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Abstract

Temporal correspondence - linking pixels or objects

across frames - is a fundamental supervisory signal for the

video models. For the panoptic understanding of dynamic

scenes, we further extend this concept to every segment.

Specifically, we aim to learn coarse segment-level matching

and fine pixel-level matching together. We implement this

idea by designing two novel learning objectives. To validate

our proposals, we adopt a deep siamese model and train the

model to learn the temporal correspondence on two different

levels (i.e., segment and pixel) along with the target task.

At inference time, the model processes each frame indepen-

dently without any extra computation and post-processing.

We show that our per-frame inference model can achieve

new state-of-the-art results on Cityscapes-VPS and VIPER

datasets. Moreover, due to its high efficiency, the model

runs in a fraction of time (3×) compared to the previous

state-of-the-art approach.

1. Introduction

A holistic understanding of a video requires pixel-level

information of different semantics, object instances, back-

ground stuffs as well as their temporal changes. Despite

being very challenging, having such video understanding is

crucial for various vision applications such as autonomous

driving, robot control, video editing, and augmented real-

ity. Video semantic segmentation has been regarded as one

of the representative proxies for this ambitious goal. The

community has proposed a large number of learning-based

approaches under two main research directions of improving

accuracy [9,11,12,21,31,50] and efficiency [20,27,30,38,51].

While there has been a flurry of advances in model designs,

significantly less effort has been made to the training ob-

jectives. The main bottleneck of developing a useful super-

vision signal is the scarcity of video annotations available.

Most video segmentation benchmarks [7, 49] provide anno-

tations for only a single frame per video clip, which limits

these annotations still to an image level.

In line with the growing importance of the field and to

Figure 1: Overview of our approach. Temporal correspondence

learning is fundamental for video understanding. In this work,

we extend this concept to every segment in a video. Specifically,

given a pair of frames, It and It+δ , a siamese model, f , learns to

associate every segment at two different levels jointly: segment-

level via contrastive loss and pixel-level via tube-matching loss.

meet the high demand for video labels, Kim et al. [24] re-

cently presented a new challenging dense video understand-

ing problem called video panoptic segmentation (VPS) and

presented a pair of video annotations: Cityscapes-VPS and

VIPER datasets. The problem unifies the existing video

semantic segmentation [11, 38, 50] and video instance seg-

mentation [2, 48]. It aims at a simultaneous prediction of

object classes, masks, instance id associations, and seman-

tic segmentation for all pixels in a video. The two VPS

benchmarks provide real-world and simulation-based video

datasets, opening up the possibilities to probe new video-

specific training signals.

Identifying temporal correspondence - “what went

where” - in a video is a crucial requirement of robust visual

reasoning in space and time. Numerous methods for learn-

ing temporal correspondences, from pixel-level to object-
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level, have been developed so far, e.g., optical-flow esti-

mation [18, 29, 39] and object tracking [3, 40, 41, 43, 44].

However, most of the previous methods aim at addressing a

single-level of temporal correspondence at a time, and less

attempt has been made to solve different levels of temporal

correspondences jointly. For the dense panoptic segmen-

tation of a video, we argue that the model representations

should support reasoning at various levels of temporal cor-

respondences. At the same time, this should be considered

for every individual segment 1 in a video. To this end, we

train a video segmenter that simultaneously learns correspon-

dences across frames at both segment-level and pixel-level

(see Fig. 1). In the following, we describe these two impor-

tant views in turn:

1) Segment-level correspondence learning: Let’s imagine

we assign an id tag for each segment in a video. Naturally,

we provide the same id tag for the same segment over time.

We formulate this concept as a graph matching problem. In

practice, we construct the graph from video frames, where

nodes encode segments in each frame and edges are affini-

ties between them. We then aim to learn features such that

strong edges represent temporal correspondences. This is

achieved through the contrastive learning [14], which can

encourage pairs of segment embedding to have strong edges

if they are temporally associated or weak edges otherwise.

Also, as time goes, the segments in a video undergo dynamic

appearance changes such as deformation, occlusion, and per-

spective distortion. Therefore, without composing multiple

handcrafted data augmentations [1, 4–6, 13, 15, 32], our for-

mulation of matching the same segment at temporally distant

frames naturally leads to learning segment representations

invariant in such visual distortions.

