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Abstract

Active Surface Models have a long history of being

useful to model complex 3D surfaces. But only Active

Contours have been used in conjunction with deep

networks, and then only to produce the data term as well as

meta-parameter maps controlling them. In this paper, we

advocate a much tighter integration. We introduce layers

that implement them that can be integrated seamlessly into

Graph Convolutional Networks to enforce sophisticated

smoothness priors at an acceptable computational cost.

We will show that the resulting Deep Active Surface

Models outperform equivalent architectures that use

traditional regularization loss terms to impose smoothness

priors for 3D surface reconstruction from 2D images and

for 3D volume segmentation.

1. Introduction

Triangulated meshes are one of the most popular and

versatile kind of 3D surface representation. In recent

years, one of the most popular approaches to inferring

such representations from images has been to use deep

networks to produce a volumetric representation and then

running a marching-cube style algorithm to create the

mesh. However, using marching-cubes tends to introduce

artifacts and introduces additional complexities when trying

to make the process end-to-end differentiable. Hence, deep-

learning methods that go directly and without resorting to

an intermediate stage from 2D images [40, 32, 41] and 3D

image stacks [42] to 3D triangulated surfaces have recently

been proposed.

Unfortunately, these direct methods are also prone to

generating unwanted artifacts such as those shown at the

top of Fig. 1. State-of-the-art methods handle them by

introducing additional regularizing loss terms such as the

edge length loss, the normal consistency loss, or the

Laplacian loss during training [14]. To be effective without

sacrificing reconstruction accuracy, these terms must be

carefully weighted, which is typically difficult to achieve.

Figure 1: Smoothness and Accuracy. (Top) 3D surface

meshes of a couch modeled from an RGB image and of a synaptic

connection segmented from an electron microscopy stack by Mesh

R-CNN [14] and by Vox2Mesh [42], two state-of-the-art mesh-

generating methods. (Bottom) Results using the same backbones

augmented by our DASM smoothing layers. The meshes have far

fewer artifacts and we will show that they are also more accurate.

In this paper, we solve this problem by introducing into

the surface generating architecture a special-purpose layer

that regularize the meshes using a semi-implicit scheme that

involves recursively solving sparse linear systems of linear

equations. It propagates smoothness constraints much faster

and more reliably than traditional gradient descent-based

energy minimization without requiring much computational

power and yields surface meshes that fit the data while

remaining smooth, such as those shown at the bottom of

Fig. 1. Furthermore, this scheme enables us to

• modulate locally the amount of regularization we

impose so that we regularize only where it is needed

and, hence, preserve accuracy;

• use meshes consisting of vertices with arbitrary
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degrees which is not commonly seen in majority of

Active Shape Models.

Both of these are important to model complex 3D objects

that can be smooth in some places and very curvy

elsewhere.

We took our inspiration from the Active Surface Models

(ASMs) idea [38, 39], which were first introduced over

30 years ago and also used a semi-implicit optimization

scheme to model complex 3D shapes from images. Today,

they are mostly used in conjunction with deep networks

that are used to compute the data term that is minimized

when deforming the models and meta-parameter maps that

controls its behavior [27, 10]. Even though these methods

are end-to-end trainable, they do not embed the ASMs

within the contour deforming graph convolution networks

as we do. Furthermore, they are limited to 2D contours

whereas we handle irregular 3D surface meshes, that is,

meshes whose vertices can be of arbitrary degrees. To

this end, we propose an original method to compute the

derivatives required for back-propagation on such a mesh.

Our contribution therefore is Deep Active Surface

Models (DASMs) that outperform equivalent architectures

in which the smoothness constraints are imposed by

minimizing a traditional loss function. We will demonstrate

this for 3D surface reconstruction from 2D images and for

3D volume segmentation.

2. Related Work

2.1. Active Contour and Surface Models

Active contour models allow contours to be refined

to account for local image properties while preserving

global geometric primitives. They were first introduced

in [19] for interactive delineation and then extended for

many different purposes [12]. Active surface models

operate on the same principle [38, 39] but replace the

contours by triangulated meshes to model 3D surfaces.

They have proved very successful for medical [28, 16] and

cartographic applications [13], among others, and are still

being improved [23, 35, 18].

