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Abstract

We present Neural Splines, a technique for 3D surface re-

construction that is based on random feature kernels arising

from infinitely-wide shallow ReLU networks. Our method

achieves state-of-the-art results, outperforming recent neu-

ral network-based techniques and widely used Poisson Sur-

face Reconstruction (which, as we demonstrate, can also be

viewed as a type of kernel method). Because our approach

is based on a simple kernel formulation, it is easy to analyze

and can be accelerated by general techniques designed for

kernel-based learning. We provide explicit analytical ex-

pressions for our kernel and argue that our formulation can

be seen as a generalization of cubic spline interpolation to

higher dimensions. In particular, the RKHS norm associated

with Neural Splines biases toward smooth interpolants.

1. Introduction

Estimating a 3D surface from a scattered point cloud is

a classical and important problem in computer vision and

computer graphics. In this task, the input is a set of 3D points

sampled from an unknown surface and, possibly, normals

of the surface at those points. The goal is to estimate a

representation of the complete surface from which the input

samples were obtained, for example, a polygonal mesh or an

implicit function. This problem is challenging in practice: It

is inherently ill-posed, since an infinite number of surfaces

can interpolate the data. Furthermore, the input 3D points

are often incomplete and noisy, as they are acquired from

range sensors such as LIDAR, structured light, and laser

scans. Ideally, the recovered surface should not interpolate

noise but preserve key features and surface details.

Many early surface reconstruction techniques consider

a kernel formulation of the surface reconstruction prob-

lem, using translation-invariant kernels such as biharmonic

RBFs [9], Gaussian kernels [22], or compactly supported

RBFs [34]. Currently, the most widely used method for
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Figure 1. Neural Splines use points (the white dots) and normals

(the white arrows) as input and estimate a scalar function whose

zero level set (the black lines) corresponds to the reconstructed

surface and whose gradient agrees with the normals.

surface reconstruction is Screened Poisson Surface Recon-

struction [31], which solves a variant of the Poisson equation

to find an implicit function whose zero-level set produces

an approximating surface. We show in this paper that this

method can also be viewed as a kernel method for a particular

choice of kernel.

More recently, many papers have used neural networks

to represent an implicit function or a local chart in a

manifold atlas as a means of reconstructing a surface

[44, 19, 26, 3, 24, 40, 42]. These methods can be integrated

into a data-driven learning pipeline or directly applied in the

so called “overfitting” regime, where a massively overpa-

rameterized (i.e., more parameters than input points) neural

network is fitted to a single input point cloud as a functional
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representation for a surface. Empirical evidence has shown

that these methods enjoy some form of “implicit regulariza-

tion” that biases the recovered surface towards smoothness.

Moreover, employing early stopping in gradient descent can

prevent these approaches from interpolating noise.

Under certain parameter initializations, infinitely-wide

neural networks de facto behave as kernel machines [30, 14],

defining Reproducing Kernel Hilbert Spaces (RKHS), whose

kernel is obtained by linearizing the neural network mapping

around its initialization. While the kernel regime simpli-

fies non-linear neural network learning into a convex pro-

gram and provides a simple explanation for the success-

ful optimization of overparameterized models, it cannot ex-

plain the good generalization properties observed for high-

dimensional problems due to the inability of the RKHS to ap-

proximate non-smooth functions [4]. However, the situation

for low-dimensional problems such as surface reconstruc-

tion is entirely different, and RKHS can provide powerful

characterizations of regularity. In this context, [45] shows

that in the univariate case the RKHS norm associated with

a wide ReLU network is a weighted curvature, and leads

to cubic spline interpolants. In higher dimensions, similar

(albeit more complex) characterizations of the RKHS norm

exist [35] (see also Proposition 2). In order to assess the

benefits of neural networks on such low-dimensional prob-

lems, it is thus important to first understand their linearized

counterparts, given by their associated kernel machines.

In this work, we demonstrate that in fact kernels arising

from shallow ReLU networks are extremely competitive for

3D surface reconstruction, achieving state-of-the-art results:

outperforming classical methods as well as non-linear meth-

ods based on far more complex neural network optimization.

