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Abstract

We propose a new approach to determine correspon-

dences between image pairs in the wild under large changes

in illumination, viewpoint, context, and material. While

other approaches find correspondences between pairs of

images by treating the images independently, we instead

condition on both images to implicitly take account of the

differences between them. To achieve this, we introduce (i) a

spatial attention mechanism (a co-attention module, CoAM)

for conditioning the learned features on both images, and

(ii) a distinctiveness score used to choose the best matches

at test time. CoAM can be added to standard architectures

and trained using self-supervision or supervised data, and

achieves a significant performance improvement under hard

conditions, e.g. large viewpoint changes. We demonstrate

that models using CoAM achieve state of the art or competi-

tive results on a wide range of tasks: local matching, camera

localization, 3D reconstruction, and image stylization.

1. Introduction

Determining correspondence between two images of the

same scene or object is a fundamental challenge of computer

vision, important for many applications ranging from optical

flow and image manipulation, to 3D reconstruction and cam-

era localization. This task is challenging due to scene-shift:

two images of the same scene can differ dramatically due

to variations in illumination (e.g. day to night), viewpoint,

texture, and season (e.g. snow in winter versus flowering

trees in spring).

Methods that solve the correspondence task typically fol-

low a detect-and-describe approach: first they detect dis-

tinctive regions [5, 15, 30, 34, 49] and then describe these

regions using descriptors [5, 6, 21, 26, 30, 49] with varying

degrees of invariance to scale, illumination, rotation, and

affine transformations. These descriptors are then matched

between images by comparing descriptors exhaustively, of-

ten using additional geometric constraints [16]. Recent ap-

proaches have sought to learn either or both of these com-

ponents [3, 8, 9, 10, 13, 27, 39, 46, 47, 54, 59, 60, 73, 74].

These methods typically only find matches at textured lo-

cations, and do not find matches over smooth regions of an

object. Additionally, finding these repeatable detections with

invariance to scene-shift is challenging [2, 51, 56].

If prior knowledge is assumed, in terms of limited cam-

era or temporal change (as in optical flow computation in

videos), then a dense-to-dense approach can be used for pairs

that have limited scene shift. In this case, methods typically

obtain a dense feature map which is compared from one

image to another by restricting the correspondence search to

a small support region in the other image (based on the prior

knowledge). Spatial and smoothness constraints can addi-

tionally be imposed to improve results [8, 11, 29, 53, 66, 71].

We focus on the cases where there is potentially signifi-

cant scene shift (and no prior knowledge is available), and

introduce a new approach for obtaining correspondences be-

tween a pair of images. Previous methods learn descriptors

for each image without knowledge of the other image. Thus,

their descriptors must be invariant to changes – e.g. to scale

and illumination changes. However, as descriptors become

increasingly invariant, they become increasingly ambiguous

to match (e.g. a constant descriptor is invariant to everything

but also confused for everything). We forsake this invariance

and instead condition the descriptors on both images. This al-

lows the descriptors to be modified based on the differences

between the images (e.g. a change in global illumination).

Traditionally, this was infeasible, but we can learn such a

model efficiently using neural networks.

To achieve this we introduce a network (CD-UNet), which

consists of two important components. First, a new spatial

Co-Attention Module (CoAM) that can be ‘plugged into’ a

UNet, or similar architectures developed for single image de-

scriptors, in order to generate descriptors conditioned on the

pair of images. Second, we introduce a Distinctiveness score

in order to select the best matches from these descriptors.

We further investigate the utility of the CoAM under both

supervised and self-supervised training. In the latter case,

we augment the recent self-supervised approach of learning

camera pose of [70] by using CoAMs in a plug-and-play

fashion. We evaluate these trained models on a variety of
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Figure 1: Correspondences obtained with the CoAM model, which is augmented with an attention mechanism. These demonstrate

the model’s robustness in the face of challenging scene shift: changes in illumination (a,d), viewpoint (a-d), context (a,d), or style (b).

tasks: local matching, camera localization, 3D reconstruc-

tion, and style transfer. We improve over state-of-the-art

(sota) models, especially under challenging conditions, and

achieve sota or comparable on all tasks.