Both active contours and surfaces operate by minimizing

an objective function that is a weighted sum of data term

derived from the images and a quadratic term that enforces

global smoothness. They owe part of their success to the

ability to perform the optimization using a semi-implicit

scheme that propagates smoothness constraints much faster

than gradient descent energy minimization would and gives

them superior convergence properties. In our work, we

integrate this scheme into our deep architecture.

2.2. Deep Surface Models

Before the advent of deep learning, mesh representations

used to be dominant in the field of 3D surface

reconstruction [28, 12]. Since then, they have been eclipsed

by methods that rely on continuous deep implicit-fields.

They represent 3D shapes as level sets of deep networks

that map 3D coordinates to a signed distance function [33,

43] or an occupancy field [29, 4]. This mapping yields

a continuous shape representation that is lightweight but

not limited in resolution. This representation has been

successfully used for single-view reconstruction [29, 4, 43]

and 3D shape-completion [6].

However, for applications requiring explicit surface

parameterizations, the non-differentiability of standard

approaches to iso-surface extraction, such as the many

variants of the Marching Cubes algorithm [26, 31],

as well as their tendency to produce artifacts, remain

an obstacle to exploiting the advantages of implicit

representations. The non-differentiability is addressed

in [36] but the artifacts remain. Pixel2Mesh [40] and its

newer variants [32, 41] represent attempts to overcome this

difficulty by going directly from 2D images to 3D surface

meshes without resorting to an intermediate stage. This

approach has recently been extended to handle 3D image

volumes [42]. These methods rely on graph-convolution

layers to iteratively deform an initial mesh to match the

target. While effective, they tend to produce large artifacts

that detract both from their accuracy and their usability for

further processing. This can be mitigated by introducing

regularizing cost terms into the training loss function.

However, it is difficult to weigh them properly to remove the

artifacts without compromising the accuracy. Our method is

designed to address this very issue.

2.3. Deep Contour Models

Similar to Pixel2Mesh and its variants for surface

extraction, there exist its 2D counter parts. [24,

34] use graph-convolution networks to perform instance

segmentation by deforming a contour. The same approach

is used in [25] to perform interactive object annotation.

2.4. Active Contours/Surfaces and Neural Networks

Active contour models have been combined with deep

networks by exploiting the differentiability of the active

contour algorithm [27, 5, 15]. These approaches use

deep networks to produce the data term as well as meta-

parameter maps controlling the behavior of the active

contour. This has also been exploited to correct errors in

contour labels used in semantic segmentation [1]. However,

we are not aware of any recent work that embeds active

surfaces into deep networks. One potential reason is that

most current approaches to generating 3D meshes in a deep

learning context, such as those discussed above [40, 32, 41,

42], yield irregular meshes in which the vertices can have

varying number of neighbors. This makes the computation

of the derivatives required for back-propagation non-trivial.
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This has been addressed in the ASM context by introducing

finite element-based computations that notably complexify

the approach [21] or non-easily differentiable elements such

as quadric fitting in the neighborhood of some vertices [22].

In this paper, we propose an approach that is back-

propagation friendly on potentially large meshes.

3. Method

We first introduce the general formulation of Active

Surface Models (ASMs) and then show how we can apply it

to meshes whose vertices can be of arbitrary degree. Finally,

we discuss the integration of ASMs and mesh-deforming

Graph-Convolutional Neural Networks (GCNNs), which

produces our Deep Active Surface Models (DASMs).

3.1. Active Surface Model (ASM)

An ASM consists of a surface S(Φ) whose shape is

controlled by a vector of parameters Φ and can be deformed

to minimize an objective function E(Φ), often referred to as

an energy. We first introduce a continuous formulation and

then its discretization, which is the one used in practice.

Continuous Formulation. S is represented by the

mapping from R
2 to R

3

v : (s, r; Φ) 7→ (vx(s, r; Φ), vy(s, r; Φ), vz(s, r; Φ)) , (1)

where (s, r) ∈ Ω = [0, 1] × [0, 1]. Fig. 2 depicts this

mapping and its derivatives. Φ is typically taken to be

Figure 2: Derivatives. Top. The surface is represented by

a differentiable mapping v from R
2 to R

3. Bottom. After

discretization, let v(s, r) be a vertex. To approximate derivatives

with respect to s using finite differences, we need to estimate

quantities such as v(s+ δs, r) where δs is small. To this end, we

estimate the barycentric coordinates λ, λ1, and λ2 of v(s+ δs, r)
in the facet it belongs to and take v(s + δs, r) to be λv(s, r) +
λ1v(s1, r1) + λ2v(s2 + r2), where v(s1, r1) and v(s2, r2) are

the other two vertices of the facet. The same operation can be

performed for derivatives with respect to r.