Kernels provide many advantages over neural networks

in our context: (i) They are well understood theoretically.

(ii) Kernel regression boils down to solving a linear system,

and avoids gradient descent that suffers from slow conver-

gence. (iii) Kernel-based interpolants are represented using

a number of parameters that is linear in the size of the input,

whereas overparameterized neural networks require many

more parameters than points. (iv) The inductive bias of ker-

nel methods can be characterized explicitly via the RKHS

norm (Section 3.3). (v) Kernel methods lend to scalable and

efficient implementations (Section 3.5). We provide explicit

expressions for two kinds of infinite-width ReLU kernels,

their derivatives, and their corresponding RKHS norms. We

further argue that these kernels can be viewed as a multi-

dimensional generalization of cubic spline interpolation in

1D. Moreover, we show that Poisson Surface Reconstruction

can itself be viewed as a kernel method and give an expres-

sion for its RKHS norm, suggesting that kernels are a broad

framework which enable the rigorous understanding both

traditional and modern surface reconstruction techniques.

1.1. Additional Related Work

Methods for 3D surface reconstruction can mostly be

divided by their choice of surface representation: These are

(i) the zero level set of a volumetric scalar function [31, 3, 24,

33, 36, 10, 40, 42], (ii) the fixed point of a projection operator

onto locally fitted patches [1, 25, 29], (iii) a mesh connecting

the input points [28], (iv) a collection of local parametric

maps [44, 26, 17, 19], or (v) the union of parametric shapes

[21, 20, 16, 13, 43]. For a recent up-to-date survey of surface

reconstruction techniques, we refer the reader to [6].

The “random feature” kernels used this paper arise from

training the top-layer weights in two-layer networks of in-

finite width and were described in [15, 32]. More recently,

a lot of work has focused on a different kernel, known as

the “neural tangent kernel” [30, 14], that linearly approxi-

mates the training of both layers of a neural network. We

chose to use random feature kernels since, when the input

dimension is small, typical initializations in neural networks

lead to mainly training the top layer weights. More broadly,

the function spaces associated with shallow neural networks

were studied in [4, 7, 35, 39, 45].

2. Neural Spline Formulation

We formulate the problem of surface reconstruction as

the task of finding a scalar function f : R3 → R whose

zero level set S = {p : f(p) = 0} ⊂ R
3 is the estimated

surface (see Figure 1). In its most general form in arbitrary

dimensions, we write our problem as follows.
We assume we are given a set of s input points X =

{xj}sj=1 ⊂ R
d, function values Y = {yj}sj=1 ⊂ R, and

normals N = {nj}sj=1 ⊂ R
d. Our goal is to optimize an

objective function of the form:

min
θ∈R

dθ

L(θ), with

L(θ) =
1

2

s
∑

j=1

|f(xj ; θ)− yj |2 + ‖∇xf(xj ; θ)− nj‖2.
(1)

Here f(x; θ) is a family of functions Rd → R parameterized

by θ ∈ R
dθ . For surface reconstruction, we have d = 3 and

yj = 0, since the reconstructed surface is given by the zero

level set.

We begin by introducing the Neural Spline family of

functions through the lens of finite-width shallow neural

networks in Section 2.1, and turn to the infinite-width limit

formulation in Section 2.2. While our approach is simple

and our derivations straightforward, we differ slightly from

a standard kernel regression setting since we employ a multi-

dimensional kernel that includes the gradient of the fitted

function. This formulation allows us to fit points and normals

simultaneously.

2.1. Finite­Width Kernel

We first assume that the model f(x; θ) is a two-layer

ReLU neural network with m neurons, but we keep the
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bottom layer weights fixed from initialization:

f(x; θ) =
1√
m

m
∑

i=1

ci[a
T
i x+bi]+, θ = (c1, . . . , cm) ∈ R

m

(2)

Here we write [z]+ = max(z, 0) for the ReLU function. The

bottom-layer weights (ai1, . . . , aid, bi) ∈ R
d+1 are fixed

randomly according to some specified distribution.

