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Abstract

In this paper we reformulate few-shot classification as a

reconstruction problem in latent space. The ability of the

network to reconstruct a query feature map from support

features of a given class predicts membership of the query

in that class. We introduce a novel mechanism for few-shot

classification by regressing directly from support features to

query features in closed form, without introducing any new

modules or large-scale learnable parameters. The result-

ing Feature Map Reconstruction Networks are both more

performant and computationally efficient than previous ap-

proaches. We demonstrate consistent and substantial ac-

curacy gains on four fine-grained benchmarks with vary-

ing neural architectures. Our model is also competitive on

the non-fine-grained mini-ImageNet and tiered-ImageNet

benchmarks with minimal bells and whistles.1

1. Introduction

Convolutional neural classifiers have achieved excellent

performance in a wide range of settings and benchmarks,

but this performance is achieved through large quantities

of labeled images from the relevant classes. In practice,

such a large quantity of human-annotated images may not

always be available for the categories of interest. Instances

of relevant classes may be rare in the wild, and identi-

fying them may require expensive expert annotators, lim-

iting the availability of training points and labels respec-

tively. These problems are compounded in settings such

as robotics, where a model may need to learn and adapt

quickly in deployment, without waiting for offline data col-

lection. Producing a performant classifier in these settings

requires a neural network that can rapidly fit novel, possibly

unseen classes from a small number of reference images.

A promising approach to this problem of few-shot clas-

sification is the family of metric learning techniques, where

the standard parametric linear classifier head is replaced

with a class-agnostic distance function. Class membership

*Equal contribution
1Code is available at https://github.com/Tsingularity/FRN

Figure 1. Visual intuition for FRN: we reconstruct each query im-

age as a weighted sum of components from the support images.

Reconstructions from the same class are better than reconstruc-

tions from different classes, enabling classification. FRN performs

the reconstruction in latent space, as opposed to image space, here.

is determined by distance in latent space from a point or

points known to belong to each class. Simple distance func-

tions such as cosine [13, 8] and Euclidean distance [30]

lead to surprisingly powerful classifiers, though more com-

plex [29], non-Euclidean [17], and even learned parametric

options [32] are possible, and yield sizable gains.

One overarching problem common to all these tech-

niques is the fact that the convolutional feature extractors

used to learn the metric spaces produce feature maps char-

acterizing appearance at a grid of spatial locations, whereas

the chosen distance functions require a single vectorial rep-

resentation for the entire image. The researcher must de-

cide how to convert the feature map into a vector represen-

tation. Optimally, this conversion would preserve the spa-

tial granularity and detail of the feature map without over-

fitting to pose, but existing, widely-employed approaches

do not accomplish this. Global average-pooling, the stan-

dard solution for parametric softmax classifiers, averages

information from disparate parts of the image, completely
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discarding spatial details that might be necessary for fine

distinctions. Flattening the feature map into a single long

vector preserves the individual features [30, 32], but also

encodes the explicit location of each feature. This sensitiv-

ity to feature location and arrangement (i.e., object pose),

regardless of underlying semantic content, is highly unde-

sirable. Larger and more responsive receptive fields will re-

duce this sensitivity, but instead overfit to specious cues [9].

We aim to avoid these tradeoffs entirely, preserving spatial

detail while disentangling it from location.

We introduce Feature Map Reconstruction Networks

(FRN), which accomplish this by framing class member-

ship as a problem of reconstructing feature maps. Given

a set of images all belonging to a single class, we produce

the associated feature maps and collect the component fea-

ture vectors across locations and images into a single pool

of support features. For each query image, we then at-

tempt to reconstruct every location in the feature map as

a weighted sum of support features, and the negative aver-

age squared reconstruction error is used as the class score.

Images from the same class should be easier to reconstruct,

since their feature maps contain similar embeddings, while

images from different classes will be more difficult and pro-

duce larger reconstruction errors. By evaluating the recon-

struction of the full feature map, FRN preserves the spatial

details of appearance. But by allowing this reconstruction to

use feature vectors from any location in the support images,

FRN explicitly discards nuisance location information.

While prior methods based on feature map reconstruc-

tion exist, these methods either rely on constrained iterative

procedures [43] or large learned attention modules [9, 16].

Instead, we frame feature map reconstruction as a ridge re-

gression problem, allowing us to rapidly calculate a solution

in closed form with only a single learned, soft constraint.

The resulting reconstructions are discriminative and se-

mantically rich, making FRN both simpler and more pow-

erful than prior reconstruction-based approaches. We vali-

date these claims by demonstrating across-the-board supe-

riority on four fine-grained few-shot classification datasets

(CUB [38], Aircraft [21], meta-iNat and tiered meta-

iNat [41]) and two general few-shot recognition bench-

marks (mini-ImageNet [37] and tiered-ImageNet [27]).