Φ∗ = argminΦ E(Φ) , (2)

E(Φ) = Edat(Φ) + Edef(Φ),

where Edat is a data term that measures how well the

surface matches the images and Edef is a deformation

energy that is smallest when the surface is smooth. Edef

is often written as

Edef =

∫
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The surface Φ∗ that minimizes the energy E(Φ)satisfies
the associated Euler-Lagrange equation [9, 19]
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∂

∂s

(

w10

∂v

∂s

)

−
∂

∂r

(

w01

∂v

∂r

)

(4)

+2
∂2

∂s∂r

(

w11

∂2v

∂s∂r

)

+
∂

∂2s

(

w20

∂2v

∂s2

)

+
∂

∂2r

(

w02

∂2v

∂r2

)

,

where F = −∇Edat.

Discrete Formulation. When S(Φ) is discretized and

represented by a triangulated mesh M(Φ), Φ becomes the

3N -vector built by concatenating the 3D coordinates of

its N vertices. Using the finite-difference approximation

described in the appendix, Eq 4 can be written in matrix

form as

AΦ∗ = F (Φ∗) , (5)

where F is the negative gradient of Edat with respect to Φ.

Because A is usually non-invertible, given an initial value

Φ0, a solution to this equation can be found by iteratively

solving

α(Φt − Φt−1) +AΦt = F (Φt−1) ,

⇒ (A+ αI)Φt = αΦt−1 + F (Φt−1) , (6)

where I is the identity matrix. When the process stabilizes,

Φt = Φt−1 and is a solution of Eq. 5.

The strength of this semi-implicit optimization scheme is

that it propagates smoothness constraints much faster than

traditional gradient descent that minimizes energy E(Φ)
and at a low computational cost because A is sparse,

which means that the linear system of Eq. 6 can be solved

efficiently. In this scheme α plays the role of the inverse

of a step size: When α is large enough for the Froebinius

norm of αI to be much larger than that of A, the optimizer

performs a steepest gradient step given by F (Φt−1) with

learning rate 1

α
at each iteration. Conversely, when α is

small, A dominates and much larger steps can be taken.
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In the original deformable contour models [19], the

matrix A + αI was never inverted. Instead Eq. 6 was

solved by LU decomposition. Instead, to implement this

effectively on a GPU using sparse tensors and to speed

up the computations of the losses and their derivatives, we

approximate the inverse of(A + αI) using the Neumann

series

(A+ αI)−1 ≈

K
∑

n=0

(−1)n
(

1

α

)n+1

An . (7)

and use it to solve Eq. 6. We use K = 4, which yields a

sufficiently good approximation of actually solving Eq. 6.

Computing the Regularization Matrix A. In most

traditional ASMs, the meshes are either square or hexagonal

and regular, which makes the computation of the derivatives

of the mesh vertices possible using finite-differences and,

hence, the regularization matrix A of Eq. 5 easy to populate.

When the mesh is triangular and irregular, vertices

can have any number of neighbors and the computation

becomes more complex. Nevertheless the required

derivatives, of order 2 and 4, can still be expressed as

finite differences of weighted sums of vertex coordinates

where the weights are barycentric coordinates of small

perturbations of the original vertices. This is explained in

more details in the appendix.

3.2. Deep Active Surface Model (DASM)

The update equation in a typical mesh-deforming graph-

convolutional neural network (GCNN) that plays the same

role as that of Eq. 6 is

Φt = Φt−1 +
1

α
F (Φt−1,Xt−1) , (8)

where F denotes the negative gradient of the loss function

calculated using the feature vector X
t−1 associated with

the mesh parameters Φt−1. In the case of our deep active

surface models, it becomes

(A+ αI)Φt = αΦt−1 + F (Φt−1,Xt−1) , (9)

as in Eq. 6. In Eq. 8, the loss function typically includes

a regularization term to keep the mesh smooth, whereas

in Eq. 9 our semi-implicit scheme enforces smoothness by

solving the linear equation.