Remark 1. In typical initialization schemes for neural net-

works (e.g., Kaiming He initalization [27]), the weights of

each layer are initialized with a variance that is inversely

proportional to the number of inputs of that layer. Our

choice of fixing (ai, bi) is motivated by the fact that using a

standard two-layer network, for a given target model and as

m → ∞, only the top layer weights tend to vary throughout

training [45].

Our model (2) is linear in the parameters θ, so our ob-

jective function L(θ) is convex. However, since we assume

m ≫ s, we expect to have an infinite set of global mini-

mizers (an affine subspace in R
dθ ). Our goal is to find the

minimizer with smallest parameter norm:

θ∗ = argmin{‖θ‖2 : θ ∈ R
dθ L(θ) = 0}.

This minimizer is given explicitly by θ∗ = W †δ where W †

denotes the Moore-Penrose pseudo-inverse of W and

W =
1√
m

[

[aT
j xi + bj ]+

1[aT
j xi + bj ]aj

]

i=1,...,s
j=1,...,m

δ =

[

yi
ni

]

i=1,...,s

(3)

so that W ∈ R
(s+ds)×m and δ ∈ R

s+ds. If W has full rank,
then W † = WT (WWT )−1 and we can equivalently look

for z∗ ∈ R
(s+ds) such that KX z∗ = Wθ∗ = δ where KX =

WWT ∈ R
(s+ds)×(s+ds). Note that KX can be viewed as

a Gram matrix associated with the multi-dimensional kernel
K(x, x′) ∈ R

(d+1)×(d+1) described by

1

m

m
∑

i=1

[

ϕwi
(x)ϕwi

(x′) ϕwi
(x)∇x′ϕwi

(x′)T

∇xϕwi
(x)ϕwi

(x′) ∇xϕwi
(x)∇x′ϕwi

(x′)T

]

, (4)

where for compactness we used wi = (ai, bi), ϕwi
(x) =

[aix+ bi]+ and ∇xϕwi
(x) = 1[aix+ bi]+ai.

2.2. Infinite­Width Kernel

As the number of neurons m tends to infinity, the ker-

nel (4) converges to K∞(x, x′) defined by

Ew∼D

[

ϕw(x)ϕw(x
′) ϕw(x)∇x′ϕw(x

′)T

∇xϕw(x)ϕw(x
′) ∇xϕw(x)∇x′ϕw(x

′)T

]

, (5)

where D is the chosen distribution of bottom layer weights

w = (a, b). We use this kernel to characterize the interpolant

in the infinite-width limit. For this, we simply replace K in

(4) with K∞ and solve the linear system the described in the

previous section. More concretely (and rearranging terms),

our goal is to recover α∗
1, . . . , α

∗
s ∈ R

d+1 such that

s
∑

i=1

K∞(xj , xi)α
∗
i =

[

yj
nj

]

∈ R
d+1, j = 1, . . . , s. (6)

Our interpolant f∗ is such that

[

f∗(x)
∇f∗(x)

]

= K∞(x, xi)α
∗
i

for all x ∈ R
d. It can also be viewed as the solution to

minimize
f∈H

‖f‖H,

subject to f(xi) = 0 and ∇f(xi) = ni

(7)

where H is the RKHS corresponding to the one-dimensional

kernel Ew ϕw(x)ϕw(x
′) = E(a,b)[a

Tx + b]+[a
Tx′ + b]+.

In Section 3.3 we give an expression for the norm ‖ · ‖H
that defines the inductive bias of solutions. In Appendix B,

we provide analytic expressions for the kernel (5) for two

natural distributions over the weights (a, b):

Uniform: a ∼ U [Sd−1], b ∼ U [−k, k], (8)

Gaussian: (a, b) ∼ N (0, Idd). (9)

The uniform distribution (8) corresponds to the default ini-

tialization of linear layers in PyTorch and, as we argue in

Section 3.1, it leads to a direct generalization of cubic spline

interpolation. However, the Gaussian initialization actually

leads to simpler analytical expressions for K∞ and produces

almost the same results. We refer to Appendix B for a dis-

cussion and comparison of the two distributions.

