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Abstract

Current video retrieval efforts all found their evaluation

on an instance-based assumption, that only a single caption

is relevant to a query video and vice versa. We demonstrate

that this assumption results in performance comparisons of-

ten not indicative of models’ retrieval capabilities. We pro-

pose a move to semantic similarity video retrieval, where

(i) multiple videos/captions can be deemed equally relevant,

and their relative ranking does not affect a method’s re-

ported performance and (ii) retrieved videos/captions are

ranked by their similarity to a query. We propose several

proxies to estimate semantic similarities in large-scale re-

trieval datasets, without additional annotations. Our anal-

ysis is performed on three commonly used video retrieval

datasets (MSR-VTT, YouCook2 and EPIC-KITCHENS).

1. Introduction

Video understanding approaches which incorporate lan-

guage have demonstrated success in multiple tasks includ-

ing captioning [61, 66], video question answering [68, 72]

and navigation [5, 28]. Using language to search for videos

has also become a popular research problem, known as

video retrieval. Methods learn an underlying multi-modal

embedding space to relate videos and captions. Along with

large-scale datasets [18, 41, 57, 64, 71], several video re-

trieval benchmarks and challenges [2, 70] compare state-

of-the-art, as methods inch to improve evaluation metrics

such as Recall@K and Median Rank.

In this paper, we question the base assumption in all

these datasets and benchmarks—that the only relevant

video to a caption is the one collected with that video. We

offer the first critical analysis of this assumption, propos-

ing semantic similarity relevance, for both evaluation and

training. Our effort is inspired by works that question as-

sumptions and biases in other research problems such as

VQA [27, 69], metric learning [46], moment retrieval [50],

action localisation [4] and action recognition [16, 34, 45].

As shown in Fig. 1, current approaches target instance-

based retrieval—that is, given a query caption such as “A

man doing an origami tutorial”, only one origami video is

*Now at University of Amsterdam.

Figure 1: All current video retrieval works treat caption

collected for a certain video as relevant, even when other

videos are equally relevant to a query text. This makes the

evaluation of popular datasets ad hoc at times. We propose

to use continuous similarity, allowing multiple videos to be

treated as equally relevant. Ex. from MSR-VTT [64].

considered as the correct video to retrieve. In fact, many

videos within the dataset can be similar to the point of be-

ing identical. The order in which such videos are retrieved

should not affect the evaluation of a method. Instead, we

propose utilising semantic similarity between videos and

captions, where we assign a similarity score between items

of differing modalities. This allows multiple videos to be

considered relevant to a caption and provides a way of rank-

ing videos from most to least similar.

Our contributions can be summarised: (i) We expose the

shortcoming of instance retrieval in current video retrieval

benchmarks and evaluation protocols. (ii) We propose video

retrieval with semantic similarity, both for evaluation and

training, where videos are ranked by their similarity to a

caption, allowing multiple videos to be considered rele-

vant and vice-versa. (iii) Avoiding large annotation effort,

we propose several proxies to predict semantic similarities,

using caption-to-caption matching. (iv) We analyse three

benchmark datasets, using our semantic similarity proxies,

noting their impact on current baselines and evaluations.

2. Related Work

We review image retrieval works that use semantic knowl-

edge then discuss current approaches to video retrieval.

2.1. Semantic Image Retrieval
While most works focus on instance-based retrieval, a

few works have explored semantic-based image retrieval.

Early works attempted to manually annotate small-scale

datasets with semantic knowledge. Oliva et al. [48] defined
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three axes of semantic relevance (e.g. artificial vs natural)

in order to relate images. Using categories instead, Ojala et

al. [47] asked annotators to split images within a dataset

into discrete categories. They then considered all images

within the same category as relevant.