Uniform vs Adaptive DASMs Eq. 9 forms the basis of

the simplest version of our DASMs, which we will refer to

as Uniform DASMs because the same amount of smoothing

is applied across the whole mesh. This may result in under-

or over-smoothing because some parts of the objects require

more smoothing while some parts do not.

To account for this, we also introduce Adaptive

DASMs that are designed to smooth only where necessary,

as indicated by an auxiliary metric. Experimentally,

adaptive smoothing is required when the GCNN produces

particularly large deformations but only in a very specific

part of the mesh or fails to smooth-out artifacts produced by

mesh initialization algorithms. This could be eliminated by

strongly smoothing everywhere but would degrade accuracy

in high-curvature areas.

To solve this problem, we begin by using the

approximation of (A + αI)−1 from Eq. 7 to rewrite the

evolution equation of Eq. 9 as

Γt = Φt−1 +
1

α
F (Φt−1,Xt−1) ,

Φt = (I+
K
∑

n=1

(−1)n
(

1

α

)n

A
n)Γt , (10)

= Γt +BΓt with B =

K
∑

n=1

(−1)n
(

1

α

)n

A
n .

Γt represents Φt−1 incremented by the negative gradient

of the loss function F (Φt−1) but not yet smoothed. In

other words, we have rewritten the smoothing operation that

transforms Γt into Φt as simply adding BΓt to Γt . This

gives us the freedom to decide where we want to smooth

and where we do not by introducing a diagonal matrix Λ
and rewriting the update rule of Eq. 10 as

Φt = Γt + ΛBΓt . (11)

This update rule is similar to the one of the Adagrad

algorithm [11]. Here, each diagonal component λi,i of Λ
rescales the corresponding component (BΓ)i of BΓ. In

Adagrad, adaptive re-scaling is a function of past gradients.

Here we take it to be a function of current surface gradients

because we have observed that |BΓt|i tends to grow large

when the facets increase in size and smoothing is required,

and remains small otherwise. We therefore take the

diagonal values of Λ to be

λii = σ(|BΓt|i;β, γ) , (12)

where σ is the Sigmoid function and β, γ are its steepness

and midpoint. In this way, for small values of |BΓt|i, there

is almost no smoothing, but for larger ones there is. Fig. 3

illustrates this behavior.

Recursive smoothing Any single DASM step given by

Eq. 11 can only rectify a finite amount of deformations.

To mitigate this, we perform more than one adaptive-

smoothing step in-between gradient updates. During these

additional smoothing steps no gradient update is done and

we use F (Φt−1,Xt−1) = 0. In practice we perform these

steps until ‖Φt − Φt−1‖ < ǫ, where ǫ is a preset constant.

Fig. 4 illustrates this process.
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(a) Starting mesh Γt

(b) Uniform DASM (c) Adaptive DASM

Figure 3: Uniform vs Adaptative Smoothing. (a) Mesh at

time t. In general, |BΓt|q < |BΓt|p. (b) When using enough

uniform smoothing to remove the irregularity at point p, the mesh

will typically be oversmoothed at q. (c) When using adaptative

smoothing, the mesh is smoothed around p but not oversmoothed

around q.

Loss terms In architectures such as Mesh R-CNN [14]

and Voxel2Mesh [42], a loss term is used to supervise the

output of each mesh-refinement stage. We follow the same

approach and add a loss term at the end of each DASM

module. We write it as

L = Ldata + λLreg. , (13)

Ldata = λcf.Lcf. + λn.dist.Ln.dist. ,

Lreg. = λedgeLedge + λLap.LLap. + λn.cons.Ln.cons. .

Here LCf.,Ln.dist. are Chamfer and Normal distances [14]

and Ledge,LLap.,Ln.cons. are edge length loss, Laplacian

loss and normal consistency loss, respectively [40]. All

these loss terms are used in Voxel2Mesh [42] except

LNorm.. Similarly, they are all used in Mesh R-CNN [14]

except LLap. and LNorm..