2) Pixel-level correspondence learning: The optical flow

provides dense pixel-level correspondences where each pixel

in the current frame goes in the next frame. The photometric

loss is often used for learning this. Recent works [9, 30] gen-

eralize the photometric loss to the logit domain, i.e., segmen-

tation output, with the motivation of predicting temporally

consistent labels. However, as warping loss often assumes

independence between each pixel, higher-level correlations

or structures over pixels are hardly modeled. To alleviate

this issue, we introduce “tubes” formed by linking the seg-

ment masks along the time axis. The model then learns to

minimize the mismatch between the prediction tubes and

the ground-truth tubes, globally optimizing the entire chain

of intermediate mask predictions. This constraint allows

the model to capture fine-grained changes in segments, e.g.,

shape, boundary, and motion tendencies over time. Empiri-

cally, we show that the proposed mask tube matching loss

performs better than the warping loss in learning an accurate

segmentation model.

1Throughout the paper, we use the term segment to denote the region of

both foreground things and background stuffs in the video.

We aim to learn these two different levels of temporal

correspondences jointly. To do so, we propose an efficient

framework. Specifically, we use a deep siamese model and

train with a pair of frames, where a neighbor reference frame

in a pair is randomly selected with a time gap relative to the

current target frame. Our model can encode strong temporal

consistency into the features during training without using

any heavy feature aggregation [50] or fusion [45] operations,

resulting in an efficient yet strong video model. Without bells

and whistles, our model achieves new state-of-the-art results

on Cityscapes-VPS and VIPER datasets while running in

a fraction of time compared to the previous state-of-the-art

approach [24]. We summarize the contributions of this paper

as follows.

1. We generalize the temporal correspondence learning to

every segment in a video. We present to learn coarse

segment-level matching and fine pixel-level matching

together. We achieve this by designing two novel objec-

tive functions with an efficient learning framework.

2. We propose a new supervised2 contrastive learning

method to learn the temporal correspondences in a

video. In particular, we aim to maximize the mutual

information between representations of temporally dis-

tant frames of the same segment.

3. We achieve new state-of-the-art on benchmarks, clearly

demonstrating the effectiveness of our approach. We

additionally provide extensive experimental analysis

with ablation studies.

2. Related Works

Video Segmentation Video segmentation aims to assign

pixel-wise semantic labels to video frames. As an im-

portant task for dynamic scene understanding, it has at-

tracted attention increasingly from the research commu-

nity. Numerous approaches have been proposed in the liter-

ature, either focusing on improving the segmentation qual-

ity [9, 11, 12, 21, 31, 50] or accelerating the computation

speed [20, 27, 30, 38, 51]. With the growing importance of

the field, a more fine-grained dynamic scene understanding

task, video panoptic segmentation [24], has been recently

presented. It unifies semantic segmentation, instance seg-

mentation, and multi-object tracking into a single coherent

task. Kim et al. [24] designed a strong baseline model called

VPSNet that consists of a shared backbone with multiple

task-specific heads. While effective, the model enforces

only weak temporal consistency by aggregating neighboring

features using optical-flow [18] and tracking foreground ob-

jects [48]. Thus, they missed leveraging intrinsic temporal

information in a video fully. Our model instead benefits

from learning strong temporal consistency, from segment-

level to pixel-level, through the proposed learning objectives

2We effectively leverage the video label information.
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during training. With our learning strategy, we show that our

per-frame inference model can even generate more accurate

video segmentation results than the previous state-of-the-art

method.

Temporal Correspondence Learning Temporal continuity

provides a strong visual constancy that links disparate per-

cepts into a smoothly-varying entity in the visual world.

Learning temporal correspondence serves as a useful train-

ing signal in a video and it has been widely explored

from pixel-wise to object-level such as optical flow esti-

mation [18, 29, 39] and visual tracking [3, 40, 41, 43, 44].

However, there was less effort in learning different levels

of temporal correspondences together, which are inherently

related. In this paper, we explore two different temporal

stability constraints in a video and show the effectiveness of

joint learning. As large-scale video annotations are recently

emerging through simulation [10, 17, 36, 37] or automated

label generation methods [35], our work aims to develop

commensurate video-specific learning strategies. Another

orthogonal direction is the self-supervised approach that con-

structs pretext tasks by exploiting temporal information in a

video, e.g., cycle-consistency of time [19, 26, 42, 46]. Since

the training data in the video domain is more likely to be a

semi-supervised setting, we believe the progress in both di-

rections, supervised and unsupervised learning in the video,

should be made in parallel.