3. Discussion

3.1. Connection to Cubic Splines in 1D

When d = 1, the uniform initialization (8) is such that
a ∼ U(S0) = U({−1, 1}) and, assuming −k ≤ x ≤ x′ ≤
k, the top-left element in K∞(x, x′) is given by

Kspline(x, x
′) =

=
1

2

∫ k

−k

[x+ b]+[x′ + b]+db+
1

2

∫ k

−k

[−x+ b]+[−x′ + b]+db

=
1

12

(

3x′ − x+ 2 k
)

(x+ k)2 −
1

12

(

3x− x′ − 2 k
)(

x′ − k
)2

.

(10)

The expression assuming −k ≤ x′ < x ≤ k is obtained

by swapping x and x′. For fixed x, the map Kspline(x, ·)
is piecewise cubic and twice continuously differentiable

(C2). This implies that kernel regression with (10) yields

cubic spline interpolation. Applying the Neural Spline ob-

jective (1) with derivative constraints at the samples in d = 1
also yields a piecewice cubic interpolant, although this curve

is in general only C1. For other distributions of a and b,

the kernel is no longer cubic, but the norm in the RKHS is

a weighed norm of curvature (see [45] for details). In this

sense, our approach with the initialization (8) can be viewed

as a multi-dimensional version of spline interpolation.
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λ = 0 λ = 10−4 λ = 10−2

λ = 0 λ = 10−6 λ = 10−5 λ = 10−3

Figure 2. The effect of adding a regularization in 2D (Top) and

3D (Bottom). Fitting the points and normals with no regularization

yields a surface which perfectly interpolates the noisy input data

(left images). Increasing λ leads to smoother solutions which do

not interpolate noise in the input. If λ is too large, the output loses

geometric details (e.g., the arms and base of the chair in the bottom

right image).

3.2. Regularization and Robustness to Noise

To deal with noisy data, we can optionally add a simple

regularizer term to our formulation that corresponds to pe-

nalizing the RKHS norm of the interpolant (“kernel ridge

regression”). Concretely, we replace (6) with

s
∑

i=1

K∞(xj , xi)α
∗
i + δijλ Idd+1 =

[

yj
nj

]

∈ R
d+1, (11)

for j = 1, . . . , s. The regularizer term affects the spectrum

of the Gram matrix K∞(xj , xi) by smoothing its smallest

eigenvalues, with a similar effect to early stopping in gradient

descent (see e.g. [2]). Figure 2 shows examples of applying

this regularizer on 2D and 3D problems.

3.3. Inductive Bias of Interpolants

Our interpolant f∗ belongs to the Hilbert space given by

H =
{

f(x) = ∫ c(w)ϕw(x)dτ(w) | ‖f‖H < +∞
}

, with

‖f‖2H = inf
{

∫ c(w)2dτ(w) | f(x) = ∫ c(w)ϕw(x)dτ(w)
}

(12)

where τ(w) is a measure over the weights w = (a, b)
(e.g., (8) or (9)), and c(a, b) can be viewed as a continu-

ous analog of the outer-layer weights ci of the finite net-

work given by (2). The inductive bias of Neural Splines

is thus determined by the RKHS norm in (12) since our

method outputs the interpolating function which minimizes

that norm. As noted in [35], if f(x) =
∫

c(w)ϕw(x)dτ(w)
and dτ(w) = dτa(a)dτb(b) then, by differentiating twice,

we note that the Laplacian of f is given by

∆f(x) =

∫

{ax+b=0}

c(a, b)dτa(a). (13)

By comparing (12) and (13), we see that the RKHS norm

and the Laplacian of f are closely related. More precisely,

the Laplacian ∆f(x) is the Dual Radon Transform of c(a, b).
Under certain assumptions, (13) can be inverted, yielding

an explicit expression for c in terms of ∆f . Intuitively, this

shows that bounding the RKHS norm imposes a constraint

on the Laplacian of f , and thus encourages f to be smooth.

We report the following statement from [35] and we refer to

Appendix D for more details.