In summary, we present a key insight: that condition-

ing learned descriptors on both images should allow for

improved correspondence matching under challenging con-

ditions. As will be seen, CD-UNet is simple and scalable and

eschews a number of techniques used by other methods to

improve matching performance: high dimensional descrip-

tors (we use a 64D descriptor, half the size of the current

smallest descriptor), and multiple scales (we only operate at

a single scale, whereas other methods use multiple scales).

2. Related Work

In this section, we review related work on finding corre-

spondences beyond the local descriptors discussed in Sec. 1.

As there is a large amount of relevant research, we focus on

the most relevant work in each category.

Correspondences using an attention mechanism. Our ar-

chitecture can be viewed as a generalization of the standard

correlation layer used in training end-to-end models for op-

tical flow [12, 18, 61], stereo [22] or correspondence esti-

mation [11, 25, 53, 69, 70, 71]. This correlation layer (or

attention mechanism) is used to compute a cost volume of

matches from the learned descriptors.

In correspondence estimation, the learned descriptors are

limited in spatial resolution [25, 69, 71] so that the entire

volume can be computed. This is too coarse for geometric

matching, so other methods use a hierarchical approach

[11, 53, 70]. In optical flow [12, 18, 42, 61] and stereo [22],

the cost volume is only applied within a limited support

region for a single descriptor (e.g. a square region or a raster

line) and typically at a lower resolution. Moreover, these

methods implicitly assume photometric consistency between

frames: their quality degrades the more the frames differ in

time, as the pose and viewpoint progressively change.

Unlike these methods, we apply attention at multiple

stages in our network, so that the final descriptors themselves

are conditioned on both images. This should be beneficial

for challenging image pairs where one, final comparison

is unable to encompass all possible scene-shifts between

two images. To find matches at the image level without

performing an exhaustive comparison, we use a modified

hinge loss to enforce that true descriptors are nearby and

false ones further away.

Dense correspondence matching with prior knowledge.

Given a static scene and initial camera estimation, a sec-

ond algorithm, e.g. PatchMatch [4, 57], can be used to find

dense correspondences between the images and obtain a full

3D reconstruction. If the images have been rectified using

multiple-view geometry [16] and have limited scene shift,

stereo algorithms such as [14, 41, 62, 72] (and reviewed by

[63]) can be used to obtain a full 3D reconstruction.

While not directly related, [23, 58] condition on a second

image by iterative warping. This requires multiple passes

through a network for each image pair and uses pre-trained

descriptors as opposed to training end-to-end.

Also related are approaches that seek to learn correspon-

dence between similar scenes [29] or instances of the same

semantic class [23, 38, 44, 45].

Local descriptors for image retrieval. Another form of

correspondence is to find relevant images in a database using

a query image. Related works use an aggregation of local

descriptors from a CNN [7, 67]. Again, these methods gen-

erate descriptors for the dataset images independently of the

query image, whereas the descriptors we extract for the input

image are conditioned on both images.

Stylization for robust correspondence matching. Our

idea of conditioning the output of one image on another

has interesting connections to stylization and associated gen-

erative models [20, 40, 68]. Additionally, a recent line of

work studies how training on stylized images can improve

robustness in correspondence matching [32]. As opposed to

enforcing invariance to style, CD-UNet and the other archi-

tectures considered, learn how to leverage differing styles

(as the precise style may be useful) via our CoAM.

3. Method

Our task is to find dense correspondences between a pair

of images of the same scene. This proceeds in two stages.

The first stage obtains dense descriptor vectors for each

image and a distinctiveness score. The descriptors are con-

ditioned on both images so they only have to be invariant

to the changes particular to that pair of images. The second

stage compares these descriptor vectors to obtain a set of

high quality matches. We first describe in Sec. 3.1 our full

architecture CD-UNet, and how it is trained in Sec. 3.2. CD-
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Figure 2: Overview of CD-UNet for obtaining co-attended descriptors. Descriptor vectors D1 for one input image I
1 are conditioned

on another I2 using our CoAM. This module can be applied at multiple layers in the model hierarchy (we show one for clarity). The

conditioned features are then decoded to obtain D
1. We also regress a distinctiveness mask which is used at test time to ignore unmatchable

regions (e.g. the sky or regions visible in only one image). The descriptor vectors D2 for I2 are obtained by swapping the input images.

UNet consists of a set of Co-Attention Modules (CoAMs)

and a distinctiveness score regressor, which are incorporated

into a standard UNet architecture. Then, in Sec. 3.3, we de-

scribe how CoAM is incorporated into the recent CAPSNet

architecture [70] and trained in a self-supervised manner.