Contrastive Learning Recent resurgence in contrastive

learning has led to significant advances in a self-supervised

learning paradigm [1, 4–6, 13, 15, 32]. A fundamental idea

of contrastive learning [14] is that similar examples should

be grouped together and far from other clusters of related

examples. It is achieved by using three key ingredients, an

anchor, positive, and negative(s): pulling together an anchor

and a positive sample in embedding space and pushing apart

the anchor from many negative samples. Data augmentations

of the sample often construct a positive pair, and negative

pairs are formed by the anchor and randomly chosen sam-

ples from the minibatch. Here, we aim to extend this current

self-supervised contrastive learning paradigm from image to

video. At the same time, from unsupervised to supervised

by effectively leveraging the video label information. Our

work shares a similar objective with the recent study, Sup-

Con [22], but we explore a different set of view definitions,

architectures, and application settings. Also, we contribute

a unique empirical investigation of supervised contrastive

learning on the structured output space, i.e., segmentation.

3. Method

Video frames are temporally coherent in nature. A video

panoptic segmentation model should faithfully exploit this

temporal stability to seamlessly capture the whole segment’s

panoptic movement in a video. Otherwise, inconsistency in

any class label and instance-id will result in low video qual-

ity of these panoptic segmentation sequences. This paper

suggests learning the temporal correspondences in a video

from two different perspectives jointly: segment and pixel.

In the following, we elaborate our approach in detail, includ-

ing the network design (Sec. 3.1) and objective functions

(Sec. 3.2). An overview of our method is shown in Fig. 2.

3.1. Network Architecture

In this paper, we design a deep siamese model, training

on a pair of frames, where the neighbor reference frame is

randomly sampled from a large range relative to the current

target frame [50]. We then force the model to learn represen-

tations that can optimally associate the contents of the input

frames.

Our model is fully convolutional and mainly consists of

three parts: We first forward the target and reference images,

It and It+δ , into a siamese network where each sub-network

has the same structure with shared parameters. We then

match the intermediate features (or predicted panoptic logits)

of the two temporally distant images. We finally compute

the penalties to learn the temporal correspondences. All

components are differentiable, allowing us to train the whole

network end-to-end.

Segmentation model. While not being sensitive to any

specific design of the segmentation model, we choose the

previous state-of-the-art, VPSNet [24] as a baseline. To

avoid memory issues during the training, we use an effi-

cient version, VPSNet-Track 3, without their memory-heavy

Fuse module. The model consists of a shared ResNet50-

Feature Pyramid Network (FPN) backbone [28] with multi-

ple task-specific heads: Mask-RCNN [16], deformable con-

volutions [8], and MaskTrack [48] for instance segmentation,

semantic segmentation, and tracking, respectively.

We propose to learn a projection head to map the feature

pyramid representations to a latent embedding space, which

will be used for our contrastive feature learning. The projec-

tion head is only deployed at training time and abandoned at

inference. We provide the details of the projection head in

the following.

Projection head. Recent works [5, 6] introduce a small neu-

ral network so-called a projection head, e.g., MLP with one

hidden layer, to map representations from the base encoder

to a latent space where contrastive loss is applied. In this

context, we treat our backbone, i.e., ResNet50-FPN, as a

base encoder and perform the projection on the FPN features.

Our projection head mainly consists of two parts. The first is

a gathering operation where we merge multiple levels into a

single, highest resolution level by resizing and elementwise

adding the feature maps [33]. Second, we then apply two

3The heavy version, VPSNet-FuseTrack, cannot be trained with a pair

of frames due to the GPU memory limit.
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Figure 2: (Left) The overall pipeline of our joint learning framework. We utilize a deep siamese model and train coarse segment-level

matching and fine pixel-level matching together. At inference time, we process video frames in a per-frame manner, without relying on

heavy temporal feature aggregation or fusion. (Right) The detailed illustration of the projection head, which is required for the contrastive

learning at train time only. The forward procedure of the projection head is: First, the FPN features are resized to the highest resolution level,

and element-wise summed. Second, it is projected to a latent space via projection and normalization. Finally, the MaskPool operation is

applied to obtain a segment-level feature embedding vector. Best viewed in color.

3× 3 convolutions and a ReLU in between them, followed

by the L2 normalization layer. Finally, the resulting output

feature is used for contrastive learning. While various pro-

jection head implementations are possible, our simple design

already achieves great performance.

