aspects of the output.

tures using the method in [13]. For each target object, an

“attention sum” is then computed using relational features

to other objects [13]. Finally, each set of box parameters

is regressed using a two-layer MLP. The LEN consists of

a ResNet-34 feature extractor and two separate branches

with fully-connected layers, one for predicting the cam-

era pose and the other for predicting the 3D room bound-

ing box attributes. Finally, for 3D object mesh prediction,

the MGN takes a 2D detection of an object as input and

uses ResNet-18 to extract 2D appearance features. Then,

the image features concatenated with the one-hot LVIS [10]

object category encoding are fed into the decoder of At-

lasNet [9], which performs mesh deformation from a tem-

plate sphere mesh. An edge classifier is trained to remove

redundant edges from the deformed mesh and a boundary

refinement module [29] is used to refine the smoothness of

boundary edges and output the final mesh. We pre-trained

on SUN RGB-D [36] to initialize the scene models. How-

ever, no ground truth annotations are required when training

our model on a new dataset.

3.3. Loss Functions and Optimization

We optimize a comprehensive set of losses based on

physically plausible constraints and priors, across two

stages of training, to perform holistic estimation of 3D hu-

man and scene meshes. These losses can be organized as

within-body losses (Stage I), within-scene losses (Stage I),

and global human-scene losses (Stage II).

Within-body losses As part of Stage I of our approach,
we first utilize within-body constraints to generate an ini-
tial human mesh estimation. Following [11] [2] [30], we
formulate fitting SMPL-X to monocular images as an opti-
mization problem, and seek to minimize the loss function

Lbody =E(β, θ, ψ, γ)

=EJ + λθbEθb + λθfEθf + λθhEθh+

λEEE + λβEβ + λαEα + λPself
EPself

(1)

Here EJ is the re-projection loss that we use to minimize

the weighted robust distance between 2D joints estimated

from the RGB image I and the 2D projection of the cor-

responding 3D joints of SMPL-X. θb, θf , θh are the pose

vectors for the body, face (neck, jaw) and the two hands re-

spectively. The terms Eθf , Eθh , EE and Eβ are L2 priors

for the hand pose, facial pose, facial expressions and body

shape, penalizing deviations from the neutral state. Eβ is

a VAE-based body pose prior called VPoser introduced in

[30]. Eα is a prior penalizing extreme bending only for el-

bows and knees. The terms EJ , Eθb , Eθh , Eα, Eβ are as

described in [30]. EPself
is a penetration penalty for self-

penetrations (e.g. hand intersecting knee). The λ’s are the

weights for the terms.

Our formulation is closest to that in [11], which performs

human mesh estimation and was built upon [30] with the

addition of scene contact (EC) and penetration (EP ) terms

by assuming access to ground truth scene scans. There are

several differences between their full loss function and our
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formulation in Eq. 1. First, we do not include any depth

related terms, because we wish to perform estimation using

solely RGB images whereas [11] propose model variants

leveraging RGB-D information. Second, since we are per-

forming joint estimation of the 3D scene from a monocular

RGB image, we are not yet able to reason on scene contact

or penetration after only human mesh estimation. So we in-

clude only a body self-penetration term in Eq. 1, which is

computed following the approach in [1] [30][40], and will

consider human-scene constraints instead during our global

optimization stage.

Within-scene losses In Stage I of our approach, we also

utilize within-scene constraints to generate an initial static

scene estimation. Specifically, we design two within-scene

constraints, one for encouraging 2D/3D consistency of the

predicted object bounding boxes and the other one for pe-

nalizing the collision between the object meshes.
For the first constraint, we utilize the fact that based on

the camera projection model, if we project predicted 3D
bounding boxes onto the 2D image plane, the projected
corners should be close to the 2D bounding box corners.
This constraint therefore optimizes both camera pose and
3D bounding boxes. [27] imposes a similar loss where they
penalize the deviation of the 2D projections of predicted
3D bounding box corners from ground truth 3D bounding
box corners for both object bounding boxes and the room
bounding box. However, since our model does not rely on
any ground truth annotations in our described optimization
process, we propose to use our detected 2D bounding boxes
as a pseudo ground truth. We show the effectiveness of this
loss term in Section 4. The formal definition of this term
can be written as