Proposition 2. [35] Let f(x) =
∫

c(a, b)[ax+ b]+dτ(a, b),
and the constant γd = 1

2(2π)d−1 . If we assume that c(a, b) =

c(−a,−b) holds, then

c(a, b) = γd
R{(−∆)

d+1

2 f(x)}(a, b)
τ(a, b)

,

where R{f}(a, b) is the Radon Transform of f .

3.4. Poisson Surface Reconstruction as a Kernel

We cast Screened Poisson Surface Reconstruction [31] in

kernel form to facilitate comparisons. In its simplest form,

Poisson reconstruction, extracts the level set of a smoothed

indicator function determined as the solution of

−∆f = ∇ · V,

where V is a vector field obtained from normals ni at sam-

ples xi, and we use f to denote the (smoothed) indicator

function as it plays the same role as f in (1). The equation

above is closely related to (1): specifically, it is the equation

for the minimizer of
∫

R3 ‖∇xf(x)− V ‖2dx and the second

term in (1) can be viewed as a approximation of this term by

sampling at xi. The screened form of Poisson reconstruction

effectively adds the first term with yi = 0, as the indicator

function at points of interest is supposed to be zero. For the

Poisson equation, the solution can be explicitly written as an

integral

f(x) =

∫

R3

∇z · V (z)dz

|x− z| .

The vector field V is obtained by interpolating the normals

using a fixed-grid spline basis and barycentric coordinates

of the sample points with respect to the grid cell containing

it. This is equivalent to using a non-translation invariant

non-symmetric locally-supported kernel KB(z, x):

V (z) =
∑

i

KB(z, xi)ni .
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Approximate Poisson Kernel Poisson Surface Reconstruction

Figure 3. Left: Poisson reconstruction using the approximate Kernel

(15). Right: Screened Poisson Reconstruction of the same input.

Lemma 3. Let {cj ∈ R
3}gj=1 be a set of points arranged

on a regular grid, B1(x − z) be the trilinear basis func-

tion, and Bn(x − z) be a degree-n spline basis function

(See Appendix C for equations for B1 and Bn). The kernel

corresponding to Poisson Surface Reconstruction is

KPR(x, x
′) =

∫

R3

KB(z, x
′)dz

|x− z| , (14)

where KB(z, x) =
∑

j B1(x− cj)Bn(z − cj).

To study the qualitative properties of this kernel, we re-

place KB(z, x) with a radial kernel B1
n(|z − x|) (see Ap-

pendix C) which has qualitatively similar behavior (see Fig-

ure 3). Since both B1
n and the Laplace kernel 1

|x−z| are

radial functions, their convolution is also radial, yielding a

translation-invariant radial approximation K
approx
PR of KPR:

K
approx
PR (x, x′) =

∫

R3

B1
n(|z − x′|)dz
|x− z| . (15)

Lemma 4. The RKHS norm of the corresponding to the

approximate Poisson kernel K
approx
PR is

‖f‖H =

∫ |F [f ]|2
F [Kapprox

PR ]
dω (16)

where F [·] is the Fourier transform.

We discuss the kernel formulation of Poisson Reconstruc-

tion in more detail in Appendix C.

3.5. Fast and Scalable Implementation

We provide a fast and scalable implementation of Neural

Spline kernels based on FALKON [38], a recently-proposed

solver for kernel-ridge-regression which runs in parallel on

the GPU. While naïve kernel ridge-regression with N points

requires solving and storing an N ×N dense linear system,

FALKON uses conjugate gradient descent requiring only

O(N) storage, and
√
N convergence (though in practice we

find that even for very large inputs, we converge in fewer

than 10 iterations). To speed up convergence, FALKON

can optionally store an M × M preconditioner matrix in

CPU memory (where M ≪ N , see paragrph below). To

maximize performance and reduce memory overhead, we

5k Nyström 10k Nyström 15k Nyström 75k Nyström

Figure 4. Fitting a range scan with 100k points using varying num-

bers of Nyström samples. Larger numbers of Nyström samples will

lead to reconstructions which preserve finer details (e.g. the bumps

on the wing of the gargoyle). In this case, 15% of the input samples

recovers approximately the same level of detail as 75%.

rely on KeOps [12] to evaluate kernel matrix-vector products

symbolically on the GPU, which means our implementation

uses only a small constant amount GPU memory and can

be readily used on commodity hardware. Section 4.4 com-

pares the performance of our implementation against other

state of the art surface reconstruction techniques. We note

that in principle, low-dimensional kernel methods can be

accelerated using fast multipole-based approaches [23] (in

particular, in the context of 3D surface reconstruction this

was used in [9]); this yields optimal O(N) time complexity,

for dense matrix-vector multiplication.

