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Abstract

Generalization to out-of-distribution data has been a

problem for Visual Question Answering (VQA) models. To

measure generalization to novel questions, we propose to

separate them into “skills” and “concepts”. “Skills” are

visual tasks, such as counting or attribute recognition, and

are applied to “concepts” mentioned in the question, such

as objects and people. VQA methods should be able to

compose skills and concepts in novel ways, regardless of

whether the specific composition has been seen in training,

yet we demonstrate that existing models have much to im-

prove upon towards handling new compositions. We present

a novel method for learning to compose skills and concepts

that separates these two factors implicitly within a model

by learning grounded concept representations and disen-

tangling the encoding of skills from that of concepts. We

enforce these properties with a novel contrastive learning

procedure that does not rely on external annotations and

can be learned from unlabeled image-question pairs. Ex-

periments demonstrate the effectiveness of our approach for

improving compositional and grounding performance.1

1. Introduction

When humans answer questions, such as in Visual Ques-

tion Answering (VQA), we first interpret the question, dis-

secting its content into parts (like concepts, relations, ac-

tions, question types), and then we select and execute the

skill (or plan/program) necessary to produce an answer

based on this information and the relevant knowledge base

(e.g., the image) [25, 34, 54, 57]. The skills needed to pro-

duce an answer are general and can be applied to (composed

with) many types of question-specific content. For exam-

ple, if one can answer questions about “colors” for a variety

of objects as well as recognize and answer questions about

“cars”, then questions like “What color is the car?” should

be straightforward to answer even if this specific compo-

sition has yet to be seen (Fig. 1). This ability of seam-

∗Work was partly done as an intern at the MIT-IBM Watson AI Lab.
1Code: https://github.com/SpencerWhitehead/novelvqa

Figure 1. We propose a new view of compositionality in VQA that

explores the ability to answer questions about unseen composi-

tions of skills (e.g., color) and concepts (e.g., car). We present a

method that learns to separate skills and concepts that can utilize

both labeled and unlabeled image-question pairs in order to gener-

alize to novel questions with new skill-concept compositions and

new concepts.

lessly adapting and composing conceptual representations

with skills is crucial to demonstrating true understanding of

VQA and learning to generalize from less labeled data.

Compositionality is recognized as one of the essential

properties of human cognition [33], but more research is

still needed on incorporating compositionality into models

and developing data-efficient, generalizable systems. While

much progress has been made to achieve better performance

on standard VQA test benchmarks [4, 16, 32, 56], most

state-of-the-art models are still designed without any notion

of built-in compositionality and tend to entangle skills and

concepts in their learned representations. Some previous

work has studied the lack of generalization ability of VQA

models, and evaluated models using test splits with differ-

ent answer distributions from the training data. However,

this measurement only indirectly addresses the central issue

5632



(lack of compositionality), which manifests itself as poor

generalization and over-reliance on language priors [2, 42].

To address these issues, our first contribution is a new

view of VQA compositionality, called skill-concept compo-

sition, and a new evaluation setting that directly targets how

VQA models can generalize to novel compositions of skills

and concepts. This view is motivated by our observation

that, to answer a natural question on real images requires the

understanding of two distinct elements: 1) the visual con-

cept referred to by the question; and 2) what information

we need to extract from the referred concept. We elucidate

this in Sec. 3 and evaluate a number of VQA architectures

using this setting and demonstrate that the existing models

have much to improve upon to answer novel questions.

We propose a novel approach to improve generalization

that utilizes contrastive learning to separate skills and con-

cepts within the internal representations of a model, while

jointly learning to answer questions. We use grounding as a

proxy to separate concepts so that the model learns to iden-

tify a concept in both the question and image, regardless

of the specific context. Akin to weakly supervised ground-

ing [3, 17], we train the model to recover a concept men-

tioned in a given image-question pair by contrasting the

multi-modal representation of the masked concept word to

the multi-modal representations of words in other questions.