4. Experiments

In this section, we test DASM’s ability to predict 3D

surfaces from 2D images on Shapenet [3] and to extract 3D

surfaces from electron microscopy image stacks.

4.1. From 2D Images to 3D Surfaces

For prediction of 3D surfaces from 2D images, we

benchmark our Adaptative DASM, which we will refer to

as Ad.-DASM, on the ShapeNet dataset [3].

Baselines. We use Mesh R-CNN [14] both as a baseline

and as the backbone of our network because, among

methods that use explicit surface representations, it is

currently reported as yielding the best results on ShapeNet.

We also compare against Pixel2Mesh [40].

Dataset. ShapeNet is a collection of 3D textured CAD

models split into semantic categories. As in the

Mesh R-CNN experiments, we use ShapeNetCore.v1 and

corresponding rendered images from [7]. They are of

size 137 × 137 and have been captured from 24 random

viewpoints. We use the train / test splits of [14], that is,

35,011 models seen in 840,189 images for training and

8,757 models seen in 210,051 images for testing. We use

5% of the training data for validation purposes.

Metrics. We use the same metrics as in Mesh R-CNN.

They are the Chamfer distance, Normal distance, and F1τ

at τ = 0.1, 0.3 and 0.5. For the Chamfer distance a lower

value is better while a higher value is better for the others.

Implementation. We use the publicly available Pytorch

implementation of Mesh R-CNN and incorporate

Adaptative DASM layers after each mesh-refinement

stage. We also add a Uniform DASM layer after the

cubify operation to make the input to mesh refinement

stages smooth. We train the networks for 12 epochs using

Adam optimizer [20] with a learning rate 10−4. We set

α = 1, β = 6000 and γ = 15.

Mesh R-CNN only uses the Ledge term of Eq. 13 for

regularization purposes when training on ShapeNet and

turns off the term LLap. because, according to remarks on

Github by the authors, it has not helped to improve the

results. For a fair comparison, we therefore do the same.

In this setup, Ledge, which penalizes increases in edge-

length, is the only other source of geometric regularization

besides the one we provide with our DASM layers. We

will therefore experiment with different values of λedge,

the weight parameter in Eq. 13 that controls how much

influence it is given.

Chf. (↓) Normal F 0.1 F 0.3 F 0.5

Pixel2Mesh 0.241 0.701 31.6 77.3 91.3

Mesh R-CNN 0.189 0.691 32.8 80.4 92.6

Ad.-DASM 0.183 0.727 33.5 81.0 92.6

Table 1: Comparative results on ShapeNet.

Results. We provide qualitative results in Fig. 5 and

report quantitative results in Table 1 for λedge =
0.2. Ad.-DASM outperforms Pixel2Mesh and boosts the

performance of Mesh R-CNN. Furthermore, the meshes it

produces are of much a better visual quality.

In Table 2, we report similar results for different values

of λedge, which are depicted qualitatively by Fig. 6. The

trend is the same for λedge = 0.6 and 1.0. However,

for λedge = 0.0, the Chamfer distance for Mesh R-CNN
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(a) Ground truth (b) Input (c) ASM 1-step (d) ASM 3-steps (e) ASM 5-steps (f) ASM 7-steps

Figure 4: Performing multiple smoothing steps We start with a very noisy mesh produced by the algorithm of [14] run without

regularization. We have colored front-faces and back-faces of the meshes in blue and pink respectively for better visualization. After

running one step of surface evolution given by Eq. 6, we obtain the mesh of Fig. 4 (c). Subsequent meshes shown in Fig. 4 (d,e,f) are

obtained by continuing the surface evolution for 3, 5, and 7 steps respectively. In these subsequent steps we set F (Φt−1) to zero.

(a) (b) (c) (d) (b) (c) (d)

View 1 View 2
Figure 5: ShapeNet Results. (a) Input images (b) Mesh R-CNN results from two different viewpoints. The orange arrows highlight

commonly seen Mesh R-CNN artifacts. (c) DASM results in the same two views. The meshes are much smoother and most artifacts have

disappeared, except for a few highlighted by blue arrows.