In their investigative work, Enser et al. [23] show-

case that semantic relevance cannot be gleaned from im-

ages alone, as it requires the knowledge of places, societal

class etc. Barz and Denzler [9] draw a similar conclusion

that visual similarity does not imply semantic similarity and

so project images into a class embedding space learned from

WordNet [43]. Chen et al. [14] instead learn two spaces,

one for images and one for text, with the notion that fea-

tures in either space should be consistent if they are seman-

tically relevant. Gordo and Larlus [26] train their model for

image-to-image retrieval with the notion of semantic rel-

evance. By learning an embedding using semantic prox-

ies (METEOR [8], tf-idf and Word2Vec [42]) defined be-

tween image captions, they show that semantic knowledge

improves retrieval performance. Concurrent with out work,

Chun et al. [17] highlight the issue of instance based eval-

uation for cross-modal retrieval in images. They propose

using R-Precision as an evaluation metric incorporating fur-

ther plausible matches via class knowledge. However, all

these works still use binary relevance for training and eval-

uation, i.e. an image/caption is either relevant or not, ex-

cluding images which may be somewhat relevant.

Closest to our work, Kim et al. [30] explore non-binary

relevance in image retrieval. They propose a log-ratio loss

in order to learn a metric embedding space without requir-

ing binary relevance between items. Their work is primar-

ily focused on human pose, in which they use the distance

between joints to rank images. They also explore within-

modal image retrieval using word mover’s distance, as a

proxy for semantic similarity. Up to our knowledge, [30]

offers the only prior work, albeit in image retrieval, to inves-

tigate both training and evaluating relevance which extends

beyond both binary and instance-based relevance.

2.2. Video Retrieval

Early works in video retrieval simply extended image-

retrieval approaches by temporally aggregating frames for

each video [20, 51, 59, 65]. These works are attributed for

defining the cross-modal video retrieval problem and stan-

dard evaluation metrics. In qualitative results, they argue

models are superior if they retrieve multiple relevant videos,

despite the quantitative metrics only evaluating the corre-

sponding video.

With larger datasets becoming available [6, 31, 41, 49,

62, 64, 71], methods focused on using self-supervision [1,

58, 73], sentence disambiguation [14, 63], multi-level en-

codings [21, 67], mixing “expert” features from pre-trained

models [25, 36, 40, 44] and weakly-supervised learning

from massive datasets [39, 41, 53]. All these works train

and evaluate for instance-based video retrieval.

Two recent works explored using semantic similarity

during training [53, 63]. Our previous work [63] uses

class knowledge to cluster captions into relevance sets for

triplet sampling. Patrick et al. [53] propose a captioning

loss, where the embedding caption is re-constructed from

a support set of videos. This ensures shared semantics

are learned between different instances and gives large im-

provements when the support set does not include the corre-

sponding video—forcing the model to generalise. However,

this work is evaluated using instance-based retrieval.

This paper is the first to scrutinise current benchmarks

in video retrieval, which assume instance-based correspon-

dence. We propose semantic similarity video retrieval as an

alternative task, for both evaluation and training.

3. Shortcomings of Current Video Retrieval

Benchmarks

In this section, we formalise the current approaches to

video retrieval, and highlight the issues present with their

Instance-based Video Retrieval (IVR) assumption, which

impacts the evaluation of common benchmark datasets.

Formally, given a set of videos X and a corresponding

set of captions Y , current approaches define the similarity

SI between a video xi and a caption yj which captures this

one-to-one relationship. For each video/caption there is ex-

actly one relevant caption/video:

SI(xi, yj) =

{

1, if i == j

0, otherwise
(1)

Alternatively, if multiple captions are collected per video as

in [64], then we consider the caption yj,k as the kth caption

of the jth video. As in Eq. 1, this only considers captions

of the corresponding video to be relevant.

IVR relies on the correspondence between the video and

the caption captured during dataset collection. This is typ-

ically a caption provided by an annotator or transcribed

from the video’s narration. Importantly, the above formu-

lation makes the assumption that no two captions of differ-

ent videos are relevant-enough to impact the evaluation or

training of retrieval methods. We start by qualitatively ex-

amining this assumption for current benchmarks.

Datasets In Table 1 we show the statistics of datasets that

are actively being used as benchmarks for video retrieval.

We order these by the size of the test set, as a larger test set is

not only challenging in distinguishing between more exam-

ples, but importantly increases the chance of having other

relevant items, beside the corresponding video/caption.

Most datasets [13, 31, 64, 71] have been collected from

YouTube and annotated after the fact via crowd-sourcing.

Notably, MPII movie [57] instead used movie scripts as

captions for each of the video clips and EPIC-KITCHENS
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Text Type # Captions Test Set Size ↓ Scenario Source Eval. Metrics Semantic Info

MSVD [13] Caption *86k 670 Open YouTube Recall@k, Avg. Rank Multi-Lang.