3.1. A UNet encoder­decoder with CoAM

The architecture for obtaining descriptor vectors and a dis-

tinctiveness score for one image I1 (Fig. 2), is composed of

four components. The first component, the encoder, projects

both images I1, I2 to obtain feature maps at two resolutions:

f i
L, f i

S . The second component, the attention mechanism

(CoAM), is used to determine spatial correspondence be-

tween the feature maps of the different images and obtain

conditioned feature maps. The third component, the de-

coder, concatenates the conditioned feature maps with the

original feature maps. These are decoded to obtain a grid

of spatial descriptor vectors D1 (which are conditioned on

both images). The final component, the regressor, learns a

distinctiveness score for each grid position, which encodes

how likely the match is to be accurate. To obtain descriptor

vectors D2 for the other image, we operate precisely as de-

scribed above, except that the order of the input images is

flipped. This gives a grid of descriptor vectors D1, D2 for

images I1, I2 respectively.

Encoder. Given two images of the same scene, I1 ∈
❘

H×W×3 and I2 ∈ ❘H×W×3, we obtain spatial feature

maps: f i
L and f i

S at a larger and smaller resolution. These

will be concatenated within a UNet framework [48] and in-

jected into the decoder. A CNN with shared parameters is

used to encode the images and obtain these spatial feature

maps. In practice, we use the feature maps after the last two

blocks in a ResNet50 [17] architecture.

CoAM Attention Module. We wish to concatenate features

from both images in order to condition the model on both

input images. However, for a given spatial location, the

relevant (corresponding) feature in the other image may

not be at the same spatial location. As a result, we use an

attention mechanism to model long range dependencies.

In detail, the attention mechanism is used to determine

where a location i in one set of features g from one image

should attend to in another set of features h from another

image [69]. For each location i in g, it obtains a feature ĝi
that is a weighted sum over all spatial features in h where A

is the similarity matrix comparing g and h using the inner

product followed by the softmax normalization step.

ĝi =
∑

j

Aijhj Aij =
exp(gTi hj)

∑

k exp(g
T
i hk)

(1)

To apply this attention mechanism, we operate as follows

for f1
L (and similarly for f1

S). First, to perform dimension-

ality reduction (as is standard), the features are projected

with two MLPs g1(·), g2(·): g = g1(f1
L), h = g2(f2

L). The

attended features f̂1
L are then computed using the projected

features as in (1). This gives a new feature map of the fea-

tures in I2 at the corresponding position in I1.

Decoder: Conditioned Features. The attended features are

incorporated into a UNet [48] architecture to obtain a grid of

spatial descriptors D1 ∈ ❘H×W×D (Fig. 2). The attended

features f̂1
L and f̂1

S are concatenated with the original fea-

tures and passed through the decoder portion of the UNet.

The resulting feature map is L2 normalized over the channel

dimension to obtain the final descriptors. This step ensures

that the final descriptors are conditioned on both images.

Regressor: Distinctiveness Score. We regress a distinc-

tiveness score r(·)ij ∈ [0, 1], for each pixel (i, j), which

approximates its matchability and is used at test time to se-

lect the best matches. r(·)ij approximates how often the

descriptor at (i, j) is confused with negatives in the other

image. If it is near 1, the descriptor is uniquely matched; if

it is near 0, the descriptor is often confused. To regress these

values, we use an MLP, r(·), on top of the unnormalized

descriptor maps.
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Determining Matches at Test Time. We want matches at

locations k and l in images I1 and I2 respectively that are

accurate and distinctive (e.g. no matches in the sky). We

use the scalar product to compare the normalized descriptor

vectors to find the best matches and the distinctiveness score

to determine the most distinctive matches. The following

similarity score ckl combines these properties such that a

value near 1 indicates a distinct and accurate match:

ckl = r(D1
k)r(D

2
l )

[

(

D1
k

)T
D2

l

]

. (2)

Finally, we select the best K matches. First, we exhaus-

tively compare all descriptors in both images. Then, we

only select those matches that are mutual nearest neighbours:

e.g. if the best match for location m in one image is location

n in another, and the best match for location n is m, then

(n,m) is a good match. So if the following holds:

m = argmaxjcnj and n = argmaxicim. (3)

These matches are ranked according to their similarity score

and the top K selected.