We utilize a new way to curate positive and negative exam-

ples for the contrastive loss so that the model learns to pre-

dict the concept based on relevant visual information rather

than using superficial contextual cues. Additionally, our ap-

proach learns to separate skills from concepts by contrast-

ing question representations that have the same or different

skills. These properties are learned jointly alongside the

VQA objective, on top of state-of-the-art models, and are

generalizable to new architectures.

Some advantages of our approach are: 1) We learn

grounding in a self-supervised manner using the VQA data

alone, without external annotations. This is in contrast to

previous approaches with similar goals that incur large ex-

penses due to annotation requirements [44, 55]. 2) Our

method does not rely on answer labels to learn skill-concept

separation, so we are able to use unlabeled image-question

pairs to learn these properties. Consequently, we are able

to acquire new concepts and learn to answer questions

about them without having labeled data with these concepts,

which is pivotal for generalizing to a new domain or novel

instances. Moreover, we focus on data-efficient methods

and do not use prodigious amounts of data external to VQA,

like pre-training approaches [39, 50, 8], which is expensive

to obtain and can require prior knowledge of the domain

and/or concepts in order to perform well [47, 19].

Our main contributions in this paper are: 1) We present

a novel view and evaluation setting for compositionality

in VQA, called skill-concept composition, which enables

a more direct and interpretable evaluation of VQA mod-

els on real-image question answering. 2) We propose a

novel contrastive learning approach, which combines the

supervised VQA objective with self-supervised learning, to

achieve skill-concept disentanglement at no additional an-

notation cost. 3) Our approach shows significant improve-

ments over existing models on novel skill-concept composi-

tions as well as generalization to unlabeled image-question

pairs containing unseen concepts.

2. Related Work

VQA and Evaluations. Much progress has been made to-

wards VQA [4, 32, 38, 50]. Large-scale pre-trained trans-

formers [53], inspired by BERT [11], have recently be-

come prevalent [8, 24, 36, 37, 38, 39, 49, 50, 56]. Progress

is often measured by the widely adopted human-annotated

VQA v2 [16] benchmark as well as other synthetic bench-

marks [26, 29, 30]. Various datasets for reducing biases

have been presented [2, 16], including VQA-CP [2] that cre-

ates distinct distributions of question prefixes and answers

between the train and validation splits of VQA v2. Another

dataset [30] evaluates on a conglomeration of data from

VQA v1 [6] and synthetic data generated from question

templates and image annotations, which they break down

by vision task. The basic premise of considering questions

by task is similar to our “skills”, but our setting examines

compositional generalization of skills and concepts, where

we evaluate on unseen compositions of skills and concepts.

Existing work for evaluating generalization [2, 30] does not

explore generalization to such novel compositions.

Compositionality and VQA. CLEVR [29] and GQA [26]

are two VQA datasets that have received interest in recent

years. Both offer compositional questions, which means

that the questions involve various relational chains (e.g.,

“What color is the apple to the left of the bowl on the ta-

ble?”). While GQA does not focus on novel compositions,

CLEVR does investigate novel compositions of attributes

and objects, where, for example, models see cubes of cer-

tain colors and cylinders of other colors during training,

then the cubes and cylinders have their colors swapped in

testing. This is analogous to our setting, although we pro-

pose to investigate skill-concept compositions and we ex-

periment with natural questions about real images. Other

efforts create compositional models to handle the relational

reasoning chains [22, 23, 25, 27, 46]. Our approach implic-

itly learns compositional capabilities within state-of-the-art

multi-modal transformer architectures, unlike these meth-

ods that do so explicitly. We also provide results on how

well current compositional models (i.e., neural module net-

works) can generalize to novel questions.