These results hold for both shallow and deep network ar-

chitectures (Conv-4 [30, 18] and ResNet-12 [14, 18]).

2. Background and Related Work

The few-shot learning setup: Typical few-shot train-

ing and evaluation involves sampling task episodes from

an overarching task distribution – typically, by repeatedly

selecting small subsets from a larger set of classes. Im-

ages from each class in the episode are partitioned into a

small support set and a larger query set. The number of

classes per episode is referred to as the way, while the num-

ber of support images per class is the shot, so that episodes

with five classes and one labeled image per class form a “5-

way, 1-shot” classification problem. Few-shot classifiers are

trained on a large, disjoint set of classes with many labeled

images, typically using this same episodic scheme for each

batched iteration of SGD. Optimizing the few-shot classi-

fier over the task distribution teaches it to generalize to new

tasks from a similar distribution. The classifier learns to

learn new tasks, thus episodic few-shot training falls under

the umbrella of “meta-learning” or “meta-training”.

Prior work in few-shot learning: Existing approaches

to few-shot learning can be loosely organized into the

following two main-stream families. Optimization-based

methods [12, 28, 23] aim to learn a good parameter initial-

ization for the classifier. These learned weights can then

be quickly adapted to novel classes using gradient-based

optimization on only a few labeled samples. Metric-based

methods, on the other hand, aim to learn a task-independent

embedding that can generalize to novel categories under a

chosen distance metric, such as Euclidean distance [30], co-

sine distance [13], hyperbolic distance [17], or a distance

parameterized by a neural network [32].

As an alternative to the standard meta-learning frame-

work, many recent papers [7, 34, 40] study the performance

of standard end-to-end pre-trained classifiers on few-shot

tasks. Given minimal modification, these classifiers are ac-

tually competitive with or even outperform episodic meta-

training methods. Therefore some recent works [43, 42, 8]

take advantage of both, and utilize meta-learning after pre-

training, further boosting performance.

Few-shot classification through reconstruction: Fea-

ture reconstruction is a classic approach [3] to object track-

ing and alignment [10, 6, 31, 39], but has only recently

been utilized for few-shot classification. DeepEMD [43]

formulates reconstruction as an optimal transport problem.

This formulation is sophisticated and powerful, but train-

ing and inference come with significant computational cost,

due to the reliance on iterative constrained convex opti-

mization solvers and test-time SGD. CrossTransformer [9]

and CrossAttention [16] add attention modules that project

query features into the space of support features (or vice

versa), and compare the class-conditioned projections to

the target to predict class membership. These attention-

based approaches introduce many additional learned param-

eters over and above the network backbone, and place sub-

stantial constraints on the projection matrix (weights are

non-negative and rows must sum to 1). In contrast, FRN

efficiently calculates minimally constrained, least-squares-

optimal reconstructions in closed form.

Closed-form solvers in few-shot learning: The use of

closed-form solvers for few-shot classification is also not

entirely new, though to our knowledge they have not been

applied in the explicit context of feature reconstruction. [4]
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Figure 2. Overview of FRN classification for a k-shot problem.

Support images are converted into feature maps (left), which are

aggregated into class-conditional pools (middle). The best-fit re-

construction of the query feature map is calculated for each cate-

gory, and the closest candidate yields the predicted class (right).

h,w is feature map resolution and d is the number of channels.

uses ridge regression to map features directly to classifica-

tion labels, while [32] accomplishes the same mapping with

differentiable SVMs. Deep Subspace Networks [29] use

the closed-formed projection distance from query embed-

dings to subspaces spanned by support points as the simi-

larity measure. In contrast, FRN uses closed-form ridge re-

gression to reconstruct entire feature maps, rather than per-

forming direct comparisons between single points in latent

space, or regressing directly to class label targets.

3. Method

Feature Map Reconstruction Networks use the quality

of query feature map reconstructions from support fea-

tures as a proxy for class membership. The pool of fea-

tures associated with each class in the episode is used to

calculate a candidate reconstruction, with a better recon-

struction indicating higher confidence for the associated

class. In this section we describe the reconstruction mech-

anism of FRN in detail, and derive the closed-form so-

lution used to calculate the reconstruction error and re-

sulting class score. An overview is provided in Fig. 2.

We discuss memory-efficient implementations and an op-

tional pre-training scheme, and draw comparisons to prior

reconstruction-based approaches.

3.1. Feature Map Ridge Regression

Let Xs denote the set of support images with corre-

sponding class labels in an n-way, k-shot episode. We wish

to predict a class label yq for a single input query image xq .