3.2. Supervised Training and Loss Functions

Selecting Correspondences at Train Time. Given a

ground-truth correspondence map, we randomly select L

positive correspondences. For each positive correspondence,

we randomly select a large number (N = 512) of nega-

tive correspondences. These randomly chosen positive and

negative correspondences are used to compute both the dis-

tinctiveness and correspondence losses.

Correspondence Loss. The correspondence loss is used

to enforce that the normalized descriptor maps D1 and D2

can be compared using the scalar product to obtain the best

matches. At a location i in D1 and j in D2 then the standard

Euclidean distance metric d(D1
i , D

2
j ) should be near 0 if the

corresponding normalized descriptor vectors are a match.

To train these descriptors, we use a standard contrastive

hinge loss to separate true and false correspondences (we

consider other contrastive losses in the appendix). For the

set P of L true pairs, the loss Lp enforces that the distance

between descriptors is near 0. For the set N of LN nega-

tive pairs, the loss Ln enforces that the distance between

descriptors should be above a margin M .

Lp =
1

L

∑

(x,y)∈P

d(D1
x, D

2
y) (4)

Ln =
1

LN

∑

(x,ŷ)∈N

max(0,M + cx − d(D1
x, D

2
ŷ)). (5)

cx = d(D1
x, D

2
y), (x, y) ∈ P re-weights the distance of

the false correspondence according to that of the positive one:

the less confident the true match, the further the negative one

must be from M [10].

Distinctiveness Loss. To learn the r(·) MLP, we need an

estimate of how often a descriptor in one image is confused

with the wrong descriptors in the other image. Given a set N
of N negative matches in the other image and the margin M ,

the number of times a descriptor at location x is confused

is mx =
∑

ŷ∈N ✶(d(D1
x, D

2
ŷ) < M). This value is used to

regress r(·), which is near 1 if the feature has a unique match

(the true match), near 0 otherwise (τ is a hyper-parameter

set to 1
4 ):

Lr =
1

L

∑

(x,·)∈P

|r(D1
x),

1

(1 +mx)τ
|1. (6)

Training Setup. CD-UNet is trained on MegaDepth [28],

which consists of a variety of landmarks, registered using

SfM [55]. As each landmark consists of many images taken

under differing conditions, we can obtain matches between

images that are unmatchable when considered independently.

We train the features end-to-end, but train the distinctive-

ness score separately by not allowing gradients to flow. In

practice we backpropagate on all randomly chosen positive

pairs Lp, negative pairs Ln, and additionally the hardest

H = 3 negative pairs for each positive pair.

The model is trained with a learning rate of 0.0001, the

ADAM optimizer [24], a batch size of 16, M=1, L=512, and

N=512. At train time we use an image size of 256, at test

time an image size of 512. We use K=2000 for HPatches

and Aachen, and K=8192 when performing SfM. For SfM,

we find it is important to use more, rougher correspondences

to obtain more coverage in the 3D reconstruction.

3.3. Self­supervised training – the CAPSNet [70]
with CoAM

In this section we describe how CoAM can be added

to the CAPSNet architecture of [70] and trained using the

self-supervised framework of [70].

CAPSNet consists of a UNet style architecture, which

predicts features at a coarse and fine level. The matches at a

coarse level are used to guide feature matching at the finer

level. These features are trained using two losses. First, an

epipolar loss enforces that matches should satisfy epipolar

constraints. Second, a cycle consistency loss enforces that,

for a match between two images, the best match for the local

descriptor in one image should also be the best match for

the local descriptor in the other. Using this approach, the

authors achieve high quality results at pose estimation on the

challenging MegaDepth test set.

As the descriptor model is a UNet style architecture, and it

is trained in an end-to-end fashion, we operate in a very sim-

ilar manner to the UNet architecture with CoAM of Sec. 3.1,

by again adding CoAMs to condition descriptors on both

images. We use the CoAM to inject attended features from

the other image at either a coarse level or at a fine and coarse

415923



Method # Matches

Hes. det. + RootSift [1, 30] 2.8K

HAN + HN++ [36, 35] 2.0K

LF-Net [39] 0.2K

SuperPoint [9] 0.9K

DELF [37] 1.9K

D2 Trained (SS) [10] 2.5K

R2D2 [43] 1.8K

Ours 2.0K

Figure 3: HPatches [2]. Comparison with sota using the mean matching accuracy for different pixel thresholds on the HPatches dataset.