3.2. Objective Functions

We exploit the temporal continuity in a video as a crucial

supervisory signal, which endows strong temporal stability

priors to the model. To this end, we define the losses that

guide the network to learn temporal correspondences from

two different perspectives as

Ltc = λsegmentLsegment + λpixelLpixel, (1)

which consists of loss functions for segment-level corre-

spondence learning Lsegment and pixel-level correspondence

learning Lpixel. In the following, we describe each term in

detail.

3.2.1 Segment-level Correspondence

We formulate the learning of segment-level temporal cor-

respondence as a graph matching problem. The graph is

constructed from a video, where nodes indicate segments

in each frame and edges are affinities between them. We

aim to place large weights on a node pair that is temporally

associated, i.e., finding a match. The remaining issues are

1) how we represent the nodes in each frame and 2) how we

encode the temporal correspondences by strong edges.

To tackle the first problem, we use a mask pooling op-

eration, which is inspired by Lorenzo et al. [35]. They use

it to enhance the RoI features for robust Re-ID. By pool-

ing the features under the instance mask, the background

information is discarded, and only the necessary foreground

information is left. Unlike theirs, our main purpose is to

have a representative embedding vector for every segment

in a frame. Therefore, we exploit the ground-truth panoptic

masks. Specifically, we use the things and stuff masks to

spatially pool the projected feature map for all individual

segments. We treat the obtained segment-level vectors as the

nodes of a graph for each frame.

To address the second problem, our solution is to apply

contrastive learning [22]: “pull” the embeddings if they

are temporally associated and “push” otherwise. Given

a pair of temporally distant frames, It and It+δ, we only

consider N traceable segments. Then the embeddings of

the same segment in two different frames, zt,i and zt+δ,i
4,

are regarded as a positive pair and the embeddings of other

2(N -1) segments, e.g., zt,j
5, as negatives. For a segment i,

the loss function for a positive pair of examples (t, t+ δ) is

formulated as

lit,t+δ = −log
exp(sim(zt,i, zt+δ,i)/τ)

∑

∗

∑

k ✶[k 6=i∧∗6=t]exp(sim(zt,i, z∗,k)/τ)

s.t. ∗ ∈ {t, t+ δ},

(2)

4i ∈ [1, N ]
5j 6= i
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Figure 3: We exploit two different contrastive forces for segment-level temporal correspondence learning: semantic class-wise contrast and

instance-wise contrast. The pull-push force at the semantic class-level enforces the model to learn grouping. In the meantime, the pull-push

force at the instance-level enforces the model to learn the instance discrimination. These two contrasting forces are applied to link It and

It+δ , learning temporally invariant features as a consequence. As learning proceeds, the feature embeddings desirable for video panoptic

segmentation are finally learned. For clarity, only the partial pull-push operations are visualized.

where ✶[k 6=i∧∗6=t] ∈ {0, 1} is an indicator function evaluat-

ing to 1 iff k 6= i and ∗ 6= t. The τ denotes a temperature

parameter, which is set to 0.5. The final contrastive loss is

computed across all positive pairs of segments as

Lcontra =
1

2N

N
∑

i=1

lit,t+δ + lit+δ,t (3)

Finally, we found that how we contrast the embedding

is also important for the performance. For example, if we

only contrast the segment embeddings computed from the

semantic segmentation label, the different instances in the

same semantic class are not distinguished, which degrades

the instance tracking accuracy. On the other hand, using

only the thing instance masks leads to low classification

accuracy as different segment embeddings of the same se-

mantic pushed too far apart. Also, the background regions

are not considered in learning the temporal association. To

resolve these issues, our key idea is to construct two differ-

ent graphs using both semantic and instance segmentation

labels and apply the contrastive learning simultaneously but

independently (see Fig. 3). Our formulation enables class-

aware instance contrasting. As training proceeds, the fea-

tures suitable for panoptic segmentation are learned. The

loss for the segment-level correspondence learning is defined

as Lsegment = Lcontra sem +Lcontra inst, where Lcontra sem

and Lcontra inst denote the contrastive loss (Eq. (3)) com-

puted from the graphs using semantic segmentation and

instance segmentation annotations, respectively.

3.2.2 Pixel-level Correspondence

A dense temporal correspondence learning is often achieved

by using a photometric loss. The loss is mainly used for

flow estimation [18, 39] or temporal stability of output

frames [23, 25, 34]. It is calculated by warping the current

frame to the next frame through the optical flow and com-

puting the warping error. Recent studies [9, 30] generalize

the photometric loss to the logit space, i.e., segmentation

output, aiming at learning a segmentation model that pre-

dicts temporally consistent labels. However, the photometric

loss assumes pixel independence and thus is challenging

to model complex correlations over pixels. This may over-

look learning important higher-level temporal structures in a

video, such as a segment shape changes through time.