MPII movie [57] Script 64k 1,000 Movie Scripts Movies Recall@k, Avg. Rank None

DiDeMo [6] Caption 40k 1,004 Open Flickr Recall@k None

MSR-VTT [64] Caption 200k 2,990 Open YouTube Recall@k, Avg. Rank Category

YouCook2 [71] Caption 15k 3,310 Cooking YouTube Recall@k, Avg. Rank None

QuerYD [49] Caption 31k 4,717 Open YouTube Recall@k, Avg. Rank Category

ActivityNet+Captions [31] Dense Captioning 100k 4,917 Daily Living YouTube Recall@k None

TVR [32] Video Subtitle 109k 5,445 TV Shows TV Recall@k TV Show

Condensed Movies [7] Caption 34k 6,581 Movies YouTube Recall@k, Avg. Rank Movie

VATEX [62] Caption *412k 8,920 Open YouTube Recall@k, Avg. Rank Multi-Lang.

EPIC-KITCHENS [18] Short Caption 77k 9,668 Kitchen Egocentric mAP,nDCG Action Class

Table 1: Details of popular Datasets in Video Retrieval, ordered by test set size. *Number of English captions.

Figure 2: Video examples from the test set of three datasets showcasing the corresponding caption (bold) used as ground-truth

along with highly relevant captions for other videos in the test set, considered irrelevant by IVR. In fact at times, such as the

top example from MSR-VTT, a caption deemed irrelevant by the benchmarks can be a more specific description of the video.

utilised transcribed audio narrations provided by the video

collectors. However, in all cases, the captions were col-

lected with the annotator observing a single video, thus a

caption’s relevance to other videos could not be considered.

MSR-VTT [64], MSVD [13] and VATEX [62] include

multiple captions per video, from multiple annotators, due

to the datasets being collected for captioning and para-

phrase evaluation. Nevertheless, during evaluation, prior

works [40, 44, 67] all use a test set that considers only one

caption per video. While some works [15, 25, 36, 40, 63]

utilise multiple captions during training, captions are only

relevant to the corresponding video and considered irrele-

vant to all other videos. The video pentathlon [3] recently

defined a retrieval challenge across five datasets [6, 13, 31,

64, 71]. This pentathlon similarly utilises IVR.

We focus our analysis on three datasets with a large test

set, MSR-VTT, YouCook2 and EPIC-KITCHENS. We con-

sider YouCook2 and EPIC-KITCHENS as these focus on

the single scenario of cooking, increasing the number of rel-

evant captions within the dataset.

Qualitative Analysis We start by highlighting stark qual-

itative examples, showcasing the shortcomings of the IVR

assumption, in Fig. 2. For each video, we show a key frame

along with five captions from the test set. We highlight the

corresponding caption according to the dataset annotations

in bold—which is used as ground-truth for evaluating and

ranking various methods. In each case, we show several in-

distinguishable captions that are all relevant in describing

the corresponding video. In fact, identifying which caption

is the ground truth would be challenging for a human. How-

ever, a method that potentially randomly gets the bold cap-

tions higher in the retrieval list would be considered state-

of-the-art, while another might be unfairly penalised. These

valid captions contain synonyms, a change in the sentence

structure or more/less details in describing the video.

Additionally, we find captions which are not inter-

changeable but are still somewhat relevant to the video. For

instance, the second example of EPIC-KITCHENS includes

captions of opening other bottles—e.g. sauce bottle vs the

vinegar/oil bottle. These captions should be ranked higher

than an irrelevant caption (e.g. “cutting a tomato”).

Conclusion While the concern with IVR is clarified in this

section, the task of manually annotating all relevant cap-

tions, as well as somewhat relevant captions, is unachiev-

able due to time and cost required. Instead, we propose sev-

eral proxy measures for semantic similarity between videos

and captions, which require no extra annotation effort and

use external corpora or knowledge bases.