We also report the mean matches extracted per image pair. For this dataset, one desires more matches with high accuracy. Our method

achieves superior performance when images vary by illumination for all thresholds, and by viewpoint for thresholds > 6px. By a simple

refinement strategy (ours (ref)), we achieve sota for all thresholds on both viewpoint and illumination.

level (precise details are given in the appendix). In both

cases, this leads to an addition of less than 15% of the total

weights of the original network.

The loss functions used to train the conditioned local

descriptors are unchanged from the original CAPSNet work.

Training Setup. We train the model as done in [70]: for

200K iterations, using a batch size of 6 images, and an image

size of 480× 640.

3.4. Discussion

Here we discuss some of the benefits of conditioning

using CoAM as opposed to operating directly on local de-

scriptors and keypoints as done in SuperGLUE [50]. First,

our module is trained end-to-end and does not introduce

an extra step in the matching pipeline of comparing pre-

trained descriptors. Second, our descriptors are learned,

so our method is not dependent on the quality of the ex-

tracted descriptors. Finally, SuperGLUE scales with the

number of extracted keypoints, hampering its performance

and utility on tasks that require finding a large number of

correspondences (e.g. SFM). As the CoAM is plugged in as

a component of our network, our method scales with image

size. For reference, on a single GPU, to extract 2k keypoints

on a 256× 256 image, our method runs in 97ms while Su-

perGLUE would add an overhead of ≈270ms as reported

in the original paper. Further, our method would scale with

little overhead to more keypoints at the given image size.

Our method requires an exhaustive match of all image

pairs. While we find that we can run the full, exhaustive

pipeline on reasonably large datasets (≈ 1500 images) in

Sec. 4.2.2, we envision two stages when using our method

in truly large scale settings. First, a coarser, faster method

can be used as a preprocessing step to remove spurious pairs

and our method subsequently used in a second stage to find

high quality correspondences.

4. Experiments I: Supervised Co-AM

In this section we evaluate the CD-UNet architecture

(UNet encoder-decoder with CoAM and distinctiveness

score as in Fig. 2) on four challenging downstream tasks un-

der full supervision. In Sec. 5 the benefits of the co-attention

module are evaluated under self-supervised training [70].

The first task directly assesses how well CD-UNet can

estimate correspondences between images pairs. The second

task uses the correspondences to perform camera localiza-

tion. In these tasks we ablate the utility of the CoAM and

distinctiveness score components of the architecture. The

third task obtains high quality 3D reconstructions in chal-

lenging situations, with a large amount of scene shift. The

final task is stylization, and assesses CD-UNet’s matches,

when extracted in a dense manner, on a downstream task.

In general we find that CD-UNet achieves state of the

art or comparable results and that the CoAM is useful espe-

cially in challenging conditions (e.g. when there is a large

viewpoint change).

The appendix includes further ablations to validate our

choices (e.g. the loss function and grid size) and datasets

(e.g. (1) YFCC100M [65] which shows our superior re-

sults and the utility of both the distinctiveness score and

the CoAM, and (2) a new, challenging SFM dataset). Finally,

it includes qualitative samples for each of the experiments

discussed in the following, including HPatches, Aachen,

SFM, and stylization.

Ablations. The full model uses the ResNet50 [17] backbone,

the CoAMs and the distinctivness score to reweight matches.

We ablate multiple variants. The first (ours) is our full

model. The second (ours w/o conf) is our model without the

distinctiveness score but only the scalar product. The third

(ours w/o cond) is our model without conditioning (i.e. the

CoAMs). The final variant (ours-E-B1) is our full model but

using an EfficientNet-B1 backbone [64]. This ablation uses

a smaller (7M params vs 23M params) and faster (0.7GFlops

vs 4.1GFlops) backbone architecture; it is more suitable for
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Table 1: Aachen Day-Night [51]. Higher is better. Ours does

comparably or better than other sota setups. ∗ indicates the method

was trained on the Aachen dataset.