LJ
scene =

1

nobj

nobj∑

i=1

SmoothL1(f(Xi(si, Ci, θi)), bi) (2)

where si, Ci θi are the size, centroid and orientation of the

object i. bi is the 2D bounding box estimate for object i, and

f is a differentiable projection function that projects the cor-

ners of a 3D bounding box to a 2D image plane. Like [27],

we use a smooth L1 loss function comprised of a squared

term if the absolute element-wise error falls below a thresh-

old and an L1 term otherwise.
Our second constraint is a loss term that penalize the

collision between reconstructed object meshes. Although
some pose estimation works [11] [18] have incorporated
body collision losses, prior works in scene understanding
have not explored this loss, because they either did not have
the object shape information necessary to calculate the pre-
cise collision [14] [4], or did not take advantage of the ob-
ject shape information that comes with the meshes [27]. We
notice that inter-object collision is common in the output of
these works. We detect collision using the signed distance
field (SDF) of each object. For each object mesh, we vox-
elize its 3D bounding box into a grid, where for each grid
cell center, we calculate its signed distance to the nearest

point in the rest of the object meshes in the scene. A nega-
tive distance means that this cell center is inside the nearest
scene object and denotes penetration. We use a squared sum
term of the signed distances of each penetrating grid cell.
Formally,

LP
scene =

1

nobj

nobj∑

i=1

∑

cj∈Vi

||d(cj ,M−i)✶(d(cj ,M−i) < 0)||22

(3)

where cj is the center of the jth cell in the voxel grid Vi for

object i. d(cj ,M−i) is the signed distance between the cell

center ci and the scene mesh composed of all object meshes

except for object i. ✶ is an indicator function.

Global human-scene losses In Stage II of our approach,

we jointly fine-tune the human and scene estimation com-

ponents by imposing additional human-scene losses across

the reconstructed human mesh and scene mesh. We con-

sider four types of human-scene losses here.

First, observing that indoor furniture are very likely to be

on the floor, we penalize the absolute distance between the

object bounding boxes and the ground plane as estimated by

the Layout Estimation Network. In the camera coordinate

system that we use, +y axis is perpendicular to the ground

plane and pointing upward. Hence, we can write this term

formally as

Lobj−ground
joint =

1

nobj

nobj∑

i=1

d(ymin(X
L), ymin(Xi))) (4)

where ymin(X) returns the minimum y coordinate values of

the 3D bounding box X ∈ R
(8,3).

Second, like objects in the room, humans need a support-

ing plane to counteract the gravity. Therefore, we penalize

the distance between the lowest point in the human body

mesh and the room ground plane. We denote this term as

Lbody−ground
joint .

Third, we include the contact term EC from [11],
although[11] utlized ground truth scene scans. The intuition
is that when humans interact with the scene, they come in
contact with it. Thus, [11] annotates a set of candidate con-
tact vertices VC ⊂ Vb across the whole body that come fre-
quently in contact with the world, focusing on the actions
of sitting and touching with hands. Formally,

LC
joint =

∑

vC∈VC

ρC( min
vs∈Vs

||vC − vs||) (5)

where ρC denotes a robust Geman-McClure error function

[6] for down-weighting vertices in VC that are far from the

nearest vertices the 3D scene mesh Ms which consists of

all the meshes in the scene. Note that since we do not have

access to (or reconstruct) a floor mesh as in [11], we leave

out [11]’s body-floor contact terms; instead, our loss term
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Lbody−ground
joint encourages contact between the feet and the

floor.

Finally, we penalize any collisions between the body

mesh and object meshes in the scene. The formulation is

similar to Eq. 3. We call this term LP
joint.

To summarize,our model’s total loss is

Ltotal = Lbody + Lscene + Ljoint (6)

where

Lscene =λ1L
J
scene + λ2L

P
scene (7)

Ljoint =λ3L
obj−ground
joint + λ4L

body−ground
joint

+ λ5L
C
joint + λ6L

P
joint (8)

In Stage I, only within-body (Lbody) and within-scene

(Lscene) constraints are used. In Stage II, we add global

consistency losses (Ljoint) across humans and the static

scene together, and continuously fine-tune the modules to

simultaneously improve performance of all sub-tasks.