Grounding Visual Concepts. Visual grounding is typically

studied on image-caption pairs. Previous work on visual

grounding often learns grounding in a weakly supervised
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Figure 2. Illustration of skill-concept composition, a new view and evaluation setting for compositionality in VQA.

manner [3, 10, 14, 17], and sometimes leverages contrastive

learning techniques [3, 17]. However, grounding concepts

that appear in VQA questions has been less studied in pre-

vious work, which we explore in our paper. One direc-

tion that is somewhat related to visual grounding in VQA is

learning VQA models which have interpretable visual atten-

tions [44, 55]. However, these approaches usually rely on

human annotations of the most influential regions for VQA

answer prediction [9, 28], which are expensive to obtain and

do not directly associate concept mentions with visual re-

gions. Our work learns to ground concepts mentioned in

questions, which facilitates compositional VQA modeling,

and does so without using any additional annotations.

3. Skill-Concept Composition in VQA

We propose a novel, compositional view of VQA, called

skill-concept composition (Fig. 2). Concepts are objects and

other visually-grounded words or phrases. By skills, we

refer to the collection of high-level vision understanding

processes involved in answering common questions about

real-world images. These skills operate on concepts and

vary in terms of input/output representation complexity and

the necessary reasoning process. Our taxonomy of these

skills is extracted from annotating a subset of the VQA v2

questions as well as taking inspiration from prior work on

VQA.2 Skills are generally standalone from each other and

have been studied independently in VQA literature (e.g.,

TextVQA [48], positional reasoning [26], or counting [1]).

We make an important yet intuitive observation about

these VQA skills: to answer a question, it often requires

the application of only a small number of skills (most often

one) to one or more concepts in the image (Fig. 2). This ob-

2Please refer to Appendix A for a complete skill list.

servation provides an interpretable view of a model’s gener-

alization ability to out-of-distribution data: a model should

learn that a skill is a separable process that can be applied

to different concepts, and that the prediction process should

not be tied to specific concepts co-occurring with this skill

during training. This explicit notion of skill-concept sep-

aration underlies the contributions of this paper, including

a new novel-VQA evaluation method which we will intro-

duce next, as well as a new framework to weakly learn VQA

models that can answer novel questions (Sec. 4).

Novel-VQA Evaluation. While conceptually intuitive, this

skill-concept view offers natural ways to guide the evalu-

ation of VQA models in terms of out-of-distribution data.

In our experiments, we evaluate two novel-VQA settings:

1) answering questions on novel compositions of skills and

concepts; 2) answering questions about concepts for which

the model has not seen any answers before.

Comparison to Existing Evaluations. Our evaluation pro-

tocol is different from existing VQA benchmarks that also

aim to measure VQA models’ generalization ability. VQA-

CP [2] builds train-test splits from VQA v2/v1 [6, 16] with

distinct answer distributions by greedily dividing the ques-

tions based on their annotated question types (i.e., first few

words in the question: “how many”, “is the”,...) and an-

swers, but this does not capture skill-concept compositions

because these question types do not necessarily correspond

to skills (e.g., “Is the dog waiting?” requires action recog-

nition and “Is the sky blue?” requires color recognition yet

both have question type “is the”), and the same skill-concept

composition can appear in training and testing, which vio-

lates our novel-VQA setting. TDIUC [30] evaluates VQA

accuracy on different categories of task types, without re-

gard for the concepts in the questions. [52] creates test-

ing splits such that at least one word of a question is un-
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Figure 3. Overview of our approach. Left: We learn to ground concept representations by contrasting the multi-modal representations of a

masked concept token in the target example and words in other questions. Right: We encode skills in the summary representations of the

question by contrasting with summary representations of other questions with the same (positive) or different (negative) skills.

seen during training, which does not consider skills. None

of these benchmarks directly address and evaluate skill-

concept compositionality like our evaluation protocol.

Skill-Concept vs. Elementary Compositions. Existing

compositional evaluations primarily define compositions as

relational reasoning chains associated with questions [26,

29] (Fig. 2), which are suited for learning programs of el-

ementary operations to answer questions. There are two

main issues with applying this existing compositional view

to real-image question answering. First, the concepts and

their attributes are over-simplified and not representative

of the diverse visual presentations in the real world. Sec-

ond, the kinds of compositional questions in these synthetic

datasets rarely appear in natural questions about real-world

images. Our proposed skill-concept composition view is

more applicable to real-world VQA and, as a result, can

better represent the capabilities that people care about in

real-image question answering.