Method Threshold Accuracy

0.25m (2◦) 0.5m (5◦) 5m (10◦)

Upright RootSIFT [30] 36.7 54.1 72.5

DenseSFM [51] 39.8 60.2 84.7

Han+, HN++ [36, 35] 39.8 61.2 77.6

Superpoint [9] 42.8 57.1 75.5

DELF [37] 39.8 61.2 85.7

D2-Net [10] 44.9 66.3 88.8

R2D2* [43] 45.9 66.3 88.8

Ours w/o cond 42.9 62.2 87.8

Ours w/o conf 43.9 64.3 86.7

Ours 44.9 70.4 88.8

Ours (E-B1) 44.9 68.4 88.8

practical applications.

4.1. Correspondence Evaluation

We test our model on local matching by evaluating on

the HPatches [2] benchmark. We compare to a number of

baselines and achieve state-of-the-art results.

HPatches Benchmark. The HPatches benchmark evaluates

the ability of a model to find accurate correspondences be-

tween pairs of images, related by a homography, that vary

in terms of illumination or viewpoint. We follow the stan-

dard setup used by D2Net [10] by selecting 108 of the 116

sequences which show 6 images of larger and larger illumi-

nation and viewpoint changes. The first image is matched

against the other 5, giving 540 pairs.

Evaluation Setup. We follow the evaluation setup of D2Net

[10]. For each image pair, we compute the number of cor-

rect matches (using the known homography) and report the

average number of correct matches as a function of the pixel

threshold error in Fig. 3. We then compare to a number

of detect-then-describe baselines used in D2Net using their

software: RootSIFT [1, 30] with the Affine keypoint detec-

tor [33], HesAffNet [36] with HardNet++ [35], LF-Net [39],

SuperPoint [9], DELF [37]; as well as to D2Net [10] and

R2D2 [43]. These methods vary in terms of whether the

detector and descriptors are hand crafted or learned.

Results. As shown in Fig. 3, all variants of our model outper-

form previous methods for larger pixel thresholds, demon-

strating the practicality and robustness of our approach. In

comparison to other methods, CD-UNet performs extremely

well when the images vary in illumination: it outperforms

all other methods. CD-UNet is superior under viewpoint

changes for larger pixel thresholds (> 6px). Using the

smaller, more efficient (ours-E-B1) actually improves per-

formance over the larger ResNet model (ours). A simple

refinement strategy (described in the appendix) boosts our

model’s performance under viewpoint changes, giving re-

sults superior or comparable to sota methods for all thresh-

Table 2: SfM. We compare our approach to using SIFT features

on 3D reconstruction. ↑: higher is better. ↓: lower is better.

Large SfM

Landmark: Madrid Met. Gen. Tow. of Lon.

# Reg. Ims ↑
SIFT [30]: 500 1035 804

Ours: 702 1072 967

# Sparse Pts ↑
SIFT [30]: 116K 338K 239K

Ours: 256K 570K 452K

Track Len ↑
SIFT [30]: 6.32 5.52 7.76

Ours: 6.09 6.60 5.82

Reproj Err (px) ↓
SIFT [30]: 0.60 0.69 0.61

Ours: 1.30 1.34 1.32

# Dense Pts ↑
SIFT [30]: 1.8M 4.2M 3.1M

Ours: 1.1M 2.1M 1.8M

olds for viewpoint and illumination changes. Compared to

the other evaluation datasets, e.g. [51] below, the compo-

nents of our model have a limited impact on performance

on this benchmark, presumably because this dataset has less

scene shift than the others.

4.2. Using Correspondences for 3D Reconstruction

In this section, we evaluate the robustness of our approach

on images that vary significantly in terms of illumination and

viewpoint, and our model’s ability to scale to larger datasets.

CD-UNet achieves sota or comparable results on all datasets.

4.2.1 Camera Localization

Aachen Benchmark. In order to evaluate our approach

under large illumination changes, we use the Aachen Day-

Night dataset [51, 52]. For each of the 98 query night-time

images, the goal is to localize the image against a set of

day-time images using predicted correspondences.

Evaluation Setup. The evaluation measure is the percentage

of night time cameras that are localized within a given error

threshold [51]. We use the pipeline and evaluation server

of [51] with the matches automatically obtained with our

method (Sec. 3.1). We compare against RootSIFT descrip-

tors from DoG keypoints [30], HardNet++ with HesAffNet

features [35, 36], DELF [37], SuperPoint [9], D2Net [10]

and DenseSFM [51].