To this end, we introduce a concept of tube that is con-

structed by connecting the segment masks along the time-

axis. The model attempts to globally minimize the mismatch
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between the prediction tubes and the ground-truth tubes dur-

ing training. The proposed tube matching loss is applied

pixel-wise while allowing the model to capture important

temporal structures over the pixels. We show that it outper-

forms the warping loss in learning an accurate segmentation

model. However, we find that warping loss can complement

the tube-matching loss, and the best performance can be

achieved when using them together (see Table 4). Therefore,

we propose to use them jointly to achieve strong pixel-level

temporal correspondence learning. In the following, we de-

tail how we define the final loss function for learning the

pixel-level correspondences.

Warping loss. Given a pair of video frames It and It+δ,

we first feed them into the flow estimation network, e.g.,

FlowNet [18], and obtain the optical flow of each pixel

from the current frame to the next frame, Ft⇒t+δ . To avoid

penalizing the pixels in the invisible regions, we estimate the

occlusion map as Ot+δ⇒t = exp(−α||It − Ît+δ||2), where

Ît+δ is the frame It+δ warped by the flow Ft⇒t+δ and α is

set to 50. By the nature of the convolutional neural network,

the output logit is spatially aligned with the input frame. We

thus directly use the downsampled version6 of the same flow

(F ′) and occlusion map (O′) to constrain the logits. The

panoptic logits st and st+δ are acquired by feeding the input

frames into the segmentation model. The warping loss is

defined as

Lwarp =
∑

x,y

O′x,y
t⇒t+δ

∥

∥sx,yt − ŝx,yt+δ

∥

∥

2
, (4)

where sx,y is the logit vector at location (x, y) and ŝt+δ is

the logit st+δ warped by the flow F ′
t⇒t+δ .

Tube-matching loss. Given a pair of panoptic logits st and

st+δ , we first apply softmax layer along the the channel-axis.

Then, each channel of the panoptic logit will encode specific

segment masks, and the values will range between 0 and

1. We temporally concatenate the same segment masks in

two different panoptic logits (see Fig. 1). Formally, for an

segment i, its tube, Ti, can be constructed as

ṡ = Softmax(s)

Ti = [ṡt,i, ṡt+δ,i]
(5)

where ṡt,i and ṡt+δ,i denote the mask of segment i in the

frame It and It+δ, respectively. For the tube matching, we

adopt the dice coefficient [?], D, which is insensitive to the

number of foreground and background pixels and can have

balanced importance on every segment regardless of their

size. It is defined as,

D(p, q) =
2
∑

(p · q)
∑

p2 +
∑

q2
. (6)

6The spatial size of the logit is often smaller than original input resolu-

tion, e.g., 1/4 or 1/8.

As the dice coefficient has a range from 0 to 1, the tube

matching loss function is calculated as

Ltube =
1

N

∑

i

1−D(Ti, T̃i), (7)

where T̃ is the corresponding binary ground-truth mask tube.

N is the total number of the traceable segments.

The loss for the pixel-level correspondence learning is

composed of these two losses as Lpixel = Lwarp + Ltube.

4. Experiments

This section presents the experimental results on the two

video-level datasets, VIPER, and Cityscapes-VPS. We adopt

the evaluation metrics of VPQ [24], which reflect both image-

level prediction and cross-frame association performance.

4.1. Data

We use recently presented video panoptic segmentation

datasets: VIPER and Cityscapes-VPS.

• VIPER: We follow the public train / val split. For

evaluation, we include all the validation videos from

day scenario and use the first 50 frames of each video:

setting a total of 600 frames.

• Cityscapes-VPS: We follow the public train / val / test

split7. Each video consists of 30 consecutive frames,

with every 5 frames paired with the ground-truth anno-

tations. All 30 frames are predicted for each video, and

only the 6 frames with the ground-truth are evaluated.

4.2. Quantitative Results

We consider VIPER as a primary evaluation dataset,

based on its high quantity and quality of the annotation.

We mostly conduct experiments with this benchmark.

Baselines. We compare our approach to the state-of-the-art

VPSNet [24]. The followings are the detailed information of

the baseline models used in experiments.