4. Approach

Preliminaries. We assume that we are given a par-

tially labeled dataset of image I , question Q, and an-

swer labels A, where (Ia, Qa, Aa) ∈ Da has labels

and (Iu, Qu) ∈ Du does not. Typically, models are

trained with a VQA loss [51] using the labeled dataset,

Da. Given an example (I,Q), image region features,

gv(I) = {v1, ..., vM}, and question token embeddings,

gw(Q) = {x1, ..., xN}, are extracted and input to a multi-

modal encoder to produce multi-modal representations of

both modalities, f(gv(I), gw(Q)) = ({zm}Mm=1, {hi}
N
i=1),

where zm and hi are the image and text multi-modal repre-

sentations, respectively. An answer is predicted by pooling

the encoded representations to a single representation (or

using a CLS token as input [11]), which is then input to a

softmax output layer. We build upon this basic VQA setup

to learn skill-concept separation, and uniquely take advan-

tage of both labeled and unlabeled data.

Overview. We aim to learn separable skills and concepts,

such that we can compose them to answer novel questions.

To do so, the model should recognize that concepts men-

tioned in the question are manifested by their appearances

in the image (i.e., grounding) and that skills should be iden-

tifiable regardless of the concepts in the question or im-

age. Gathering supervision for identifying concepts in the

question, grounding them in the image, and labeling ques-

tions with skills would be very costly. Therefore, we pro-

pose to learn skill-concept separation in a self-supervised

manner using contrastive learning [7, 41]. Illustrated in

Fig. 3, we train the model with two additional contrastive

objectives jointly with the VQA objective: concept ground-

ing (Sec. 4.1), which learns grounded concept representa-

tions, and skill matching (Sec. 4.2), which encodes concept-

agnostic representations of skills. For each of our objec-

tives, the model is presented with a target example and a

reference set of positive and negative examples sampled

from carefully curated candidate references. Each objective

trains the model to make the representation from the target

example similar to those of the positive ones. We expound

our training procedure for learning these objectives jointly

with VQA in Sec. 4.3. In the following, for brevity, we put

specific details of functions/settings in Appendix B.

4.1. Concept Grounding

To learn grounded representations of concepts, we mask

the concept mention from the target question and then train

the model to recover this concept mention, using the multi-
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Figure 4. Target example (left) and a reference set of posi-

tive/negative examples (right) from our CCC references.

modal contextual information, by pointing to the same con-

cept mention in examples in the reference set (Fig. 3).

Concept Discovery. We first identify the concept words

that can be grounded in images. While this can be done

with different methods [12, 20, 31], we simply use heuris-

tics. We use POS tagging and lemmatization [21] to identify

the 400 most frequent nouns in VQA v2 and then we filter

out concepts that cannot be grounded (e.g., “time”). For a

given question, Q, we want to find examples that have co-

occurring mentions of a concept and the appearance of that

concept in the image. It is likely that if a question about

an image mentions a concept, then that concept may appear

in the image [15]. Therefore, we identify the set of ques-

tions that mention the same concept, c, call it R̃+
g (I,Q, c),

which we consider as candidate positive references for Q.

The set of questions not mentioning any of the same con-

cepts are considered as candidate negative references, call it

R̃�

g (I,Q, c). To increase the likelihood of the concept ap-

pearing in the image, we employ a set of NLP-based heuris-

tics to remove questions whose images may not contain the

concept, such as counting questions with an answer of “0”.