4. Video Retrieval with Semantic Similarity

In this paper, we propose to move beyond Instance-based

Video Retrieval (IVR) towards video retrieval that uses se-

mantic similarity between videos and captions, for both

video-to-text and text-to-video retrieval. We first define Se-
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mantic Similarity Video Retrieval (SVR), then propose an

evaluation protocol, as well as an approach to incorporate

semantic similarity during training. Finally, in Sec. 4.4 we

propose multiple approaches to estimate semantic similarity

from captions without the need for manual annotations.

4.1. Definition

Given the set of videos, X , and a corresponding set

of captions, Y . We define a semantic similarity function,

SS(xi, yj) → [0, 1], which calculates a continuous score

that captures the similarity between any (video, caption)

pair. Similar to IVR, SS(xi, yj) = 0 if the caption is irrel-

evant to the video and 1 for maximally relevant. Different

from IVR, multiple captions can have a similarity of 1 to a

video, and analogously for videos. Additionally, the con-

tinuous value of SS can model varying levels of similarity.

If SS(xi, yj) > SS(xi, yk) then yj is a more relevant cap-

tion to the video xi than the caption yk. Consequently, if

SS(xi, yj) = SS(xi, yk) then both captions are considered

equally relevant and retrieving them in any order should not

be penalised by the evaluation metric.

4.2. Evaluation

To accommodate for cross-modal retrieval, i.e. both text-

to-video and video-to-text, we use the terms “item” and

“query” to refer to either a video or a caption. For a given

query, all items from the opposing modality are ranked ac-

cording to their distance from the query in the learnt em-

bedding space. Benchmarks in IVR use the following eval-

uation metrics: Recall@K, Geometric Mean1 and Average

Rank (median or mean) of the corresponding item.

In SVR, a different evaluation metric is needed due to

limitations of all current evaluation metrics used for IVR.

Firstly, Average Rank only allows for a single relevant item.

Whilst Recall@K can be used to evaluate queries with mul-

tiple items, a threshold on the continuous similarity is re-

quired. Additionally, choosing the value of K has to be con-

sidered carefully. If the value of K is less than the number

of relevant items for a given query, the metric would not

be suitable to assess a model’s true performance. This is a

concern for SVR where the number of relevant items will

vary per query, resulting in an unbalanced contribution of

different query items to the metric. Mean Average Preci-

sion (mAP) has also been used for retrieval baselines as it

allows for the full ranking to be evaluated. However, mAP

also requires binary relevance between query and items.

We seek an evaluation metric which is able to capture

multiple relevant items and take into account relative non-

binary similarity. We thus propose using normalised Dis-

counted Cumulative Gain (nDCG) [29]. nDCG has been

1Geometric Mean averages Recall@K over a range, typically

{1, 5, 10}, each giving the percentage of queries for which the correspond-

ing item was found within the top K results.

used previously for information retrieval [12, 55]. It re-

quires similarity scores between all items in the test set. We

calculate Discounted Cumulative Gain (DCG) for a query

qi and the set of items Z, ranked according to their distance

from qi in the learned embedding space:

DCG(qi) =

|Rqi
|

∑

j=1

2SS(qi,zj) − 1

log(j + 1)
(2)

where Rqi is the set of all items of the oppos-

ing modality, excluding irrelevant items, for query

qi : Rqi = {zj |SS(qi, zj) > 0, ∀zj ∈ Z}2. Note that this

equation would give the same value when items of the same

similarity SS are retrieved in any order. It also captures dif-

fering levels of semantic similarity.

nDCG can then be calculated by normalising the

DCG score such that it lies in the range [0, 1]:

nDCG(qi) =
DCG(qi)
IDCG(qi)

where IDCG(qi) is calculated

from DCG and Z ordered by relevance to the query qi.

For overall evaluation, we consider both video-to-text

and text-to-video retrieval and evaluate a model’s nDCG as:

nDCG(X,Y ) = 1
2|X|

∑

xi∈X

nDCG(xi) +
1

2|Y |

∑

yi∈Y

nDCG(yi)

(3)

Note that Eq. 3 allows for a different number of videos and

captions in the test set.