• VPSNet-Track: A basic video panoptic segmentation

model, which adds tracking head [48] on top of the

image panoptic segmentation model, UPSNet [47].

• VPSNet-FuseTrack: An advanced model, which addi-

tionally supports temporal feature aggregation [50] and

attentional space-time feature fusion [45]. This model

holds current state-of-the-art VPQ scores.

• VPSNet-SiamTrack: We use VPSNet-Track as a base

segmentation model and train it with a pair of tempo-

rally distant frames. As there is no difference in model

designs, we can see the performance improvement of

SiamTrack over the Track totally comes from the en-

hanced model representations after the training.

7400 training, 50 validation, and 50 test videos
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VPSNet-variants Segment Pixel Temporal window size
VPQ FPS

on VIPER Lsegment Lwarp Ltube k = 0 k = 5 k = 10 k = 15

Track 48.1 / 38.0 / 57.1 49.3 / 45.6/ 53.7 45.9 / 37.9 / 52.7 43.2 / 33.6 / 51.6 46.6 / 38.8 / 53.8 5.1

FuseTrack [24] 49.8 / 40.3 / 57.7 51.6 / 49.0 / 53.8 47.2 / 40.4 / 52.8 45.1 / 36.5 / 52.3 48.4 / 41.6 / 53.2 1.6

SiamTrack-Base 49.5 / 39.1 / 58.1 50.8 / 46.6 / 54.0 46.7 / 38.8 / 53.0 44.5 / 34.5 / 52.4 47.9 / 39.8 / 54.3 5.1

SiamTrack X 50.7 / 41.7 / 58.2 52.6 / 50.8 / 54.2 48.4 / 42.9 / 53.3 46.5 / 39.3 / 52.8 49.6 / 43.7 / 54.6 5.1

SiamTrack X 50.3 / 40.4 / 58.6 51.3 / 47.6 / 54.3 47.3 / 40.0 / 53.3 45.4 / 36.4 / 52.9 48.6 / 41.1 / 54.8 5.1

SiamTrack X 50.7 / 41.0 / 58.6 52.4 / 49.6 / 54.6 48.5 / 42.5 / 53.5 46.7 / 39.3 / 52.8 49.6 / 43.1 / 54.9 5.1

SiamTrack-Ours X X X 51.1 / 42.3 / 58.5 53.4 / 51.9 / 54.6 49.2 / 44.1 / 53.5 47.2 / 40.3 / 52.9 50.2 / 44.7 / 55.0 5.1

Table 1: Video panoptic segmentation results on VIPER validation set. Each cell contains VPQ / VPQTh / VPQSt scores.

VPSNet-variants Temporal window size
VPQ FPS

on Cityscapes-VPS val. k = 0 k = 5 k = 10 k = 15

Track 63.1 / 56.4 / 68.0 56.1 / 44.1 / 64.9 53.1 / 39.0 / 63.4 51.3 / 35.4 / 62.9 55.9 / 43.7 / 64.8 4.5

FuseTrack [24] 64.5 / 58.1 / 69.1 57.4 / 45.2 / 66.4 54.1 / 39.5 / 64.7 52.2 / 36.0 / 64.0 57.2 / 44.7 / 66.6 1.3

SiamTrack-Base 63.2 / 57.0 / 67.7 56.2 / 42.6 / 66.3 53.2 / 38.3 / 65.2 51.5 / 33.7 / 64.5 56.0 / 42.9 / 65.8 4.5

SiamTrack-Ours 64.6 / 58.3 / 69.1 57.6 / 45.6 / 66.6 54.2 / 39.2 / 65.2 52.7 / 36.7 / 64.6 57.3 / 44.7 / 66.4 4.5

VPSNet-variants Temporal window size
VPQ FPS

on Cityscapes-VPS test k = 0 k = 5 k = 10 k = 15

Track 63.1 / 58.0 / 66.4 56.8 / 45.7 / 63.9 53.6 / 40.3 / 62.0 51.5 / 35.9 / 61.5 56.3 / 45.0 / 63.4 4.5

FuseTrack [24] 64.2 / 59.0 / 67.7 57.9 / 46.5 / 65.1 54.8 / 41.1 / 63.4 52.6 / 36.5 / 62.9 57.4 / 45.8 / 64.8 1.3

SiamTrack-Base 63.2 / 58.6 / 66.1 57.1 / 46.9 / 63.6 54.0 / 41.8 / 62.6 52.1 / 37.9 / 61.5 56.6 / 46.4 / 63.4 4.5

SiamTrack-Ours 63.8 / 59.4 / 66.6 58.2 / 47.2 / 65.9 56.0 / 43.2 / 64.4 54.7 / 40.2 / 63.2 57.8 / 47.5 / 65.0 4.5

Table 2: Video panoptic segmentation results on Cityscapes-VPS validation (top) and test (bottom) set with our VPSNet-variants. Each cell

contains VPQ / VPQTh / VPQSt scores.