Concept-Context Contrastive (CCC) References. Given

a target question, Q, and a target concept mention, c, in

Q, we could simply create reference sets by randomly

sampling positive and negative examples [3, 41] from

R̃+
g (I,Q, c) and R̃�

g (I,Q, c), respectively, based solely on

if the question contains c or not. However, we propose a

novel reference example filtering strategy to encourage con-

cept grounding. Our motivation is that, during VQA train-

ing, a concept often co-occurs with certain types of visual

scenes or language priors. So the positive and negative ex-

amples should force the model to not rely on superficial

cues when contrasted against the target example and, in-

stead, look at the correct visual regions. Our solution is to

build sets of refined reference candidates, R+
g (I,Q, c) and

R�

g (I,Q, c), for each (I,Q, c) tuple to ensure that the co-

occurrence factor present in the dataset can be reduced. As

shown in Fig. 4, we want to find positive examples that also

contain the concept “tree”, but with distinct visual scenes

and questions from the target. For negative examples, we

seek distractors that are similar to the target in terms of

the question or visual scene (e.g., mountains with skiers in

Fig. 4), but do not reference “tree”. To achieve this, we first

represent the context of c by masking out c in the question

and inputting the masked questions and the image into off-

the-shelf feature extractors to obtain question context repre-

sentation, q, and image representation, v.3 We measure the

contextual similarity by:

ξ = βcos(q, q0) + (1− β)cos(v, v0), (1)

where β is a scalar and (v, q) and (v0, q0) are the represen-

tations from target and candidate examples, respectively.

To select positive examples from R̃+
g (I,Q, c), we use

β = 0.6 and sample a set, R+
g (I,Q, c), of N+ exam-

ples that minimize ξ as our candidate positive examples for

(I,Q, c). For negatives, we apply two settings of β that

maximize ξ: β = 0.7, which favors examples with more tex-

tual similarity, and β = 0.3, which prioritizes images with

similar visual context. We select N� examples from each

setting as our candidate negative examples, R�

g (I,Q, c). Il-

lustrated in Fig. 4, when sampling reference sets from these

two sets of candidates, the examples encourage the model

to learn the specific correspondence between the concept

mention in the question and its appearance in the image.

Intuitively, the model must to learn to ground the concept

mention in the presence of the distractors.

Concept Grounding Loss. Let (I,Q) and c be the target

example and target concept mention, respectively, and let

X = {(Ik, Qk)}
K
k=1

be a reference set. Let k⇤ be the index

of the positive example in X sampled from R+
g (I,Q, c),

while the other K−1 examples are negative examples from

R�

g (I,Q, c). Let wi be the token in Q that refers to the

concept c. We mask out wi and input this masked version

of the question along with the corresponding image into the

model, f , which outputs multi-modal representations from

which we extract the representation of the masked concept

token, hi. Next, we individually feed the examples from

X into the model to obtain each token representation ĥk,j ,

where j is the index of a token in Qk. Let ĥk∗,j∗ be the rep-

resentation of the concept mention in the positive example’s

question. Our grounding loss is an NCE objective [7, 41]

3We use BERT [11] for questions and ResNet101 [18] for images.
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that requires the model to match the multi-modal represen-

tation of the masked concept mention to the representation

of the same concept mention in the reference set:

Lg = − log
exp(sim(φg(hi),φg(ĥk∗,j∗)))

P
k,j exp(sim(φg(hi),φg(ĥk,j)))

, (2)

where φg is a learned projection function and sim(·, ·) is a

similarity function (e.g., dot product or cosine similarity).

To correctly match hi with ĥk∗,j∗ , the model must encode

the visual features that match between the images of these

examples in both token representations. Our CCC refer-

ences encourage these representations of the concept men-

tion in the positive example and the masked concept men-

tion to be grounded to the right visual regions as the model

cannot rely on superficial textual or visual co-occurrences.

4.2. Skill Matching

Contrary to visual concepts, the essential skill needed

to answer a certain question is largely independent of im-

age appearances and mentions of concepts in the question.

For example, counting questions should share a similar pro-

cess to produce an answer: image areas associated with the

subjects of counting are summarized to make the count pre-

diction. This process should be independent of the type of

objects being asked about. In other words, we seek to learn

summary representations of questions that share the essen-

tial steps to infer the answer and are invariant to concepts.