The output of the convolutional feature extractor for xq

is a feature map Q ∈ R
r×d, with r the spatial resolution

(height times width) of the feature map, and d the num-

ber of channels. For each class c ∈ C, we pool all fea-

tures from the k support images into a single matrix of sup-

port features Sc ∈ R
kr×d. We then attempt to reconstruct

Q as a weighted sum of rows in Sc by finding the matrix

W ∈ R
r×kr such that WSc ≈ Q. Finding the optimal W̄

amounts to solving the linear least-squares problem:

W̄ = arg min
W

||Q−WSc||2 + λ||W ||2 (1)

where || · || is the Frobenius norm and λ weights the ridge

regression penalty term used to ensure tractability when the

linear system is over- or under-constrained (kr 6= d).

The foremost benefit of the ridge regression formulation

is that it admits a widely-known closed-form solution for

W̄ and the optimal reconstruction Q̄c as follows:

W̄ = QST
c (ScS

T
c + λI)−1 (2)

Q̄c = W̄Sc (3)

For a given class c, the negative mean squared Euclidean

distance between Q and Q̄c over all feature map locations

yields the scalar probability logit. We also incorporate a

learnable temperature factor γ, following [8, 13, 42]. The

final predicted probability is thus given by:

〈Q, Q̄c〉 =
1

r
||Q− Q̄c||2 (4)

P (yq = c|xq) =
e(−γ〈Q,Q̄c〉)

∑
c′∈C e(−γ〈Q,Q̄c′ 〉)

(5)

We optimize our network by sending the predicted class

probabilities for the query images in each episode through

a cross-entropy loss, as in standard episodic meta-training.

An overview of this process can be found in Fig. 2.

3.2. Learning the Degree of Regularization

The difficulty of the Eq. 1 reconstruction problem varies

widely. If kr > d, reconstruction may become trivial, as

the support features can span the feature space. Conversely,

reconstruction is difficult when d > kr. To ensure a bal-

anced objective and stable training, we therefore rescale the

regularizer λ by kr
d

. This has the added benefit of making

our model somewhat robust to shot, in that concatenating a

support pool to itself now yields unchanged reconstructions.

Even with rescaling, though, it is not immediately clear

how one should set the regularizer λ. Instead of choosing

heuristically, we have the network learn λ through meta-

learning. This is significant, as it allows the network to pick

a degree of regularization such that reconstruction is dis-

criminative, rather than strictly least-squares optimal.

Changing λ can have multiple effects. Large λ discour-

ages overreliance on particular weights in W , but also re-

duces the norm of the reconstruction, increasing reconstruc-

tion error and limiting discriminative power. We therefore
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disentangle the degree of regularization from the magnitude

of Q̄c by introducing a learned recalibration term ρ:

Q̄c = ρW̄Sc (6)

By increasing ρ alongside λ, the network gains the ability to

penalize large weights without sending all reconstructions

to the origin at the same time. λ and ρ are parameterized as

eα and eβ to ensure non-negativity, with α and β initialized

to zero. Thus, all together, our final prediction is given by:

λ =
kr

d
eα ρ = eβ (7)

Q̄c = ρW̄Sc = ρQST
c (ScS

T
c + λI)−1Sc (8)

P (yq = c|xq) =
e(−γ〈Q,Q̄c〉)

∑
c′∈C e(−γ〈Q,Q̄c′ 〉)

(9)

The model is meta-trained in a similar manner to prior

work: sample episodes from a labeled base class dataset and

minimize cross entropy on the predicted query labels [30].

Our approach introduces only three learned parameters:

α, β and γ. The temperature γ appears in prior work [13, 8,

42]. Ablations on α and β can be found in Sec. 5.1.

3.3. Parallelization

While we have described our approach as finding recon-

structions for a single query image, it is relatively straight-

forward to find the reconstructions for an entire batch of

query images. We have already calculated the optimal re-

construction for each of the r feature vectors in Q indepen-

dently; all we need to do for a batch of b images is to pool

the features into a larger matrix Q′ ∈ R
br×d and run the al-

gorithm as written. Thus for an n-way episode we will only

ever need to run the algorithm n times, once for each sup-

port matrix Sc, regardless of the quantity or arrangement of

queries. These n runs can also be parallelized, given paral-

lel implementations of matrix multiplication and inversion.

3.4. Alternative Formulation

The formula for Q̄ in Eq. 8 is efficient to compute when

d > kr, as the most expensive step is inverting a kr × kr

matrix that does not grow with d. Computing the matrix

product from left to right also avoids storing a potentially

large d× d matrix in memory. However, if feature maps are

large or the shot number is particularly high (kr > d), Eq. 8

may quickly become infeasible to compute. In this case an

alternative formulation for Q̄ exists, which swaps d for kr

in terms of computational requirements. This formulation

is owed to the Woodbury Identity [24] as applied in [4]:

Q̄c = ρW̄Sc = ρQ(ST
c Sc + λI)−1ST

c Sc (10)

Here, the most expensive step is a d × d matrix inversion,

and computing the product from right to left avoids storing

any large kr×kr or br×kr matrices in memory. As r and d

are determined by the network architecture, the researcher

may employ either formulation depending on k. The net-

work can also decide on the fly at test time. In terms of clas-

sifier performance the two formulations are algebraically

equivalent, and pseudo-code for both is provided in Supple-

mentary Materials (SM) Sec. 7. For consistency, we employ

Eq. 10 in our implementations.