4. Experiments

In this section, we evaluate the performance of our

method. Since we are the first to jointly predict and recon-

struct both 3D human poses and objects at the mesh level,

we compare our model with the state-of-the-art methods for

each task. Specifically, we compare with [11] on human

body mesh prediction, [25][4] for 3D human keypoints es-

timation, and [14][4] for 3D bounding box estimation.

4.1. Datasets

Pigraphs [33]. PiGraphs contains 30 3D scene scans and

63 video recordings of five human subjects with skeletal

tracking provided by Kinect v2 devices. The dataset con-

tains annotations for 3D human keypoints and 3D object

bounding boxes in the scenes. We will perform quantitative

evaluation on both of these prediction tasks.

PROX Quantitative and Qualitative [11]. PROX

Quantitative has 180 static RGB-D frames and was captured

using Vicon and MoSH markers. [11] placed everyday fur-

niture and objects into the scene to mimic a living room,

and performed 3D reconstruction of the scene. The ground

truth human body mesh annotations were obtained by plac-

ing markers on the body and the fingers, and then using

MoSh++ [23] to convert MoCap data into realistic 3D hu-

man meshes represented by a rigged body model. To the

best of our knowledge, this is the only available dataset that

has both real furniture in a cuboid room as well as a human

subject actively interacting with the scene, which makes it

ideal for our task. Since PROX Quantitative does not pro-

vide ground truth object-level meshes and therefore does

not support scene estimation task, we will quantitatively

evaluate our model only on the human mesh estimation

task. PROX Qualitative [11] provides 100K synchronized

and spatially calibrated RGB-D recordings of humans in 12

Object Detection Pose Estimation

Methods 2D IoU 3D IoU Methods 2D (pix) 3D (m)

[14] 68.6 21.4 [25] 63.9 0.732

[4] 75.1 24.9 [4] 15.9 0.472

w/o joint 74.2 25.2 w/o joint 15.9 0.469

Ours 75.6 26.3 Ours 15.8 0.460

Table 1. Left: Quantitative results for 3D scene reconstruction on

Pigraphs. Higher IoU values indicate better performance. Right:

Quantitative results for human keypoints estimation on Pigraphs.

For both 2D (pix) and 3D (m) metrics, lower values are better.

“w/o joint” is the performance of our model without joint opti-

mization.

indoor scenes. While it was released together with PROX

Quantitative, it does not have ground truth human mesh an-

notations. We perform additional qualitative evaluation on

this dataset.

4.2. Implementation Details

Given an RGB image of an indoor scene as the input to

the model, we first use off-the-shelf 2D detectors to estimate

2D object bounding boxes and 2D human keypoints. For

2D object detections, we use Faster R-CNN [32] trained on

the LVIS [30] dataset; for 2D keypoint detections we use

OpenPose [3]. ODN, LEN, and MGN are pretrained on the

SUN RGB-D dataset [36] and Pix3D [37], following prior

work for our task.

In Stage I, we optimize the SMPL-X body model using

only the within-body (Lbody) losses. We use L-BFGS opt-

mizer [28] with learning rate 1e−3. For the scene model,

we freeze the MGN and the feature extractors components

of ODN and LEN, and use Adam [20] optimizer with learn-

ing rate 1e−4 to back-propagate the linear layers for pre-

dicting object bounding box attributes (eg. centroid, orien-

tation), camera pose and 3D room layout. For this part, only

the within-scene (Lscene) losses are used.

In Stage II, we add the global consistency losses (Ljoint),

and continue fine-tuning of all modules. In this stage, we

additionally fix the orientation of the 3D object and room

bounding boxes and the camera pose. We train the linear

layers for predicting the centroid and the size of the object

and room boxes to further refine the 3D location of the ob-

jects and the ground plane of the scene. We use the same

optimizers as Stage I but with reduced learning rates (1e−4
for L-BFGS [28] and 5e−5 for Adam).

4.3. Quantitative Results

3D Object and Human Pose Estimation. To show the

efficacy of our method in holistic scene understanding, we

quantitatively evaluate 3D object detection and 3D human

pose estimation on PiGraphs. No prior works for holistic

scene understanding have attempted mesh level reconstruc-

tion of the scene and human body; both [14] and [4] outputs

3D bounding boxes of objects, and [4] additionally outputs

3D human keypoints. Thus, we evaluate on the same tasks

as these baselines. Since our approach is fully based on
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physical constraints from externally available mesh mod-

els, we do not use any of the 3D annotations in PiGraphs

for training, as [14] does. However, we are still able to out-

perform both (Table 1), showing the power of leveraging

the rich shape information available through meshes.