Skill References. A straightforward approach to learn skills

is to annotate questions which explicitly require the same

reasoning steps. This annotation is readily available on syn-

thetic datasets [26, 29], but not available on datasets involv-

ing real-world images and questions. Instead, we propose

to mine sets of contrasting examples to learn which ques-

tions require the same/different skills, matching questions

with the same skills. Since the skills required for the ques-

tion are typically indicated by the words of the question,

we identify questions that are semantically similar. Es-

sentially, questions that require the same skill (e.g., “What

color ...”) should be related to one another, regardless of

the specific concept mentions in the question. So, for each

question, we mask out the concept words and we compute

their BERT [11] representations. For a given (I,Q), the

set of positive reference examples, R+
s (I,Q), are sampled

from the top-200 most similar questions using BERT repre-

sentation, and the set of negative examples, R�

s (I,Q), are

randomly chosen from the rest of the dataset.

Skill Matching Loss. For a given target example, (I,Q),
let h be a summary representation of the target question.

This can be computed using a special input token like

BERT [11] or via a pooling operation on all question to-

ken representations output from the encoder. We sample a

reference set of image-question pairs, {(Il, Ql)}
L
l=1

, where

the positive example, Ql∗ from R+
s (I,Q), shares the same

skill as the target question, and the rest of the reference set

are negative examples from R�

s (I,Q). Let ĥl be a summary

representation for a question in the reference set. Shown in

Fig. 3, our skill matching loss is defined as

Ls = − log
exp(sim(φs(h),φs(ĥl∗)))

P
l exp(sim(φs(h),φs(ĥl)))

, (3)

where ĥl∗ is the positive example representation and φs is

another learned projection function.

4.3. Training Procedure

With our losses, we use a multi-tasking learning proce-

dure [13, 40], where at each step we employ our objectives

with probability psep or not with probability 1 − psep. Dur-

ing training, we always first sample an instance from the

labeled data, Da, and update the model by minimizing the

VQA objective. If at the current iteration we do not use our

skill and concept objectives, then we only use the VQA ob-

jective. Otherwise, we first use the VQA objective and then

apply our other objectives. Both objectives are computed in

the same fashion: for Lg (or Ls), we sample a target exam-

ple from Da
∪ Du along with N+

r positive examples from

R+
g (or R+

s ) as well as N�

r negative examples from R�

g (or

R�

s ), combine the sampled references to form the current

reference set, and compute the loss term. We then sum Lg

and Ls, and update the model to minimize the negative sum.

5. Experiments

Data and Settings. We run our experiments on VQA

v2 [16], which contains real images, human-written ques-

tions, and a variety of skills required to answer the ques-

tions. Since the goal of this work is to examine a model’s

performance on different types of novel questions, it re-

quires the availability of answer annotations for the test

data. Since the annotations of test-dev and test-std sets of

VQA v2 are not publicly available, we use questions from

the validation set for testing as is common [2, 45]. We do

not train or tune hyperparameters with the validation set; it

is strictly used for evaluation. We compare performance us-

ing the VQA accuracy [6] on different splits of novel ques-

tions. Details are provided in Appendix C.

Model Comparisons. We select a set of recent VQA mod-

els to benchmark their novel-VQA performance. The first

category is compositional models [5, 22, 23, 46]. We use

StackNMN [22] and XNM [46], which are designed to han-

dle compositional questions, like those in CLEVR [29], and

have state-of-the-art performance on these datasets while

also being applicable to real images without supervision

from functional programs or image scene graphs.

The second type of model we experiment with is

transformer-based [8, 11, 35, 38, 39, 50, 53, 56]. We
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Model
Counting Color Subcat.

Overall
animal {animals} {vehicles} {electronics} animal {dishware} vegetable

XNM [46] 56.02 48.32 44.35 51.94 77.22 65.73 57.33 57.27

StackNMN [22] 54.22 47.56 46.10 52.83 76.57 69.22 57.17 57.67

X-Att [50] 58.94 56.28 46.30 57.05 73.15 67.29 57.25 59.47

X-BERT [8] 63.58 54.58 42.34 56.84 75.88 70.31 58.96 60.36

Base 62.57 59.19 48.33 61.84 76.57 72.91 58.33 62.82

Ours 65.16 59.87 50.75 62.21 77.45 73.76 61.04 64.32

Table 1. VQA accuracy on novel skill-concept compositions. The highest and the lowest numbers of each experiment are emphasized.