Nyström Subsampling Full kernel ridge regression pre-

dicts a function which is supported on every input point xi

as in (6), requiring N coefficients to store the resulting func-

tion. We rely on Nyström sampling [18] to instead produce

a kernel function which is supported on a small M -sized

subset of the input points (while still minimizing a loss on all

the points). This is equivalent to approximating the kernel

matrix with a low rank linear system. To choose Nyström

samples, we leverage the geometric nature of our problem

and select these by downsampling the input point cloud to

have a blue-noise distribution using Bridson’s algorithm [8].

We demonstrate the effect of varying the number of Nyström

samples qualitatively in Figure 4.

4. Experiments and Results

We now demonstrate the effectiveness of Neural Splines

on the task of surface reconstruction. For all the experi-

ments in this section, we used the analytical form of the

kernel (5) with Gaussian initialization (8). Appendix A.7

compares the uniform (8) and Gaussian (9) kernels, showing

almost no measurable difference in the reconstructions pro-

duced by either. We compare the empirical and analytical

kernels in detail in Appendix A.6. An implementation of

Neural Splines is available at https://github.com/

fwilliams/neural-splines.
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Method mean median std

IoU

Screened Poisson [31] 0.6340 0.6728 0.1577

IGR [24] 0.8213 0.8566 0.1461

SIREN [40] 0.7997 0.8248 0.1203

Fourier Feat. Nets [42] 0.8143 0.8321 0.1047

Biharmonic RBF [9] 0.8247 0.8642 0.1350

SVR [22] 0.7625 0.7819 0.1300

Ours 0.9167 0.9438 0.0985

Chamfer

Screened Poisson [31] 2.22e-4 1.70e-4 1.76e-4

IGR [24] 6.66e-4 1.07e-4 4.69e-3

SIREN [40] 1.01e-4 8.62e-5 5.40e-5

Fourier Feat. Nets [42] 9.19e-5 8.68e-5 3.47e-5

Biharmonic RBF [9] 1.11e-4 8.97e-5 7.06e-5

SVR [22] 1.14e-4 1.04e-4 5.99e-5

Ours 5.32e-5 4.07e-5 3.53e-5

Table 1. Quantitative results on ShapeNet: Our method quantita-

tively outperforms state of the art neural network based methods

and classical methods by a large marchin in both IoU and Chamfer

distances.

4.1. Sparse Reconstruction on Shapenet

We performed a quantitative evaluation on a subset of the

Shapenet dataset [11] to demonstrate that the inductive bias

of Neural Splines is particularly effective for reconstruct-

ing surfaces from sparse points. We chose 1024 random

points and normals sampled from the surface of 20 shapes

per category across 13 categories (totalling 260 shapes). Us-

ing this dataset, we compared our method against Implicit

Geometric Regularization (IGR) [24], SIREN [40], Fourier

Feature Networks [42], Biharmonic RBF (Biharmonic) [9],

SVM surface modelling (SVR) [22], and Screened Poisson

Surface Reconstruction (Poisson) [31]. The first three tech-

niques are modern neural network based methods, while

the latter three techniques are classical methods based on

kernels or solving a PDE. As criteria for the benchmark, we

consider the Intersection over Union (IoU) and Chamfer Dis-

tance between the reconstructed shapes and the ground truth

shapes. The former metric captures the accuracy of the pre-

dicted occupancy function, while the latter metric captures

the accuracy of the predicted surface. Under both metrics,

our method outperforms all other methods by a large margin.

Table 1 reports quantitative results for the experiment and

Figure 5 shows visual results on a few models. We report

per-category results in Appendix A.4 and show many more

figures in Appendix A.3.