Following [14], for object detection evaluation, we re-

port mean 3D bounding box IoU, as well as 2D IoU between

the 2D projections of the 3D object bounding boxes and the

ground-truth 2D boxes. For 3D human keypoints evalua-

tion, we extract the 144 body joints from the fitted SMPL-

X model and only keep the ones used in [25] [4], which is

a subset of the SMPL-X joints. As in [4], we compute the

Euclidean distance between the estimated 3D joints and the

ground-truth, and average over all joints. For 2D evalua-

tion, we project the estimated 3D keypoints back to the 2D

image plane and compute pixel distance to ground truth.

The quantitative results for both tasks in Table 1 show

that our model outperforms both [14] and [4] on the 3D

object detection task, and [25] [4] on the 3D pose estima-

tion task, which illustrates the effectiveness of our method.

The boost in 3D performance is significant, because a large

source of error of the baseline models come from inaccu-

rate depth estimation of the objects or the humans. Depth

estimation from single view images is generally a difficult

problem because 2D visual features are limited in suggest-

ing the depth information. We show that the constraints in

our joint optimization help to disambiguate the depth infor-

mation. The improvement on the object bounding box IoUs

suggests that applying fine-grained constraints at the mesh

level helps with refining coarser details of the objects.

Human Mesh Estimation We quantitatively evaluate our

human body mesh estimation results on PROX Quantitative

[11] (Table 2). We follow the evaluation of [11], and re-

port the mean per-joint error without/with procrustes align-

ment (noted as “PJE” / “p.PJE”), and the mean vertex-to-

vertex error (noted as “V2V” / “p.V2V”). Procrustes align-

ment is a common trick to adjust the predicted 3D vertices

for errors in translation, rotation, and scaling. We include

the procustes aligned numbers for completion, but note that

since our method optimizes all aspects of the human body

including translation, rotation and scaling, V2V and PJE

are more meaningful quantitative metrics in evaluating the

overall quality of the predicted 3D vertices of the mesh.

We compare our body mesh reconstruction method with

[11], the state-of-the-art human body mesh reconstruction

method on PROX Quantitative. [11] shares the same body

loss (Lbody) as us; however it imposes contact (EC) and

collision (EP ) constraints between the human mesh and the

ground truth 3D scene scans. In our method, we consider

an estimated scene mesh in formulating our losses instead.

Therefore, in Table 2, we include quantitative performance

of [11]’s models using ground truth 3D scene scans for ref-

erence, and additionally including the following three base-

with ground truth 3D scene scans

V2V PJE p.V2V p.PJE

[11] (including EC) 208.03 208.57 72.76 60.95

[11] (including EP ) 190.07 190.38 73.73 62.38

Full [11] (EC + EP ) 167.08 166.51 71.97 61.14

without ground truth 3D scene scans

[11] (body terms only) 220.27 218.06 73.24 60.80

[11] + estimated scene 224.53 220.47 73.49 61.32

[11] + w/in-scene losses 212.48 209.67 73.13 62.06

Ours 192.21 190.78 72.72 61.01

Table 2. Quantitative results for human mesh estimation on PROX

Quantitative. Top half of the table contains the performance of

[11]’s models that use ground truth 3D scene scans in optimizing

the human body model. Bottom half of the table contains the base-

line models that are most comparable to ours, because no ground

truth 3D scene scans are used during training. We highlight the

best numbers among the models that do not require ground truth

scene scans.

lines models for a fair comparison with our model:
• [11] (body terms only): [11], without using scene

terms (since these utilize a ground truth scene).

• [11] + estimated scene: [11] with their contact (EC)

and collision (EP ) terms calculated using the 3D scene

mesh predicted by [27] (our base scene model).

• [11] + w/in-scene losses: [11] with their contact (EC)

and collision (EP ) terms calculated using an opti-

mized scene mesh (the base scene model [27], plus our

within-scene losses Lscene).
Our model outperforms all three baselines that do not use

ground truth scene scans (bottom half of Table 2), and is

competitive to [11]’s models using ground truth scene scans

(top half). This shows the effectiveness of our scene mesh

estimation in refining the human meshes, and that simply

adding estimated scenes to [11] is not sufficient. The gap

between [11] + w/in-scene losses and Ours highlights the

utility of our joint optimization process.