Model lamp fruit fridge surfer flag skateb. oven sheep banana zebra Overall

XNM [46] 53.69 50.23 57.98 72.68 36.58 70.16 53.49 54.96 52.35 61.50 56.36

StackNMN [22] 54.27 46.10 58.97 74.10 41.31 74.11 56.30 57.12 50.98 61.25 57.45

X-Att [50] 46.26 33.10 51.52 67.68 31.53 69.73 51.69 49.83 41.71 64.93 50.80

X-BERT [8] 44.43 30.72 50.83 61.60 32.46 66.05 48.10 50.32 43.10 57.06 48.47

Base 55.14 52.99 59.06 74.12 39.05 71.67 56.60 63.31 49.83 56.05 57.78

Ours 57.40 54.40 60.92 74.36 40.15 75.27 59.91 64.04 50.78 60.77 59.80

Table 2. VQA Accuracy on individual novel-concept split. skateb. refers to skateboarder.

use two top-performing transformer architectures from this

model family: 1) a two-stream, cross-attention model [50]

(X-Att), which has modality specific branches and cross-

attentions in early layers followed by multi-modal layers

later in the network; and 2) a vision-and-language trans-

former model [8] (X-BERT) that acts as multi-modal en-

coder throughout the entire network. For fair comparison,

we do not use pre-training, same as our model, since we are

specifically interested in the generalization ability of data-

efficient models without requiring large-scale (e.g., 9M+

image-text pairs), in-domain data external to VQA [19, 47].

Lastly, for our base model, we employ a variant of the

standard multi-modal transformer where image features can

be attended by both the CLS token and language features.

When the base model is trained without the proposed skill-

concept contrastive losses, it serves as a baseline model (de-

noted by Base).

Detailed settings are in Appendix C and Appendix D.

5.1. Novel Skill-Concept Composition VQA

We select three prevalent and common skills present in

VQA v2: counting, color querying and subcategory recog-

nition. For each skill, we remove the data labels for its co-

occurring questions with one concept or a set of multiple

concepts which can form a distinct category from training,

and then test on these compositions. The concepts (or con-

cept groups) are randomly sampled with two criteria: each

skill-concept composition contains reliable amount of test

data to measure accuracy and the compositions have diverse

coverage across the dataset (more details in Appendix A).

Tab. 1 shows the VQA accuracy on each of the novel

compositional subset. Interestingly, although neural mod-

ule networks are designed to explicitly break down the ques-

tion answering process into subtasks, which in principle

should help with adapting these subtasks to new questions

and thus generalize better, they yield lower performance

than transformer models. This may be due to the effec-

tive feature learning capacity of self-attention mechanisms.

Among all transformer models, our base encoder achieves

competitive performance to existing networks, demonstrat-

ing that it is a strong baseline among multi-modal trans-

formers. Finally, our contrastive learning framework out-

performs the baseline and all other approaches across each

novel composition set. This supports the effectiveness of

our framework for generalization to new compositions.

5.2. Novel-Concept VQA

For this experiment, we are interested in the setting

where models are never trained to answer questions about a

concept but can make use of the unlabeled image-question

pairs, and then are tested on questions that have mentions

of this given concept. Similar to the previous experiment,

these concepts were sampled to maximize coverage as well

as maintaining a reasonable test size. This setting is more

challenging than the previous experiment since the model

misses the VQA training supervision on any questions that

have the given concept, as opposed to any questions that

have both the given concept and a certain skill.

We provide qualitative examples of novel-concept VQA

in Appendix E and report quantitative results in Tab. 2. For

this more challenging setting of novel question answering,

on average, two of the existing transformer architectures

underperform other models by a noticeable margin. This

may suggest that the transformer architectures, which per-

form well on large-scale vision and language pre-training,

may have difficulty specializing to the VQA task. The

Base model slightly outperforms neural module networks.