Results. Tab. 1 shows that our method does comparably

or better than other sota approaches. They also show the

utility of the distinctiveness score and CoAM. These results

imply that the traditional approach of first finding reliably de-

tectable regions may be unnecessary; using a grid to exhaus-

tively find matches is, perhaps surprisingly, superior in this

case. These results also show that our architectural improve-

ments (i.e. using an attention mechanism and distinctiveness

score) boost performance and that an efficient architecture

(Ours-E-B1) has a small impact on performance.
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Figure 4: Stylization. Given Is and Iv , the task is to generate an

image with the pose and viewpoint of Iv and style of Is. We show

results for CoAM and a baseline that uses semantics [31]. We also

show the resampled image (GTS) which is computed using the

true correspondences from the MegaDepth dataset [28]. While [31]

works well for easy cases, it sometimes copies style from Iv (as

shown by the red background in (a) and red hued building in (c)).

[31] also fails if the semantic prediction is incorrect (e.g. (b)).

4.2.2 Structure from Motion (SfM)

The objective here is to evaluate the correspondences ob-

tained with our model for the task of 3D reconstruction.

SfM Dataset. The assessment is on the standard SfM

Local Feature Evaluation Benchmark [56] that contains

many (≈ 1500) internet images of three landmarks: Madrid

Metropolis, Gendarmenmarkt, and Tower of London.

Baselines. We compare to SIFT [30]. This method first

finds repeatably detectable regions for which features are

extracted and compared between images. This method works

well when there are distinctive textured regions that can

be found and matched. Our method, however, conditions

on both images, so our approach should be more robust

when there are fewer textured regions or where there are

significant variations between the images as it can make use

of auxiliary information from the other image. Additional,

less challenging baselines are given in the appendix.

Results. Tab. 2 shows that, using CD-UNet, we consistently

register more images and obtain more sparsely reconstructed

3D points (visualizations are in the appendix). However, the

pixel error is higher and there are fewer dense points. These

differing results are somewhat explained by the implicit trade

off between number of points and reprojection error [70].

I1

I2

A

Figure 5: CoAM Attention. We visualize the predicted attention

(A) for sample image pairs. The red dot in I
1 denotes the point

for which we compute the attention. It is not clear apriori what the

attention module should do, but it does attend to relevant, similar

regions in the other image and is dependent on the query location.

However, clearly our results are competitive with SIFT.

4.3. Using Correspondences for Stylization

Previously, we focused on using our matching pipeline for

extracting a set of correspondences to be used for localization

and 3D reconstruction. Here we evaluate how well our

features can be used for a task that requires dense matching:

stylization. The goal is, given two images Is, Iv of the same

scene, to generate an image with the style of Is but the pose

and viewpoint of Iv .

Setup. To achieve this, we first use CD-UNet to transform

Is into the position of Iv. The approach is simple: instead

of only choosing the mutual nearest neighbours as in (2),

we consider the best match for every pixel location. Then,

the color of the best match in Is is used to color the corre-

sponding location in Iv . This gives the sampled image. The

next step is to remove artefacts. We do this by training a

refinement model on top of the sampled image in order to

obtain an image Ig in the pose of Iv and style of Is. Full

details of the architecture and training are given in the supp.

Relation to Pix2Pix [19]. In a standard image to image

translation task (e.g. Pix2Pix [19]), the two images (e.g. im-

age and semantic map) are aligned. In our case, the images

are not aligned. We effectively use our correspondences to

align the images and then run a variant of Pix2Pix.

Experimental Setup. To evaluate our results, we use the

test set of the MegaDepth dataset (these are landmarks un-

seen at training time). We randomly select 400 pairs of

images and designate one the viewpoint Iv image and the

other the style image Is. We task the models to generate

a new image Ig with the style of Is in the viewpoint of Iv.

From the MegaDepth dataset, we can obtain ground truth

correspondence for regions in both images and so the true

values of Ig for this region. The reported error metric is

the mean L1 distance between the generated image and true

value within this region.
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Method Accuracy on MegaDepth

easy medium hard

CAPS [70] w/ SIFT Kp. 91.3 / 52.7 82.5 / 57.9 65.8 / 61.3

Ours (C CoAM) 91.7 / 52.1 82.9 / 58.6 69.3 / 62.4

Ours (C+F CoAMs) 91.9 / 52.3 82.8 / 58.4 68.8 / 63.4

Table 3: Results on the MegaDepth dataset on three increasingly

challenging subsets (easy, medium, and hard) for both angular /

translational errors: (·) / (·). The results show that augmenting the

baseline model with our CoAMs improves performance, especially

on the challenging viewpoint images, demonstrating the utility of

conditioning the descriptors on both images under these conditions.