Parameter Selection Several of the above methods have

parameters which can be tuned to increase performance. To

ensure a fair comparison, we ran parameters sweeps for each

Shapenet model for these methods, reporting the maximi-

mum of each metric under consideration (see Appendix A.1

for a detailed description). For our method we did not tune

parameters. We used no regularization and 1024 as Nyström

samples for all models.

Ground Truth Scans

Method dC dH d~C
d~H

Anchor

DGP [44] 0.33 8.82 0.08 2.79

IGR [24] 0.22 4.71 0.12 1.32

SIREN [40] 0.27 6.18 0.13 1.88

FFN [42] 0.31 4.49 0.10 0.10

Ours 0.22 4.65 0.11 1.11

Daratech

DGP [44] 0.2 3.14 0.04 1.89

IGR [24] 0.25 4.01 0.08 1.59

SIREN [40] 0.29 4.46 0.12 1.65

FFN [42] 0.34 5.97 0.10 0.10

Ours 0.21 4.35 0.08 1.14

DC

DGP [44] 0.18 4.31 0.04 2.53

IGR [24] 0.17 2.22 0.09 2.61

SIREN [40] 0.18 2.27 0.09 1.92

FFN [42] 0.20 2.87 0.10 0.12

Ours 0.14 1.35 0.06 2.75

Gargoyle

DGP [44] 0.21 5.98 0.06 3.41

IGR [24] 0.16 3.52 0.06 0.81

SIREN [40] 0.29 3.90 0.13 1.93

FFN [42] 0.22 5.04 0.09 0.09

Ours 0.16 3.20 0.08 2.75

Lord Quas

DGP [44] 0.14 3.67 0.04 2.03

IGR [24] 0.12 1.17 0.07 0.98

SIREN [40] 0.13 0.89 0.06 0.96

FFN [42] 0.35 3.90 0.06 0.06

Ours 0.12 0.69 0.05 0.62

Table 2. Quantitative results on the Surface Reconstruction Bench-

mark: The Ground Truth contains the Chamfer (dC ) and Hausdorff

(dH ) distances between the reconstruction and ground truth. The

Scans column contains the one sided Chamfer (d~C ) and Hausdorff

(d ~H ) distance between the reconstruction and noisy inputs which

measures how much the reconstruction overfits noise in the input.

4.2. Surface Reconstruction Benchmark

We evaluated our method on the Surface Reconstruc-

tion Benchmark [5] which consists of simulated noisy range

scans (points and normals) taken from 5 shapes with chal-

lenging properties such as complex topologies, sharp fea-

tures, and small surface details. We evaluate our method

against Deep Geometric Prior (DGP) [44], Implicit Geo-

metric Regularization (IGR) [24], SIREN [40], and Fourier

Feature Networks (FFN) [42]. We remark that DGP estab-

lishes itself as superior to a dozen other classical methods on

this benchmark and IGR furhter outperforms DGP. As in [24]

and [44], Table 2 reports the Hausdorff (dH ) and Chamfer

(dC ) distances between the reconstruction and ground-truth.

We also report the one sided Hausdorff (d ~H
) and Cham-

fer (d~C
) distances between the scan and the reconstruction,

which measures how much the reconstructions overfits noise

in the input. Our reconstructions are quantitatively closer to

ground truth on all but one model. Figure 6 shows visual

examples of a few models from the benchmark. All models

are shown in Appendix A.3. As with the Shapenet bench-

mark, we did parameter sweeps for those methods which

have tunable parameters, choosing the best model for each

metric under consideration. See Appendix A.2 for details.

4.3. Large Scale Reconstruction of Full Scenes

Figure 7 shows a full scene consisting of 9 million points

reconstructed using our method. This is the same scene used
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Ours IGR SIREN Fourier Feats Poisson Biharmonic SVR

Figure 5. Comparisons between reconstruction techniques on ShapeNet models. For techniques requiring parameter sweeps, we show the

result with the highest IoU. See Appendix A.3 for more figures from each Shapenet class.