λe. Chf. (↓) Norm. F 0.1 F 0.3 F 0.5

1.0
Mesh R-CNN 0.232 0.684 29.7 76.6 89.4

Ad.-DASM 0.231 0.691 29.3 76.6 89.3

0.6
Mesh R-CNN 0.212 0.681 30.6 79.2 91.4

Ad.-DASM 0.206 0.693 31.4 79.5 91.4

0.2
Mesh R-CNN 0.189 0.691 32.8 80.4 92.6

Ad.-DASM 0.183 0.727 33.5 81.0 92.6

0.0
Mesh R-CNN 0.144 0.713 35.8 85.1 94.2

Ad.-DASM 0.167 0.718 34.3 84.3 93.9

Table 2: Results on ShapeNet as a function of λedge.

is lowest even though the resulting meshes are extremely

noisy, as can be seen in the leftmost column of Fig. 6. Our

Chf. (↓) Normal F 0.1 F 0.3 F 0.5

PostProc-ASM 0.249 0.673 28.5 75.3 88.1

Uniform-DASM 0.201 0.699 31.4 78.3 91.3

Ad.-DASM 0.183 0.727 33.5 81.0 92.6

Table 3: Ablation study on ShapeNet.

interpretation for this somewhat surprising result is that, in

this regime, the meshes produced by Mesh R-CNN are so

noisy that DASM smoothing takes them away from the data

they are trying to fit and degrades the Chamfer distance. In

any event, even though the Chamfer distance is low, this can

hardly be considered as a good results, hence confirming

the observation made in [14, 40] that this metric might
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Figure 6: Influence of the regularization term. As λreg increases, the output of both methods becomes smoother but only DASM

completely eliminates the artifacts. Note that in the case λreg = 0, the output of Mesh R-CNN is an extremely irregular mesh that

nevertheless scores well on the Chamfer metric.

not be the best to evaluate the quality of a mesh. When

λedge = 1.0, the difference between DASM and Mesh R-

CNN performance is not statistically significant and this

is because, when using higher λedge, there are not many

anomalies for the DASM to fix.

Ablation Study It could be argued that we would have

gotten similar results by simply smoothing our meshes as

a post-processing step. To demonstrate this is not the case,

we implemented PostProc-ASM that starts with Mesh R-

CNN model trained with λedge = 0.2 that is then adaptively

smoothed by running several times the surface evolution

update of Eq. 11. In Table. 3, we compare PostProc-

ASM against Ad.-DASM and the results are clearly worse.

We also compare Ad.-DASM against Uniform-DASM,

which clearly shows the benefit of the adaptive scheme of

Section 3.2.

Failure modes The main source of failures are anomalies

produced by the GCNN that are too large to be rectified.

Remaining ones are denoted by blue arrows in Fig 5.

4.2. From 3D Image stacks to 3D Surfaces

In this section we benchmark our approach on CortexEM

dataset and compare DASM against Voxel2Mesh [42] and

several other baselines.

Baselines. We use Voxel2Mesh both as a baseline and

as the backbone of our network. We also compare our

performance against several architectures popular in the

biomedical imaging community [8, 30, 17, 37, 2].

Dataset. CortexEM is a 500×500×200 FIB-SEM image

stack of a mouse cortex. From this 26 sub-volumes with

dimension 96 × 96 × 96 were extracted so that each one

contains a synaptic junction that is roughly centered. 14

sub-volumes in the first 100 slices in the image stack are

used for training and the remaining 12 in the next 100 slice

are used for testing. The task is to segment the pre-synaptic

region, post-synaptic region, and synaptic cleft as shown in

Fig. 7.

Metrics. As in [42] and many other papers, we use the

intersection-over-union (IoU) as a measure of quality for

volumetric segmentation. To compare the meshes, we use

the Chamfer distance as in [42]. We repeat our experiments

3 times for each model and report the mean and the standard

deviation.
Pre-Syn. Synapse Post-Syn.