4.3. Training
In addition to utilising semantic similarity for evaluation,

it can also be incorporated during training. A contrastive

objective can be defined to learn a multi-modal embedding

space, e.g. the triplet loss:

Lt(xi, yj , yk) = max (m+D(f(xi), g(yj))−D(f(xi), g(yk)), 0)

(4)

where D(·, ·) is a distance function, f(·) and g(·) are em-

bedding functions for video and text respectively, and m is

a constant margin. In IVR, the triplets xi, yj and yk are

sampled such that SI(xi, yj) = 1 and SI(xi, yk) = 0 (see

Eq. 1). In SVR, we use triplets such that SS(xi, yj) ≥ T

and SS(xi, yk) < T where T is a chosen threshold.

Alternative Losses Other alternatives to the triplet loss can

be utilised, such as the approximate nDCG loss from [54],

log-ratio loss from [30], or losses approximating mAP [10,

11, 54, 56]. It is worth noting that some of these works

combine the proposed loss with the instance-based triplet

loss for best performance [10, 30]. Additionally, approxi-

mating mAP requires thresholding as mAP expects binary

relevance. Note that all these works, apart from [30], at-

tempt instance-based image retrieval. Experimentally, we

found the log-ratio loss to produce inferior results to thresh-

olding the triplet loss. Adapting these losses to the SVR

task is an exciting area for exploration in future work.

2Note that nDCG does not penalise the case when a large number of

low-relevant items are present. This can be alleviated by thresholding S.
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4.4. Proxy Measures for Semantic Similarity

Collecting semantic similarity from human annotations,

for all but the smallest datasets, is costly, time consuming3

and potentially noisy. Previous work in image retrieval [26]

demonstrated that semantic similarities of captions can be

successfully utilised. We use the knowledge that each video

in the dataset was captured with a corresponding caption,

which offers a suitable description of the video, and thus

use the semantic similarity between captions instead, i.e.

we define SS(xi, yj) as

SS(xi, yj) =

{

1 i == j

S′(yi, yj) otherwise
(5)

where S′ is a semantic proxy function relating two captions.

We define four semantic similarity measures which we

use to compute S′(yi, yj)—based on bag of words, part-

of-speech knowledge, synset similarity and the METEOR

metric [8]. We choose these proxy measures such that they

should scale with the size of the dataset, not requiring any

extra annotation effort, but acknowledge that some datasets

may be better suited by one proxy over others. We investi-

gate this qualitatively and quantitatively in Sec. 5.1.

Bag-of-Words Semantic Similarity Naively, one could

consider the semantic similarity between captions as the

overlap of words between them. Accordingly, we define the

Bag-of-Words (BoW) similarity as the Intersection-over-

Union (IoU) between sets of words in each caption:

S′
BoW (yi, yj) =

|wi ∩ wj |

|wi ∪ wj |
(6)

where wi and wj represent the sets of words, excluding stop

words, corresponding to captions yi and yj .

This proxy is easy to calculate, however, as direct word

matching is used with no word context. This raises two

issues: firstly, synonyms for words are considered as irrele-

vant as antonyms, i.e. “put” and “place”. Secondly, words

are treated equally—regardless of their part-of-speech, role

in the caption, or how common they are. Word commonality

is partially resolved by removing stop words4. We address

the other concerns next.

Part-of-Speech Semantic Similarity Verbs and nouns, as

well as adjectives and adverbs, describe different aspects

of the video and as such words can be matched within

their part-of-speech. Matching words irrespective of part-

of-speech can result in incorrect semantic similarities. For

example, the captions “watch a play” and “play a board

game”. Alternatively, adverbs can be useful to determine

how-to similarities between captions [22]. By augmenting

the part-of-speech, we can ensure that the actions and ob-

jects between two videos are similar.

3Annotators would have to observe a video with two captions and indi-

cate their relative relevance. For n videos and m captions this is O(nm2).
4We find using tf-idf to remove/re-weight words comparable to remov-

ing stop words in the analysed datasets.

To calculate the Part-of-Speech (PoS) word matching,

captions are parsed, and we calculate the IoU between the

sets of words for each of the parts-of-speech and average

over all parts-of-speech considered.

S′
PoS(yi, yj) =

∑

p∈P

αp
|wp

i ∩ w
p
j |

|wp
i ∪ w

p
j |

(7)

where p is a part-of-speech from the set P , w
p
i is the set of

words from caption yi which have a part-of-speech p, and

αp is the weight assigned to p such that
∑

p∈P αp = 1.