Ours IGR SIREN Fourier Feats

Figure 6. Comparisons between reconstruction techniques on the

Surface Reconstruction Benchmark. For techniques requiring pa-

rameter sweeps, we show the result with the lowest Chamfer Dis-

tance. See Appendix A.3 for more figures from each model.

in [40], and contains many thin features that are difficult to

reconstruct (e.g., curtains, plant, and lampshade). To gen-

erate the input point cloud for this experiment, we densely

sampled a mesh extracted from a 20483 occupancy grid of

the scene. To perform the reconstruction, we subdivided

the space into 8x8x8 cells containing between 10k and 500k

samples and reconstructed each cell interdependently using

up to 15k Nyström samples. The whole process takes 1.5

hours on a machine with an NVIDIA 1080Ti GPU.

FFN IGR SIREN Poisson Ours

Runtime (sec) 337.71 1413.94 161.41 1.64 11.91

Max VRAM (MiB) 3711 5093 1607 N.A. 5285

Table 3. Average runtime and GPU memory utilization of various

methods on the Surface Reconstion Benchmark [5] models. All

Neural Network based methods were run for 5000 iterations.

4.4. Timing and Performance

Table 3 compares the average running time and GPU

memory usage of our method and others when reconstructing

point clouds from the Surface Reconstruction Benchmark

described in Section 4.2. To ensure a fair comparison we ran

all neural network based methods for 5000 iterations. We do

not report exact CPU memory usage for the methods since it

is hard to measure but we remark that, by observation, system

memory usage never exceeded 3GiB for any of the methods.

Appendix A.5 reports the running times and memory usages

for individual models in the benchmark.

4.5. Our Method versus Neural Networks

Implicit Geometric Regularization [24] demonstrates that

ReLU networks have a natural inductive bias which makes

them good at reconstructing shapes. However, methods

based on ReLU networks suffer from slow convergence (see

Figure 8). SIREN [40] drastically improves convergence

speed by replacing ReLU with sinusoidal activations and

using a clever initialization. While SIREN does indeed

improve convergence, it performs poorly when samples are

sparse, suggesting that their inductive bias is perhaps ill

suited for sparse reconstruction tasks (see Figure 5). By

projecting input points onto random Fourier features, Fourier

Feature Networks (FFNs) [42] present a principled approach
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Figure 7. Using our method to reconstruct a full scene consisting of 9 million points.

5k Iter 50k Iter 75k Iter 100k Iter

Figure 8. Implicit Geometric Regularization [24] and other methods

based on ReLU networks suffer from slow convergence for sharp

and thin features (e.g., the tail of the airplane only begins to appear

after 100k iterations).

σ = 0.5 σ = 0.6 σ = 0.7

Figure 9. Fourier Feature Networks with Gaussian features [42] are

sensitive to the choice of variance (σ) of the Gaussian when data is

sparse. The images above show the result of training a network with

the same initialization and Fourier features with different initial

scales for the Gaussian distribution. Small changes in σ lead to

large changes in the final reconstruction.

rooted in Kernel methods to control the inductive bias of

the solution as well as convergence speed. While FFNs

are capable of producing high quality solutions, they are

sensitive to the choice of feature distribution when data is

sparse (see Figure 9) and thus require tuning to work well. In

contrast, our technique converges in seconds (Section 4.4),

has a well suited inductive bias for shape representation

(Section 3.3), and requires minimal parameter tuning.

5. Conclusion and Future Work

We have shown that Neural Spline kernels arising from

infinitely wide shallow ReLU networks are very effective

tools for 3D surface reconstruction, outperforming state-of-

the-art methods while being computationally efficient and

conceptually simple. In a sense, our work bridges the gap be-

tween traditional reconstruction methods and modern neural

network based methods by leveraging the deep connection

between neural networks and kernels.

We remark that our kernel formulation is fully differen-

tiable. In the future, we hope to integrate Neural Splines into

deep learning pipelines and apply them to other 3D tasks

such as shape completion and sparse reconstruction. On the

theory side, we would like to investigate and compare the

approximation properties of different kernels (in particular

those arising from infinite width sinusoidal networks) in the

context of 3D reconstruction.
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