TernausNet [17] 73.5 ±1.3 64.4 ±0.5 78.4 ±1.3

LinkNet34 [37] 72.3 ±0.5 63.2 ±1.2 78.2 ±1.1

ResNet50 [2] 70.3 ±0.8 63.3 ±0.6 76.2 ±1.4

ResNet50-SE [2] 71.3 ±0.6 63.6 ±0.7 76.3 ±0.9

V-NET [30] 64.3 ±0.7 65.2 ±1.3 74.1 ±0.7

U-NET [8] 73.6 ±1.3 67.2 ±0.8 78.2 ±0.9

Voxel2Mesh0.25 77.3 ± 1.2 65.3 ±1.2 83.2 ±1.6

Voxel2Mesh0.025 76.8 ± 0.9 65.4 ±1.6 81.2 ±1.4

Ad.-DASM0.25 77.7 ±0.8 65.3 ±0.7 83.3 ±0.8

Ad.-DASM0.025 79.4 ±1.4 65.3 ±0.9 85.5 ± 1.2

Table 4: Comparative results on CortexEM. We use the IoU

metric to compare volumetric segmentations.

Pre-Syn. Synapse Post-Syn.

Voxel2Mesh0.25 1.62 ±0.4 0.19 ±0.2 2.41 ±0.7

Voxel2Mesh0.025 1.53 ±0.6 0.18 ± 0.4 2.35 ±0.4

Ad.-DASM0.25 1.59 ±0.5 0.19 ±0.3 2.39 ±0.8

Ad.-DASM0.025 1.47 ± 0.6 0.18 ±0.5 2.31 ± 0.6

Table 5: Comparative results on CortexEM. We use the

Chamfer distance (×10−2)

Implementation. As we did with Mesh R-CNN in

Section 4.1, we incorporate Ad.-DASM layers into a
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(a) (b) (c) (d) (b) (c) (d)

View 1 View 2
Figure 7: Modeling Synapses from Electron Microscopy Image Stacks (a) Representative slice from the input volume. (b) Voxel2Mesh

results seen from two different views. (c) DASM results seen from the same two views. The pre-synaptic region, post-synaptic region, and

synaptic cleft are shown in blue, green, and red, respectively. The DASM results are much smoother and without artifacts, while also being

more accurate.

Voxel2Mesh backbone. We train the networks for 150000

iterations using Adam optimizer [20] with a learning rate of

10−4. We set α = 1, β = 6000 and γ = 45.

To match the conditions in [42], Ad.-DASM was trained

using λedge = λLap. = λn.cons. = 0.25 in Eq. 13.

For comparison purposes, we also use λedge = λLap. =
λn.cons. = 0.025. To differentiate two versions, we

add the regularization coefficients as a subscript to model

names. This gives us Voxel2Mesh0.25, Ad.-DASM0.25,

Voxel2Mesh0.025, and Ad.-DASM0.025.

Results We report quantitative results in Table 4 in

IoU terms and in Table 5 in Chamfer distance terms.

Fig. 7 depicts qualitative results for Ad.-DASM0.25, and

Voxel2Mesh0.025. Ad.-DASM0.025 easily outperforms

Voxel2Mesh when segmenting pre and post synaptic

regions. For the smaller synaptic junction, Voxel2Mesh and

DASM are statistically equivalent because, unlike for the

other two regions, their shapes are simple and there is not

much improvement for DASM to make. In fact, the best

result is obtained by a vanilla U-Net.

Time (sec.) |V |

Voxel2Mesh 1.06 ±0.04 1534 ±4

Ad.-DASM 1.47 ± 0.06 1535 ±2

Table 6: Run times. We report the time required to perform a

forward and backward pass. |V | is the number of mesh vertices.

Computation time We report average execution time for

a single forward and backward pass for Voxel2Mesh and

DASM in Table 6. We run this test on a single Tesla V100

GPU. We have implemented the ASM module using custom

CUDA kernels and uses sparse tensors. Assembling the

regularization matrix and performing the update of Eq. 11

adds a 40% overhead, which is reasonable giving how large

the matrices we deal with are.

5. Conclusion

We have developed an approach to incorporating

Active Shape Models into layers that can be integrated

seamlessly into Graph Convolutional Networks to

enforce sophisticated smoothness priors at an acceptable

computational cost. By embedding the smoothing directly

into the update equations, we can deliver smoother and

more accurate meshes than methods that rely solely on a

regularization loss term.

In future work, we will further improve our adaptive

DASM scheme. Currently, it relies on a hand-designed

metric to detect where to smooth and where not to. We

will replace it by an auxiliary network that predicts where

smoothing is required, given the current state of the mesh

and the input data.
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