3.5. Auxiliary Loss

In addition to the classification loss, we employ an aux-

iliary loss that encourages support features from different

classes to span the latent space [29]:

Laux =
∑

i∈C

∑

j∈C,j 6=i

||ŜiŜ
T
j ||2 (11)

where Ŝ is row-normalized, with features projected to the

unit sphere. This loss encourages orthogonality between

features from different classes. Similar to [29], we down-

scale this loss by a factor of 0.03. We use Laux as the auxil-

iary loss in our subspace network implementation [29], and

it replaces the SimCLR episodes in our CrossTransformer

implementation [9]. We include it in our own model for

consistency, and include an ablation study in Sec. 5.1.

3.6. Pre­Training

Prior work [8, 42] has demonstrated that few-shot clas-

sifiers can benefit greatly from non-episodic pre-training.

For traditional metric learning based approaches, the fea-

ture extractor is initially trained as a linear classifier with

global average-pooling on the full set of training classes.

The linear layer is subsequently discarded, and the feature

extractor is fine-tuned episodically.

This pre-training does not work out-of-the-box for FRN

due to its novel classification mechanism. Because the

linear classifier uses average-pooling, the feature extractor

does not learn spatially distinct feature maps in the way

FRN requires (see Sec. 5.1 for analysis).

We therefore devise a new pre-training scheme for FRN.

To keep the classifier consistent with FRN meta-training,

we continue to use feature reconstruction error as the pre-

dicted class logit. Similar to [43], the classification head is

parametrized as a set of class-specific dummy feature maps,

where we introduce a learnable matrix Mc ∈ R
r×d for each

category c, acting as a proxy for Sc. Following Eq. 10, the

prediction for a sample xq with feature map Q ∈ R
r×d is:

Q̄c = ρQ(MT
c Mc + λI)−1MT

c Mc (12)

P (yq = c|xq) =
e(−γ〈Q,Q̄c〉)

∑
c′∈C e(−γ〈Q,Q̄c′ 〉)

(13)

It should be noted that C in this setting is no longer the sam-

pled subset of episode categories, but rather the entire set of
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Model Solver 1-shot Latency 5-shot Latency

DeepEMD [43] qpth [2] 23,275 >800,000

DeepEMD [43] OpenCV [5] 178 18,292

FRN (ours) Eq. 10 73 88

FRN (ours) Eq. 8 63 79

Table 1. Latency (ms) for 5-way mini-ImageNet evaluation with

ResNet-12. Detailed discussion and comparison in SM Sec. 10.

training classes (e.g., |C| = 64 for mini-ImageNet). We

then use this output probability distribution to calculate the

standard cross-entropy classification loss. During the pre-

training stage, we fix α = β = 0 but keep γ a learnable

parameter. After pre-training is finished, all learned matri-

ces {Mc|c ∈ C} are discarded (similar to the pre-trained

MLP classifier in [34, 42, 40, 7, 8]). The pre-trained model

size is thus the same as when trained from scratch.

While pre-training is broadly applicable and generally

boosts performance, for the sake of fairness we do not pre-

train any of our fine-grained experiments, as baseline meth-

ods do not consistently pre-train in these settings.

3.7. Relation to Prior Reconstructive Classifiers

DeepEMD [43]: FRN uniquely combines feature map

comparison with an unconstrained, closed-form reconstruc-

tion objective; prior approaches include one or the other, but

not both. Like FRN, DeepEMD solves for a r × kr recon-

struction matrix W̄ and uses reconstruction quality (mea-

sured as transport cost) as a proxy for class membership.

This technique is more sophisticated than ridge regression,

but also highly constrained. As a transport matrix, W̄ must

hold nonnegative values, with rows and columns that sum

to 1. More importantly, W̄ cannot be calculated in closed

form, requiring an iterative solver that can be slow in prac-

tice and scales poorly to k greater than one. We found com-

puting the FRN reconstruction orders of magnitude faster

than the EMD equivalent (see Table 1). DeepEMD also re-

quires finetuning via back-propagation at test time, whereas

our approach scales out of the box to a range of k, r, d.

CrossTransformer (CTX) [9]: CTX and related ap-

proaches [16] are more similar to FRN, in that they explic-

itly produce class-wise linear reconstructions Q̄c = W̄Sc.

However, rather than solving for W̄ , these methods approx-

imate it using attention and extra learned projection layers.