4.2.1 Main Results

VIPER. First, we demonstrate the impact of the proposed

learning objectives. The results are summarized in Table 1.

The baseline is a siamese model without using any temporal

correspondence learning at train time. Upon this baseline,

we apply our proposals. As shown in the table, we find

that all the loss functions improve the baseline with signifi-

cant margins, showing their effectiveness. Specifically, the

VPQ scores increased by 1.7%, 0.7%, and 1.7% for Lcontra,

Lwarp, and Ltube, respectively. Note that our learning objec-

tives provide the model to perform well on the more chal-

lenging regime, i.e., the temporal window size of k >= 5.

The best VPQ scores were achieved when the two objectives,

segment-level and pixel-level temporal correspondence, are

enforced together. This result implies that correspondence

learning at both segment-level and pixel-level synergize each

other to learn more discriminative video features. Compared

to the state-of-the-art, VPSNet-FuseTrack, our final model

achieves much higher VPQ scores (48.4 VPQ vs. 50.2 VPQ).

Moreover, as our model does not rely on temporal aggrega-

tion [50] and fusion [45] strategies, we enjoy faster inference

speed (1.6FPS vs. 5.1FPS) and lower memory usage (5.5G

vs. 3.7G) than the VPSNet-FuseTrack. This shows great po-

tential of our learning framework for practical applications

on high-speed and low throughput scenarios.

Cityscapes-VPS. We also benchmark our model on

Cityscapes-VPS val and test. The results are summarized

in Tab. 2. We observed a consistent tendency, where our

full VPSNet-SiamTrack model achieves +1.3%VPQ and

+1.2%VPQ higher than the baseline for val and test, respec-

tively. Also, it achieves better performance compared to

the state-of-the-art, while running in much faster inference

speed (3×) and using lower memory usage (5.5G vs. 3.7G).

We see the relatively lower performance improvement than

the VIPER mainly comes from the difference in annotation

quality 8.

Analysis on Lsegment. The model learns coarse segment-

level temporal correspondence by matching their embed-

dings across frames. The temporal association is achieved

by contrastive learning, and for successful learning, it is

essential to set positive and negatives properly [5, 6, 15].

Here, we consider the same segment’s embeddings in the

different frames as positive and others as negatives. Dur-

ing learning, our approach exploits both the semantic and

instance segmentation labels. The results are summarized

in Tab. 3. The instance-wise contrast (Lcontra inst) enables

the learning of visual features suitable for tracking. However,

as learning is unaware of the semantic-class, the instance

features in the same class may vary significantly (49.6VPQ

→ 48.4VPQ). Moreover, the background is ignored. On the

other hand, the semantic class-wise contrast (Lcontra sem)

8We found several critical annotation errors in the Cityscapes-VPS; in-

correct track-ids, wrong class labels, and low-quality masks. They may lead

to noisy training signal (e.g., wrong temporal association of the segments

or inaccurate boundaries and shapes).
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Figure 4: The qualitative results on VIPER. Frames are sampled uniformly. The insets show enlarged views of the dotted boxes.

Loss
Segment-lvl matching

VPQ VPQTh VPQSt

Lcontra inst Lcontra sem

47.9 39.8 54.3

X 48.4 40.6 54.2

X 47.6 39.6 54.1

Lsegment X X 49.6 43.7 54.6

Table 3: Ablation studies on segment-level correspondence loss

using VIPER.

enforces the model to learn grouping the same semantic

features. However, without instance-level contrasting, it is

easily trapped into degeneracy (49.6VPQ → 47.6VPQ). To

this end, we present to use both the instance-level and se-

mantic class-level contrasting together. The strong empirical

results in Table 3 confirms that the features suitable for video

panoptic segmentation is learned.