Synset-Aware Semantic Similarity So far, the prox-

ies above do not account for synonyms, e.g. “put” and

“place”, “hob” and “cooker”. We extend the part-of-

speech similarity detailed above using semantic relation-

ship information from synsets, i.e. grouped synonyms, from

WordNet [43] or other semantic knowledge bases. We mod-

ify the part-of-speech proxy,

S′
SY N (yi, yj) =

∑

p∈P

αp
|Cp

i ∩ C
p
j |

|Cp
i ∪ C

p
j |

(8)

where C
p
i is the set of synsets within the part-of-speech p

for caption yi. Note that |Cp
i | ≤ |wp

i | as multiple words are

assigned to the same synset due to the similar meanings.

METEOR Similarity The first three similarity functions

break the sentence into its individual words, with/without

parsing knowledge. Instead, captioning works have pro-

posed metrics that preserve the structure of the sentence,

comparing two captions accordingly. Multiple metrics

have been proposed (e.g. BLEU [52], ROUGE [35] or

CIDEr [60]) including METEOR [8]. Originally used for

machine translation and later image captioning, Gordo and

Larlus [26] proposed METEOR as one of their proxy mea-

sures for relating images via their captions.

METEOR calculates similarity both via matching, us-

ing synsets to take into account synonyms, and via sentence

structure, by ensuring that matched words appear in a sim-

ilar order. The proxy is then defined as: S′
MET (yi, yj) =

M(yi, yj), where M(·, ·) is the METEOR scoring function.

Other proxies Other similarity measures, including the use

of word/sentence embedding models such as BERT [19],

do not provide useful similarity scores on video retrieval

datasets. This is further discussed in supplementary.

5. Semantic Similarity Analysis

We evaluate baseline methods on the three datasets, with

the aim of answering the following questions: (i) How do

the different proxy measures compare to each other on the

three datasets? (ii) What is the impact of the noted short-

comings of IVR on methods’ performance? (iii) How do

current methods perform when using SVR evaluation for

the four proposed proxy measures? (iv) How does training

the models for SVR affect the results?
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mix the ingredients in the pan together

cut the onions into small piecespour olive oil in pan

heat some oil in a deep pan and add
chopped onions and fry till they turn brown
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Figure 3: Examples of the proposed semantic similarity proxies (Sec 4.4). Captions are shown alongside the score S′
S(yi, yj)

when compared to the corresponding caption (bold). While scores differ, methods agree on highly-(ir)relevant captions.

Next, we present information on the datasets and base-

line methods along with their implementation details.

Datasets We continue exploring the three public datasets

from Sec. 3. These are: frequently-used MSR-VTT [64]

and YouCook2 [71], as well as recently released EPIC-

KITCHENS-100 [18]. The latter also has the benefit in that

it offers semantic annotations as we show next.

Baselines We train a simple embedding baseline with a

multi-layer perceptron for each modality which we name

as Multi-Modal Embedding or MME. We additionally con-

sider three publicly available baselines for the aforemen-

tioned datasets. We use the benchmark implementations

provided by the video pentathlon challenge [3] for MSR-

VTT and YouCook2: MoEE [40]: Multiple video fea-

tures are extracted from ‘video experts’ and an embedding

is learned for each. The final embedding is learned as a

weighted sum, determined by the caption. CE [36]: Video

expert features are passed through a paired collabora-

tive gating mechanism before the embedding and resulting

weighted sum. For EPIC-KITCHENS, we use the base-

line method JPoSE [63]: this trains separate embedding

spaces for each part-of-speech in the caption before being

combined into a retrieval embedding space. Implementa-

tion details match the publicly available code per baseline

as trained for IVR.

Parsing and Semantic Knowledge We parse the captions

using Spacy’s large web model [24]. We limit these to verbs

and nouns, setting αp = 0.5 for each in all experiments.

When computing the Synset-Aware Similarity, we use the

synsets released as part of [18] for both EPIC-KITCHENS

and YouCook2, as both share the domain of cooking. We

found that the synset information transfers well across both

datasets. Synset knowledge for MSR-VTT is found using

WordNet [43] and the Lesk algorithm [33]. MSR-VTT

includes multiple captions per video, therefore, for robust

word sets, we only include words which are present in 25%

or more of all of the captions for a given video (excluding

stop words). For METEOR, we use the NLTK implementa-

tion [37]. Additionally, to calculate SMET for MSR-VTT,

we use many-to-many matching with a non-Mercer match

kernel [38].