CTX reprojects the feature pools Sc and Q into two dif-

ferent “key” and “value” subspaces, yielding S1, Q1 and

S2, Q2. The reconstruction of Q2 is given by:

Q̄2 = σ(
1√
d
Q1S

T
1 )S2 (14)

where σ(·) denotes a row-wise softmax. While Eq. 14 is

loosely analogous to Eq. 8, with the
√
d-scaled softmax re-

placing the inverted matrix term, we find that performance

differs in practice. The CTX layer is also somewhat un-

Model Feature map Regression objective

Proto [30] × ×
DSN [29] × X

CTX [9] X ×
FRN (ours) X X

Table 2. Relationships between our implemented models.

wieldy: the two reprojection layers introduce extra parame-

ters into the network, and during training it is necessary to

store the br × kr matrix of attention weights σ( 1√
d
Q1S

T
1 )

for back-propagation. This can lead to a noticeable memory

footprint as these values increase – while we did not observe

a difference in our experimental settings, simply increasing

r from 5×5 to 10×10 in our implementation was sufficient

to introduce a 2-3GB overhead (see SM Sec. 10).

Deep Subspace Networks (DSN) [29]: DSN predicts

class membership by calculating the distance between the

query point and its projections onto the latent subspaces

formed by the support images for each class. This is anal-

ogous to our approach with r = 1, with average-pooling

performing the spatial reduction. The crucial difference is

that DSN assumes (accurately) that d > k, whereas in our

setting it is not always the case that d > kr. In fact, for

many of our models S spans the latent space, so the pro-

jection interpretation falls apart and we instead rely on the

ridge regression regularizer to keep the problem well-posed.

Of the methods that produce explicit reconstructions,

CTX compares feature maps while DSN utilizes a closed-

form regression objective. FRN captures both concepts,

leading to the organization shown in Table 2. We thus re-

implement CTX and DSN as direct comparison baselines

(details in SM Sec. 9.3). As shown in the following section,

FRN leverages a unique synergy between these concepts to

improve even when CTX or DSN on their own do not.

4. Experiments

Feature Map Reconstruction Networks focus on spatial

details without overfitting to pose, making them particu-

larly powerful in the fine-grained few-shot recognition set-

ting, where details are important and pose is not discrim-

inative. We demonstrate clear superiority on four such

benchmarks. For general few-shot learning, FRN with pre-

training achieves highly competitive results without extra

bells or whistles.

Implementation details: We conduct experiments on

two widely used backbones: 4-layer ConvNet (Conv-4) and

ResNet-12. Same as [42, 18], Conv-4 consists of 4 consec-

utive 64-channel convolution blocks that each downsample

by a factor of 2. The shape of the output feature maps for

input images of size 84×84 is thus 64×5×5. For ResNet-

12, we use the same implementation as [42, 34, 18]. The

input image size is the same as Conv-4 and the output fea-

ture map shape is 640×5×5. During training, we use the

8016



Conv-4 ResNet-12

Model 1-shot 5-shot 1-shot 5-shot

MatchNet♭ [37, 42, 43] 67.73 79.00 71.87 85.08

ProtoNet♭ [30, 42, 43] 63.73 81.50 66.09 82.50

Hyperbolic [17] 64.02 82.53 - -

FEAT♭ [42] 68.87 82.90 - -

DeepEMD♭ [43] - - 75.65 88.69

ProtoNet† [30] 63.21 83.88 79.09 90.59

DSN† [29] 66.01 85.41 80.80 91.19

CTX† [9] 69.64 87.31 78.47 90.90

FRN (ours) 73.48 88.43 83.16 92.59

Table 3. Performance on CUB using bounding-box cropped im-

ages as input. ♭: use of non-episodic pre-training. Confidence

intervals for our implemented models are all below 0.24.

Model Backbone 1-shot 5-shot

Baseline♭ [7] ResNet-18 65.51±0.87 82.85±0.55

Baseline++♭ [7] ResNet-18 67.02±0.90 83.58±0.54

MatchNet [7, 37] ResNet-18 73.49±0.89 84.45±0.58

ProtoNet [7, 30] ResNet-18 72.99±0.88 86.64±0.51

MAML [7, 12] ResNet-18 68.42±1.07 83.47±0.62

RelationNet [7, 32] ResNet-18 68.58±0.94 84.05±0.56

S2M2♭ [22] ResNet-18 71.43±0.28 85.55±0.52

Neg-Cosine♭ [19] ResNet-18 72.66±0.85 89.40±0.43

Afrasiyabi et al.♭ [1] ResNet-18 74.22±1.09 88.65±0.55

ProtoNet† [30] ResNet-12 78.60±0.22 89.73±0.12

DSN† [29] ResNet-12 79.96±0.21 91.41±0.34

CTX† [9] ResNet-12 79.34±0.21 91.42±0.11

FRN (ours) ResNet-12 83.55±0.19 92.92±0.10

Table 4. Performance on CUB using raw images as input. ♭: use

of non-episodic pre-training.

standard data augmentation as in [42, 43, 40, 7], which in-

cludes random crop, right-left flip and color jitter. Further

training details can be found in SM Sec. 9.