Analysis on Lpixel. The fine pixel-level correspondence is

learned with the combination of warping loss (Lwarp) and

tube matching loss (Ltube). We evaluate their impacts on

both segmentation quality and output temporal smoothness

using VPQ and TC [30], respectively. The results are sum-

marized in Table 4. As shown in the table, we can clearly

see that the tube matching loss outperforms warping loss sig-

nificantly, both on the segmentation quality (VPQ) and the

smoothness of output videos (TC). This backs our claim that

modeling higher-level temporal structures over the pixels is

more beneficial. Also, we observe that employing both the

tube matching loss and the warping loss provides the best

VPQ and TC scores. This implies that both are complemen-

tary in constructing an accurate and temporally stable VPS

model, showing the great advantage of our final loss form.

Analysis on time gap δ. We also study the impact of the

time gap, δ, which allows the siamese model to exploit

temporally distant frames during training. We conduct exper-

iments with three different values of 5, 10, 15. On VIPER,

each provided a final VPQ score of 49.8, 50.2, and 49.9,

respectively. We thus use δ ∈ {−10, 10} .

Loss
Pixel-lvl matching

VPQ VPQTh VPQSt TC [30]
Lwarp Ltube

47.9 39.8 54.3 78.3

X 48.6 41.1 54.8 79.3

X 49.6 43.1 54.9 80.8

Lpixel X X 49.9 43.8 55.0 82.2

Table 4: Ablation studies on pixel-level correspondence loss using

VIPER.

4.3. Qualitative Results

In Fig. 4, we compare our final model VPSNet-SiamTrack

with VPSNet-FuseTrack [24] qualitatively. The blue and

yellow dotted boxes in the Figure 4 show the segment-level

smoothness (i.e., the rider and pedestrian are continuously

tracked and segmented over time). Meanwhile, the orange

dotted box demonstrates the pixel-level smoothness (i.e., the

shape and the boundary of the flag are temporally consistent).

These two different temporal stability priors are encoded into

the feature representations during the training.

5. Conclusion

In this paper, we generalize the temporal correspondence

learning to every segment in a video. To learn their temporal

association, we present two novel objective functions with an

efficient learning framework. With our learning strategy, a

per-frame inference model can outperform previous state-of-

the-art while running in a fraction of time. Last but not least,

this is the first time to propose a supervised contrastive learn-

ing method for learning dense temporal associations. Based

on our proposals and their empirical results, we hope more

effective video-specific supervisory signals being presented

in the future.

Acknowledgements This work was supported in part by

Samsung Electronics Co., Ltd (G01200447). Sanghyun Woo

and Dahun Kim are supported by Microsoft Research Asia

Fellowship.

2712



References

[1] Philip Bachman, R Devon Hjelm, and William Buchwalter.

Learning representations by maximizing mutual information

across views. In Advances in Neural Information Processing

Systems, pages 15535–15545, 2019. 2, 3

[2] Gedas Bertasius and Lorenzo Torresani. Classifying, seg-

menting, and tracking object instances in video with mask

propagation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 9739–9748,

2020. 1

[3] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016. 2, 3

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learning

of visual features by contrasting cluster assignments. Ad-

vances in Neural Information Processing Systems, 33, 2020.

2, 3

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020. 2, 3, 7

[6] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-

proved baselines with momentum contrastive learning. arXiv

preprint arXiv:2003.04297, 2020. 2, 3, 7

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,

Stefan Roth, and Bernt Schiele. The cityscapes dataset for

semantic urban scene understanding. In Proceedings of the

IEEE conference on computer vision and pattern recognition,

pages 3213–3223, 2016. 1

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang,

Han Hu, and Yichen Wei. Deformable convolutional net-

works. In Proceedings of the IEEE international conference

on computer vision, pages 764–773, 2017. 3

[9] Mingyu Ding, Zhe Wang, Bolei Zhou, Jianping Shi, Zhiwu

Lu, and Ping Luo. Every frame counts: Joint learning of

video segmentation and optical flow. In AAAI, 2020. 1, 2, 5

[10] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. Carla: An open urban driving

simulator. arXiv preprint arXiv:1711.03938, 2017. 3

[11] Mohsen Fayyaz, Mohammad Hajizadeh Saffar, Mohammad

Sabokrou, Mahmood Fathy, Reinhard Klette, and Fay Huang.

Stfcn: spatio-temporal fcn for semantic video segmentation.

arXiv preprint arXiv:1608.05971, 2016. 1, 2

[12] Raghudeep Gadde, Varun Jampani, and Peter V Gehler. Se-

mantic video cnns through representation warping. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 4453–4462, 2017. 1, 2

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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