5.1. Proxy Measure Comparisons

We first clarify differences between the semantic similar-

ity proxies with qualitative examples. Fig. 3 shows exam-

ples from YouCook2, EPIC-KITCHENS and MSR-VTT.

BoW is the tightest proxy to IVR, only considering cap-

tions as equally relevant when the set of words match ex-

actly. The Synset proxy is the only one to consider the cap-

tions “stir food in the pan” and “mix the ingredients in the

pan together” equivalent. This is because it separately fo-

cuses on the verb and noun (similar to PoS) and is able to
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Figure 4: Average number of relevant captions for a video with a given threshold over each dataset and proxy measure.

EPIC-KITCHENS-100MSR-VTTYouCook2

Figure 5: The min. and max. performance of baseline meth-

ods on the instance-based metric geometric mean when con-

sidering captions with S′
SY N (yi, yj) > 0.8 equivalent.

relate words such as “stir” and “mix”. While METEOR

also considers synonyms, it aims for a good alignment in

word order, therefore it gives all captions containing “in the

pan” a high score, even when the verb differs. This also ex-

plains the low score given to “add chopped onions to a pan

of oil” compared to PoS and SYN even though the caption

contains many of the same concepts.

For MSR-VTT, we show examples that demonstrate lim-

itations of semantic proxies. All proxies rank the caption “a

boy talking...” higher than “a contestant is judged...”. Sim-

ilarly, the relevance of the caption “a song plays” requires

access to the audio associated with the video and cannot be

predicted from the associated caption.

Having established an understanding of the proxies, we

now quantitatively assess them. In Fig. 4, we calculate the

similarity between a video and all captions in the dataset us-

ing Eq. 5. We then vary the threshold, T , for each proxy and

compute the number of captions where S(xi, yj) ≥ T . We

plot the average number of ‘relevant’ captions as the thresh-

old increases. Note the y-axis is a log scale. In all cases,

we note that even at high thresholds the average number of

relevant captions is higher than 1. As expected, the synset

proxy, includes as many or more relevant captions than PoS,

due to it considering synonyms as equivalent. This is most

evident for EPIC-KITCHENS.

5.2. Shortcomings of IVR Evaluation

In Sec. 3, we analysed the shortcomings of the current

approach to video retrieval that only considers a single rel-

evant caption—the corresponding one. In this section, we

use the semantic proxies to quantify the impact of IVR on

the evaluation of video retrieval methods.

We consider the Geometric Mean metric, used as the

prime metric in the pentathlon [3]. For each method, we

showcase an upper/lower limit (as an error bar). To cal-

culate this we consider the retrieved captions and locate

the highest-retrieved caption that is above a tight thresh-

old S′
SY N (yi, yj) > 0.8, per video (see Fig. 3 for exam-

ples). We re-calculate the metrics, and show this as an up-

per limit for the method’s performance. Similarly, we locate

the lowest-retrieved caption above the same threshold. This

provides the lower limit. The figure shows the error in the

evaluation metric, for each baseline on all datasets.

From Fig. 5 we demonstrate a significant change in Geo-

metric Mean when using the Synset-Aware proxy (∼30 ge-

ometric mean for EPIC-KITCHENS, ∼6.0 for MSR-VTT

and ∼5.0 for YouCook2). The gap between the reported

performance and the upper-bound indicates that these base-

lines are retrieving some highly similar captions as more

relevant than the ground-truth. Instance-based evaluation

metrics do not account for this. Without considering this

analysis on all relevant captions, we believe it is not possi-

ble to robustly rank methods on these benchmarks.

5.3. Using Semantic Proxies for Evaluation

We now evaluate SVR using nDCG (Eq. 3) with our pro-

posed semantic similarity proxies. Without re-training, we

evaluate nDCG on the test set, where the semantic similar-

ities are defined using one of the four proxies in Sec. 4.4.

We present the results in Fig. 7 on the three datasets.