Results. We compare against a stylization approach that

uses semantics to perform style transfer [31] in Fig. 4. We

also determine the L1 error for both setups and obtain 0.22
for [31] and 0.14 for our method, demonstrating that our

method is more accurate for regions that can be put in cor-

respondence. The qualitative results demonstrate that our

method is more robust, as [31] produces poor results if the

semantic prediction is wrong and sometimes copies style

from Iv as opposed to Is (e.g. it creates a colored Ig image

when Is is grey-scale). As we sample from Is in the first step

and then refine the sampled image, our model rarely copies

style from Iv . Finally, our full method runs in seconds at test

time whereas [31] takes minutes due to a computationally

intensive iterative refinement strategy.

5. Experiments II: CoAM with CAPSNet

Next, we evaluate CoAM when injected into the CAP-

SNet architecture [70] and trained in a self-supervised man-

ner. We again validate our hypothesis that conditioning on

two images is preferable in this setting, as it improves re-

sults on the downstream task of pose prediction. Finally, we

visualize and investigate the learned attention to obtain an

intuition into how CoAM is being used by the network.

5.1. Camera Pose Prediction

This experiment follows that of [70]. The aim is to es-

timate the relative camera pose between pairs of images

extracted at random from the MegaDepth test set. The pairs

of images are divided into three subsets depending on the rel-

ative angular change: easy ([0◦, 15◦]), medium ([15◦, 30◦]),
and hard ([30◦, 60◦]). Each subset has at least 1000 pairs.

In order to determine the relative camera pose, we follow

the approach of [70]. The essential matrix is extracted by

using the mutual nearest neighbour correspondences and

known camera intrinsic parameters. The essential matrix is

decomposed into the rotation and translation matrices. The

estimated angular change in rotation and translation is then

compared to the ground truth. If the difference between the

predicted and ground truth is less than a threshold of 10◦,

the prediction is considered correct.

We consider two variants of injecting CoAM into the

CAPSNet architecture. First, (C CoAM) only injects one

CoAM at a coarse resolution. Second, (C+F CoAM) injects

two CoAMs at a coarse and a fine resolution. We report

the percentage of correct images for rotational and transla-

tional errors separately in Tab. 3. These results demonstrate

that using a CoAM does indeed improve over the baseline

model, especially on the harder angle pairs. Injecting fur-

ther CoAMs does not substantially increase performance but

it consistently performs better than the original CAPSNet

model. This demonstrates the value of using our CoAM to

condition descriptors on both images.

5.2. Visualisation of CoAM’s Attention

Finally, we visualize CoAM’s predicted attention in Fig. 5

to obtain an intuition of how the additional image is used

to improve the learned descriptors. We note that there is no

clear a priori knowledge of what the model should attend to.

The attention module could find regions of similar texture

but varying style in order to be invariant to the style. Or

the module could attend to the right location in the other

image. However, the qualitative results imply that the model

is making use of the CoAM to attend to relevant regions.

Additionally, we quantify how invariant the descriptors

are with the CoAM and without. We use the sets of images in

the HPatches benchmark that vary in illumination. One im-

age is kept fixed (the target) and the other varied (the query).

We then evaluate how much the query image’s descriptors

vary from those of the target by computing the L1 error.

Our descriptors differ on average by 0.30± 0.14, whereas

[70]’s descriptors differ more, by 0.41±0.17. This validates

that the CoAM increases the invariance of corresponding

descriptors under large amounts of scene shift.

6. Conclusion

We investigated a new approach for obtaining correspon-

dences for image pairs using a co-attention module and dis-

tinctiveness score. The central insight was that, using neural

networks, descriptors can be conditioned on both images.

This allows greater flexibility, as the descriptors only need

to be invariant to changes between the pair of images. Us-

ing this insight, our simple model improved the quality of

the learned descriptors over those of a baseline model on

multiple tasks and in both a supervised and self-supervised

setting. We would expect further improvements with larger,

more complex models.
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