4.4. Ablation Analysis

To analyze the contributions of different losses, we com-

pare variants of our proposed full model. In Tables 3 and

4, we compare quantitative results on the human body mesh

prediction and 3D object detection tasks as we take out each

one of the losses in Eqs. 7 and 8, except for the essen-

tial body loss (Lbody) and box re-projection loss (LJ
scene).

We observe that all of the losses are essential in improving

both the scene estimation and body estimation tasks. The

joint losses Lobject−ground
joint ,LC

joint, and LP
joint play an essen-

tial role in jointly improving the global consistency, which

boosts the performance of human body mesh reconstruction

task. In particular, LP
joint seems to be the most important

term in refining the body meshes. The Lobject−ground
joint and

Lbody−ground
joint terms improves the ground plane estimation,
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Figure 3. Left half: Qualitative results on PROX Quantitative and Qualitative datasets. The left frames is from PROX Quantitative. The

right frame is from PROX Qualitative. Right half: Qualitative results on Pigraphs dataset. From top to bottom are the RGB input, the

direct output from the scene and body mesh without any optimization, and the final mesh with the joint optimization.

which helps the 3D object detection task significantly.

4.5. Qualitative Results

Figure 3 shows qualitative results of our models on the

PROX Quantitative and Qualitative, and PiGraphs datasets.

We observe that the direct output of the scene model (pre-

trained on SUN-RGBD and Pix3D) without our holistic op-

timization contains inaccurate object attributes. Our pro-

posed joint optimization method improves the overall accu-

racy of the predictions by constraining the orientations, po-

sitions and the sizes of the objects to be realistic with respect

to each other. Also, human pose estimation task helps the

optimization of the scene - the chair that the human sits on

tend to have more accurate orientations than the other two

chairs (column 2). Besides, the initially estimated ground

plane could be very inaccurate (column 3), and our joint

optimization process helps adjust the ground plane and im-

prove the location of all objects at the same time. Although

not obvious from the qualitative results in Figure 3, the es-

timated scene mesh helps refining the 3D locations of the

human body mesh vertices through the joint losses, which

is supported by our quantitative results in Tables 2 and 3.

Finally, we show additional qualitative results in Section 2

of the Supplementary, and we discuss limitations and failure

cases in Section 3 of the Supplementary.

5. Conclusion

In this work, we focus on the challenging problem of

single view holistic reconstruction and joint optimization of

human pose together with static scene. We propose the first

holistically trainable model for reconstructing and jointly

estimating both 3D human pose and 3D scene at the mesh

Metrics V2V PJE p. V2V p. PJE

w/o LP
scene 200.43 194.27 73.20 62.76

w/o Lbody−ground
joint 192.18 190.84 72.21 62.39

w/o Lobject−ground
joint 196.32 193.43 72.47 62.00

w/o LC
joint 196.48 194.32 73.24 62.96

w/o LP
joint 212.24 213.26 73.64 62.90

Full model 192.21 190.78 72.72 61.01

Table 3. Ablations for human mesh estimation on PROX Quant.

Tasks Object Detection Pose Estimation

Metrics IoU2D IoU3D 2D (pix) 3D (m)

w/o LP
scene 58.1 19.1 16.5 0.472

w/o Lbody−grnd
joint 52.6 10.3 16.3 0.463

w/o Lobj.−grnd
joint 49.3 11.2 17.9 0.523

w/o LC
joint 74.6 26.4 18.4 0.493

w/o LP
joint 73.2 24.7 21.6 0.540

Full model 75.6 26.3 15.8 0.460

Table 4. Ablation results on PiGraphs. For the IoU metrics, higher

values indicate better performance. For the pose estimation met-

rics (2D (pix) and 3D (m)), lower values are better.

level. Through a joint optimization process that incorpo-

rates a comprehensive set of physical plausibility and priors,

we show that our model outperforms state-of-the-art meth-

ods on either 3D scene understanding or 3D human pose es-

timation, on the PiGraphs and PROX Quantitative datasets.
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