Evaluation is performed on standard 5-way, 1-shot and

5-shot settings. Accuracy scores and 95% confidence inter-

vals are obtained over 10,000 trials, as in [42, 8, 40].

4.1. Fine­Grained Few­Shot Classification

For our fine-grained experiments, we re-implement

three baselines: Prototypical Networks (ProtoNet†) [30],

CTX† [9], and DSN† [29], where † denotes our implemen-

tation. For fair comparison, we do not use pre-training for

any of our implemented models here, or tune FRN hyperpa-

rameters separately from baseline models.

CUB [38] consists of 11,788 images from 200 bird

classes. Following [7], we randomly split categories into

100 classes for training, 50 for validation and 50 for evalua-

tion. Our split is identical to [33] (discussion of class splits

can be found in SM Sec. 11). Prior work on this benchmark

pre-processes the data in different ways: [7] uses raw im-

ages as input, while [42, 43] crop each image to a human-

annotated bounding box. We experiment on both settings

for fair comparison.

Aircraft [21] contains 10,000 images spanning 100 air-

Conv-4 ResNet-12

Model 1-shot 5-shot 1-shot 5-shot

ProtoNet† [30] 47.72 69.42 66.57 82.37

DSN† [29] 48.14 66.36 68.16 81.85

CTX† [9] 50.20 67.25 65.60 80.20

FRN (ours) 53.20 71.17 70.17 83.81

Table 5. Performance on Aircraft. All 95% confidence intervals

are below 0.25.

meta-iNat tiered meta-iNat

Model 1-shot 5-shot 1-shot 5-shot

ProtoNet† [30] 55.34 76.43 34.34 57.13

Covar. pool† [41] 57.15 77.20 36.06 57.48

DSN† [29] 58.08 77.38 36.82 60.11

CTX† [9] 60.03 78.80 36.83 60.84

FRN (ours) 62.42 80.45 43.91 63.36

Table 6. Performance on meta-iNat and tiered meta-iNat using

Conv-4 backbones. All 95% confidence intervals are below 0.24.

plane models. Following the same ratio as CUB, we ran-

domly split classes into 50 train, 25 validation and 25 test.

Images are pre-cropped to the provided bounding box.

meta-iNat [41, 15] is a benchmark of animal species in

the wild. This benchmark is particularly difficult, as classes

are unbalanced, distinctions are fine-grained, and images

are not cropped or centered, and may contain multiple ani-

mal instances. We follow the class split proposed by [41]:

of 1135 classes with between 50 and 1000 images, one

fifth (227) are assigned to evaluation and the rest to train-

ing. While [41] propose a full 227-way, k-shot evaluation

scheme with 10 ≤ k ≤ 200, we instead perform standard

5-way, 1-shot and 5-shot evaluation, and leave extension to

higher shots and unbalanced classes for future work.

tiered meta-iNat [41] represents a more difficult ver-

sion of meta-iNat where a large domain gap is introduced

between train and test classes. The 354 test classes are pop-

ulated by insects and arachnids, while the remaining 781

classes (mammals, birds, reptiles, etc.) form the training

set. Training and evaluation are otherwise the same.

Results on fine-grained benchmarks can be found in Ta-

bles 3, 4, 5, and 6, corresponding to cropped CUB, un-

cropped CUB, Aircraft, and combined meta-iNat and tiered

meta-iNat, respectively. FRN is superior across the board,

with a notable 2-7 point jump in accuracy (mean 3.5) from

the nearest baseline in all 1-shot settings.

Note that our re-implemented baselines in Tables 3 and

4 are competitive with (and in some cases beat outright)

prior published numbers. This shows that in the experi-

ments without prior numbers, our baselines still provide fair

competition. We do not give FRN an unfair edge – if any-

thing, our baselines are more competitive, not less.

Based on the above observations, we conclude that FRN

is broadly effective at fine-grained few-shot classification.