Lastly, our framework again outperforms all models on av-

erage, demonstrating its value in improving VQA general-

ization ability on novel concepts.
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5.3. Analysis

Figure 5. Correct and incorrect grounding examples. We visualize

the most similar visual region to the concept in the question.

Concept Grounding. Since our approach learns to ground

concepts without strong supervision, we would like to test

its grounding abilities directly. To obtain an evaluation set,

we manually annotate 320 image-question-concept tuples

with the visual regions in the image that corresponds to the

concept in each tuple. Candidate visual regions are found

using Faster-RCNN [43]. We use recall@5 as our ground-

ing metric, considering a grounding correct if the correct vi-

sual region falls within the top 5 most similar visual regions

to the target concept token. The model trained with our

framework achieves a grounding recall of 59.12, compared

to 43.71 of Base. Note that our framework obtained this im-

provement with no additional training data for grounding.

As shown in Fig. 5, our model can often correctly ground a

variety of objects, but can be fooled by ambiguous looking

concepts like the candle in the incorrect example. Further, it

is challenging to learn to differentiate concepts that almost

always co-occur (e.g., “shirt” and “person”).

Loss Ablation. We ablate our losses by sampling three

novel compositions and three novel concepts and report

their average performance in Tab. 3. Adding our losses

leads to consistent gains, with top performance achieved

with our full framework. When used alone, our ground-

ing loss seems to contribute a larger benefit compared to the

skill loss. Nonetheless, the best performance is achieved

by combining the two components, further supporting the

value of skill and concept separation. We also experiment

with a masked language modeling (MLM) objective [11]

that replaces our losses. Our objectives perform better than

the MLM objective, implying that the improvements our ob-

jectives offer are not simply due to additional data.

CCC Reference Sets. To study the effects of our CCC ref-

erence set selection strategy, we compare it with the com-

monly used random sampling method [3, 41] and report

novel-concept VQA results in Tab. 4. We train both models

with our full framework, the only difference being the ref-

erence set construction method for the concept loss. Both

models improve upon the Base model, with our reference

set construction method offering more consistent gains.

Existing Benchmarks. We also evaluate on VQA-CP [2]

Model Avg. Novel Count Avg. Novel Concepts

Base 58.03 60.42

Base+MLM 58.41 60.25

Base+Ls 58.83 61.85

Base+Lg 59.80 62.06

Ours 60.71 63.19

Table 3. Effect of using different losses on novel skill-concept

composition and novel-concept VQA.

Model Lamp Fruit Fridge Surfer Flag

Base 55.14 52.99 59.06 74.12 39.05

Random +2.80 +0.49 -0.16 -0.14 +0.50

CCC (Ours) +2.26 +1.41 +0.98 +0.24 +1.10

Table 4. Comparing different reference set construction schemes

for concept learning across five different concepts.

Model VQA-CP Test-dev Test-std

Base 40.98 69.60 69.99

Ours 41.71 69.78 70.09

Table 5. Single model VQA performance on VQA-CP [2] and

VQA v2 test-dev and test-std splits. Both models see the exact

same training data (i.e., no compositions/concepts are removed).

and the test-dev/test-std splits of VQA v2 (Tab. 5). While

we see gains in general, notably, our approach is able to

improve on VQA-CP without extra annotations, ensem-

bling/tuning, or a performance drop on VQA v2.

6. Conclusions

We propose a new setting for generalization in VQA:

measuring the ability to compose the skills needed to an-

swer a question and the visual concepts that should be

grounded to the image. We show that existing approaches

have difficulty generalizing to unseen compositions of these

two factors. We present a novel approach that implicitly

disentangles skills and concepts, while grounding concepts

visually, using a contrastive learning procedure. Our ap-

proach is able to learn from unlabeled VQA data in order

to answer questions about previously unseen concepts. Re-

sults on the VQA v2 show that the proposed framework can

achieve state-of-the-art performance on novel skill-concept

compositions as well as generalize from unlabeled data.
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