Baselines significantly outperform Random as well as

the simple MME baseline on instance-based Geometric

Mean. However, when semantic similarity proxies are con-

sidered, this does not hold. For almost all cases, MoEE,

CE and JPoSE are comparable to MME. MME even outper-

forms more complex approaches (e.g. on YouCook2). This

is critical to demonstrate, as proposed methods can produce

competitive results on the problematic IVR setup, but may

not have the same advantage in SVR.

In Fig. 7 we can also see that the METEOR proxy leads

to high nDCG values even for the Random baseline on

MSR-VTT and YouCook2. This is due to high inter-caption

similarities on average. Differently, JPoSE outperforms

MME and Random on EPIC-KITCHENS for the METEOR

proxy. This suggests the hierarchy of embeddings in JPoSE

improves the sentence structure matches.

While the various proxies differ in the scores they as-

sign to captions, all four are suitable to showcase that tested

baselines do not improve over MME. This demonstrates

that, regardless of the semantic proxy, it is important to con-
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Figure 6: Training CE with semantic knowledge compared to instance-only on (left) IVR using Geometric Mean and (right)

the four proposed semantic proxies using nDCG. Using semantic proxy in training improves performance in every case.

Figure 7: Evaluating the baseline methods on the proxy

measures for semantic similarity (Table in supplementary).

sider semantic similarity when assessing a method’s perfor-

mance, rather than using IVR.

Choice of Semantic Proxy We consider all four proposed

proxies to be valuable similarity metrics. One proxy can

be chosen over another for certain objectives/applications.

For example, to retrieve videos of the same recipe, BoW is

useful as only videos containing the same step and ingre-

dients are considered highly relevant. Conversely, PoS and

SYN are useful when focusing on actions as they increase

the importance of verbs. SYN is also particularly useful for

free form captions, where synonyms are plentiful. Multiple

proxies can be considered as multiple evaluation metrics for

increased robustness.

5.4. Training with Semantic Similarity

So far, the models have been trained solely using current

IVR losses. We now train with semantic knowledge using

the method from Sec. 4.3. We limit these experiments to

YouCook2, and the Collaborative Experts [36] (CE) base-

line due to the number of models required for training for

each proxy measure and threshold T . We use the following

labels to refer to models trained with the four proxy mea-

sures: CE-BoW, CE-PoS, CE-SYN and CE-MET respec-

tively. The original model trained using IVR, is designated

as CE-IVR. We vary the threshold T = {0.1, 0.2, ..., 1},

showing the results in Fig. 6 for both IVR (left) and SVR

(right). All plots compare to the CE-IVR (black line).

Fig. 6 (left) demonstrates that for all proxies, providing

semantic information during training can increase the per-

formance of IVR, however this does drop off as less similar

items are treated as relevant. As anticipated, the drop-off

threshold varies per semantic proxy.

Fig. 6 (right) shows that as T decreases, and more cap-

tions are considered relevant in training, significant im-

provement in nDCG can be observed compared to CE-IVR.

Note that the nDCG value cannot be compared across plots,

as these use different semantic proxies in the evaluation.

While the highest performance is reported when consid-

ering the same semantic proxy in both training and eval-

uation, training with any proxy improves results, although

they peak at different thresholds. From inspection, CE-SYN,

CE-MET and CE-PoS peak in performance around T = 0.4
whereas CE-BoW has a peak at T = 0.2. When training

with these specific thresholds, the models are able to best

learn a semantic embedding space, which we find is agnos-

tic of the proxy used in evaluation.

6. Conclusion

This paper highlights a critical issue in video retrieval

benchmarks, which only consider instance-based (IVR)

similarity between videos and captions. We have shown ex-

perimentally and through examples the failings of the as-

sumption used for IVR. Instead, we propose the task of

Semantic Similarity Video Retrieval (SVR), which allows

multiple captions to be relevant to a video and vice-versa,

and defines non-binary similarity between items.

To avoid the infeasible burden of annotating datasets for

the SVR task, we propose four proxies for semantic sim-

ilarity which require no additional annotation effort and

scale with dataset size. We evaluated the proxies on three

datasets, using proposed evaluation and training protocols.

We have shown that incorporating semantic knowledge dur-

ing training can greatly benefit model performance. We pro-

vide a public benchmark for evaluating retrieval models on

the SVR task for the three datasets used in this paper at:

https://github.com/mwray/Semantic-Video-Retrieval.
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