8017



mini-ImageNet tiered-ImageNet

Model Backbone 1-shot 5-shot 1-shot 5-shot

MatchNet♭♥ [37, 42, 43] ResNet-12 65.64±0.20 78.72±0.15 68.50±0.92 80.60±0.71

ProtoNet♭ [30, 42] ResNet-12 62.39±0.21 80.53±0.14 68.23±0.23 84.03±0.16

MetaOptNet♯ [18] ResNet-12 62.64±0.61 78.63±0.46 65.99±0.72 81.56±0.53

Robust 20-distill♭♯♮ [11] ResNet-18 63.06±0.61 80.63±0.42 65.43±0.21 70.44±0.32

SimpleShot♭ [40] ResNet-18 62.85±0.20 80.02±0.14 69.09±0.22 84.58±0.16

CAN♭♥ [16] ResNet-12 63.85±0.48 79.44±0.34 69.89±0.51 84.23±0.37

S2M2♭♦ [22] ResNet-18 64.06±0.18 80.58±0.12 - -

Meta-Baseline♭ [8] ResNet-12 63.17±0.23 79.26±0.17 68.62±0.27 83.29±0.18

GNN+FT♭♥♮ [36] ResNet-10 66.32±0.80 81.98±0.55 - -

DSN‡ [29] ResNet-12 62.64±0.66 78.83±0.45 66.22±0.75 82.79±0.48

FEAT♭♥ [42] ResNet-12 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16

DeepEMD♭♦♣ [43] ResNet-12 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58

Neg-Cosine♭♦♮ [19] ResNet-12 63.85±0.81 81.57±0.56 - -

Afrasiyabi et al.♭♥♦♮ [1] ResNet-18 59.88±0.67 80.35±0.73 69.29±0.56 85.97±0.49

E3BM♭♥♦ [20] ResNet-12 64.09±0.37 80.29±0.25 71.34±0.41 85.82±0.29

RFS-simple♭‡ [34] ResNet-12 62.02±0.63 79.64±0.44 69.74±0.72 84.41±0.55

RFS-distill♭‡♯ [34] ResNet-12 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49

FRN (ours)♭ ResNet-12 66.45±0.19 82.83±0.13 71.16±0.22 86.01±0.15

FRN (ours)♭♣ ResNet-12 - - 72.06±0.22 86.89±0.14

Table 7. Performance of selected competitive few-shot models on mini-ImageNet and tiered-ImageNet, ordered chronologically. ‡: use

of data augmentation during evaluation; ♯: label smoothing, model ensemble or knowledge distillation; ♥: modules with many additional

learnable parameters; ♦: use of SGD during evaluation; ♭: non-episodic pre-training or classifier losses; ♮: network’s input resolution is

larger than 84. ♣: use of tiered-ImageNet data from DeepEMD’s implementation.

4.2. General Few­Shot Classification

We evaluate performance on two standard benchmarks.

Compared to direct episodic meta-training from scratch, re-

cent works [8, 34] gain a large advantage from pre-training

on all training data and labels, followed by episodic fine-

tuning. We follow the framework of [42, 43] and pre-train

our model on the entire training set as described in Sec. 3.6.

mini-ImageNet [37] is a subset of ImageNet containing

100 classes in total, with 600 examples per class. Follow-

ing [25], we split categories into 64 classes for training, 16

for validation and 20 for test.

tiered-ImageNet [27] is a larger subset of ImageNet

with 351-97-160 categories for training-validation-testing,

respectively. Like tiered meta-iNat, tiered-ImageNet en-

sures larger domain differences between training and eval-

uation compared to mini-ImageNet. Most works [40, 34, 8]

use images from [27]2 or [18]3, which have 84×84 resolu-

tion. DeepEMD [43]’s implementation4 has 224×224 in-

stead. For fair comparison, we experiment on both settings.

As shown in Table 7, FRN is highly competitive with

recent state-of-the-art results. FRN leverages pre-training,

but no other extra techniques or tricks. FRN also requires no

gradient-based finetuning at inference time, which makes it

more efficient than many existing baselines in practice.

2https://github.com/renmengye/few-shot-ssl-public
3https://github.com/kjunelee/MetaOptNet
4https://github.com/icoz69/DeepEMD

Model Backbone 1-shot 5-shot

MAML♮♦ [12, 7] ResNet-18 - 51.34±0.72

ProtoNet♮ [30, 7] ResNet-18 - 62.02±0.70

Baseline♭♮♦ [7] ResNet-18 - 65.57±0.70

Baseline++♭♮♦ [7] ResNet-18 - 62.04±0.76

MetaOptNet♯ [18, 22] ResNet-12 44.79±0.75 64.98±0.68

Diverse 20-full♭♯♮ [11] ResNet-18 - 66.17±0.55

SimpleShot♭ [40, 44] ResNet-18 48.56 65.63

MatchNet+FT♭♥♮ [36] ResNet-10 36.61±0.53 55.23±0.83

RelationNet+FT♭♥♮ [36] ResNet-10 44.07±0.77 59.46±0.71

GNN+FT♭♥♮ [36] ResNet-10 47.47±0.75 66.98±0.68

Neg-Softmax♭♦♮ [19] ResNet-18 - 69.30±0.73

Afrasiyabi et al.♭♥♦♮ [1] ResNet-18 46.85±0.75 70.37±1.02

FRN (ours)♭ on classes from [7] ResNet-12 54.11±0.19 77.09±0.15

FRN (ours)♭ on classes from [33] ResNet-12 51.60±0.21 72.97±0.18

FRN (ours)♭ on all CUB classes ResNet-12 53.39±0.21 75.16±0.17

Table 8. Performance comparison in the cross-domain setting:

mini-ImageNet→CUB. Symbols and organization match Table 7.

4.3. Cross­Domain Few­Shot Classification

Finally, we evaluate on the challenging cross-domain

setting proposed by [7], where models trained on mini-

ImageNet base classes are evaluated on test classes from

CUB. We evaluate on three sets of CUB test classes: the

split from [7] (common in prior work), the split from [33]

(used in Sec. 4.1), and the full set of 200 CUB classes. As

shown in Table 8, our FRN model from Sec. 4.2 outper-

forms previous methods by a wide margin.
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training setting 1-shot 5-shot

episodic train from scratch 63.03±0.20 78.01±0.15

after avg-pool pre-train 59.43±0.20 70.88±0.16

episodic finetune 62.13±0.20 76.28±0.15

after FRN pre-train 60.97±0.21 75.11±0.18

episodic finetune 66.45±0.19 82.83±0.13

Table 9. Impact of pre-training for FRN on mini-ImageNet. Both

pre-training and episodic finetuning are important. Classical pre-

training with global average-pooling works poorly.

5. Analysis

5.1. Ablation Study

Training shot: Surprisingly, we found that FRN mod-

els trained on 1-shot episodes consistently underperform the

same models trained with 5-shot episodes, even on 1-shot

evaluation. We therefore report the superior numbers from

5-shot models in Sec. 4 and include the 1-shot performance

as an ablation in Table 11 of SM. Though clearly worse than

the 5-shot counterpart, 1-shot FRN is broadly competitive

with the best-performing baselines.

Pre-training: FRN pre-training is crucial for compet-

itive general few-shot performance, especially when com-

pared to pre-trained baselines. However, pre-training alone

does not produce a competitive few-shot learner. An FRN

trained from scratch outperforms a pre-trained FRN evalu-

ated naively (Table 9, bottom rows). The two-round process

of pre-training followed by episodic fine-tuning appears to

be crucial. This finding is in line with prior work [42, 8].

Classical pre-training with average-pooling, however,

does not produce a viable classifier (Table 9, middle rows).

These features are not spatially distinct enough for FRN

fine-tuning to recover a meaningful feature space. The re-

sulting classifier is worse than one trained from scratch.

Auxiliary loss and λ, ρ regularizers: We ablate these

components of both Conv-4 and ResNet-12 models on

cropped CUB, with results in Table 12 in SM. The aux-

iliary loss has little to no impact on FRN performance –

we include this loss in our experimental models only for

consistent comparisons. Fixing α, β to 0 (and thus λ, ρ to

constants) yields mixed results. The 4-layer network clearly

benefits from learning both values, but the ResNet-12 archi-

tecture does not, likely because the high-dimensional fea-

ture space is rich enough to overcome any regularization

problems on its own.

5.2. Reconstruction Visualization

While our results suggest that FRN produces more se-

mantically faithful reconstructions from same-class support

images than from different classes, we would like to con-

firm this visually. We therefore train image re-generators

for the 5-shot ResNet-12 FRN on CUB and mini-ImageNet,

which use an inverted ResNet-12 to map FRN features back

to the original image. Training details can be found in SM

Input CUB mini-IN

ground-truth feature map .208 .177

same-class reconstruction .343 .307

diff-class reconstruction .385 .337

Table 10. L2 pixel error between original images and regenerated

images from different latent inputs. Results are averaged over

1,000 trials and 95% confidence intervals are below 1e-3.

Figure 3. CUB images are regenerated from ground-truth feature

maps (row 2), and reconstructions from same-class (row 3) and

different-class support images (rows 4, 5). Same-class reconstruc-

tions are more faithful to the original. Best viewed digitally.

Sec. 9.4. Results are reported on validation images.

If same-class feature map reconstructions are more se-

mantically faithful than different-class ones, we should ob-

serve a corresponding difference in regenerated image qual-

ity. Fig. 3 and Table 10 verify this. Reconstructions from

ground-truth features are not particularly good, as classi-

fiers discard class-irrelevant details. However, the increase

in ground-truth pixel error relative to these target feature

maps is clearly smaller for same-class reconstructions. Ad-

ditional visualizations are provided in SM Sec. 12. We con-

clude that FRN reconstructions are semantically faithful for

same-class support images and less faithful otherwise.

6. Conclusion

We introduce Feature Map Reconstruction Networks,

a novel approach to few-shot classification based on re-

constructing query features in latent space. Solving the

reconstruction problem in closed form produces a classi-

fier that is both straightforward and powerful, incorporat-

ing fine spatial details without overfitting to position or

pose. We demonstrate state-of-the-art performance on four

fine-grained few-shot classification benchmarks, and highly

competitive performance in the general setting.
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