
Boosting Ensemble Accuracy by Revisiting Ensemble Diversity Metrics

Yanzhao Wu, Ling Liu, Zhongwei Xie, Ka-Ho Chow, Wenqi Wei

School of Computer Science

Georgia Institute of Technology

Atlanta, Georgia 30332

yanzhaowu@gatech.edu, lingliu@cc.gatech.edu, {zhongweixie, khchow, wenqiwei}@gatech.edu

Abstract

Neural network ensembles are gaining popularity by

harnessing the complementary wisdom of multiple base

models. Ensemble teams with high diversity promote high

failure independence, which is effective for boosting the

overall ensemble accuracy. This paper provides an in-depth

study on how to design and compute ensemble diversity,

which can capture the complementary decision capacity of

ensemble member models. We make three original contri-

butions. First, we revisit the ensemble diversity metrics in

the literature and analyze the inherent problems of poor

correlation between ensemble diversity and ensemble ac-

curacy, which leads to the low quality ensemble selection

using such diversity metrics. Second, instead of computing

diversity scores for ensemble teams of different sizes using

the same criteria, we introduce focal model based ensemble

diversity metrics, coined as FQ-diversity metrics. Our new

metrics significantly improve the intrinsic correlation be-

tween high ensemble diversity and high ensemble accuracy.

Third, we introduce a diversity fusion method, coined as the

EQ-diversity metric, by integrating the top three most repre-

sentative FQ-diversity metrics. Comprehensive experiments

on two benchmark datasets (CIFAR-10 and ImageNet) show

that our FQ and EQ diversity metrics are effective for se-

lecting high diversity ensemble teams to boost overall en-

semble accuracy.

1. Introduction

Ensemble learning aims to produce a strong model by

harnessing the combined and complementary wisdom of

multiple base models. There are two broad categories of

approaches to construct high quality ensemble teams: (1)

data driven or model driven training of multiple models to

form an ensemble and (2) selecting ensemble teams from

a given pool of diverse base models (learners). The for-

mer is represented by boosting algorithms [3, 17], bagging

methods [1], and random forests [2]. The latter is repre-

sented by ensembles of base models, which are trained us-

ing diverse neural network structures and diverse settings

of hyperparameters [7, 11, 19, 23, 24, 27], including those

pre-trained models in public domains. This paper is dedi-

cated to the second category, namely the problem of select-

ing high quality ensemble teams from a base model pool.

Given a pool of M diverse base models, there are M ex-

ponential number of possible candidate ensemble teams, a

large portion of which may not offer high ensemble perfor-

mance due to insufficient failure independence among their

member models [13, 14, 15, 18, 25]. Ensemble diversity

metrics are widely regarded as representative methods for

capturing failure independence among member models of

ensemble teams and expected to have stable correlation with

ensemble accuracy.

1.1. Related Work

Both pairwise and non-pairwise diversity metrics have

been proposed in the literature. The pairwise diversity met-

rics are represented by Cohen’s Kappa (CK) [14], Q Statis-

tics (QS) [26], and Binary Disagreement (BD) [18]. The

non-pairwise diversity metrics are represented by Fleiss’

Kappa (FK) [5], Kohavi-Wolpert Variance (KW) [9, 12],

and Generalized Diversity (GD) [15]. For presentation

brevity, we refer to these exiting diversity metrics as Q-

metrics. These diversity metrics and their relationship to

ensemble accuracy have been studied over traditional ma-

chine learning models [12] and over trained neural network

models [25]. These Q-diversity metrics share one common

property: they compute the diversity of ensemble teams of

different sizes using a common criterion.

1.2. Scope and Contributions

In this paper, we revisit and analyze the inherent prob-

lems of choosing ensembles using the existing diversity

metrics and why these diversity metrics are inefficient to

capture failure independence among member models of an

ensemble team. We introduce six new diversity metrics,

coined as FQ-diversity metrics. The main idea of FQ-
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diversity metrics is three folds: (1) For a base model pool

of size M , we divide all candidate ensemble teams into

M −1 partitions with each representing the set of ensemble

teams of equal team size S, ranging from 2 to M , such that

the ensemble diversity scores are computed and compared

among the ensemble teams of equal size. (2) To accurately

capture the failure independence of member models of en-

semble teams and the correlation between ensemble diver-

sity and ensemble accuracy, we introduce the focal model

based negative sampling for computing and combining FQ

diversity scores for each ensemble team. (3) Instead of us-

ing a pre-defined mean diversity threshold to partition all

candidate ensemble teams into high diversity and low di-

versity partitions, we leverage a binary clustering method

with strategic initialization of the two centroids to automat-

ically divide each of the M − 1 partitions of ensembles of

size S (2 ≤ S ≤ M ) into two clusters: keeping the clus-

ter of ensemble teams with low FQ scores (high ensemble

diversity) and high ensemble accuracy, and removing the

other cluster of ensemble teams with high FQ scores (low

ensemble diversity). In addition, we propose a diversity fu-

sion mechanism by introducing the EQ-diversity measure,

which integrates the top three FQ scores for selecting high

quality ensembles. Comprehensive experiments are con-

ducted on two benchmark datasets (CIFAR-10 [10] and Im-

ageNet [16]) with ten base models each with the standard

soft voting (model averaging) for producing ensemble con-

sensus predictions [8, 20]. The results show that our FQ

and EQ diversity metrics are effective in identifying and se-

lecting high quality ensemble teams and boosting overall

ensemble accuracy.

2. Q-diversity based Ensemble Selection

Given a pool of M base models for a learning task and its

training dataset D, we have BMSet(D)= {F0, ..., FM−1}.

Let EnsSet denote the set of all possible ensemble teams

with team size S ranging from 2 to M , composed from

BMSet(D). We have |EnsSet| =
∑M

S=2

(

M
S

)

=
(

M
2

)

+
(

M
3

)

+ ... +
(

M
M

)

= 2M − (1 + M). Consider M = 5,

we have |EnsSet| = 26. The number of ensemble teams

in EnsSet increases exponentially with M . For a larger

M , such as M = 10 or M = 20, |EnsSet| = 1013 or

1, 048, 555 respectively. Table 1 lists ten base models for

each of the two benchmark datasets used in this paper.

Evaluation Metrics. Let GEnsSet denote the set of good

quality ensemble teams selected from the candidate set

EnsSet, according to a diversity metric. One indicator

for high quality ensemble teams is that they can outper-

form the maximum model accuracy of their member mod-

els (m max). Let (min GEnsSet,max GEnsSet) de-

note the ensemble accuracy range for the selected ensem-

bles in GEnsSet. Another indicator of an efficient ensem-

ble selection algorithm is measured by the expected accu-

Dataset
CIFAR-10 ImageNet

10,000 testing samples 50,000 testing samples

Model ID Models Accuracy (%) Models Accuracy (%)

0 DenseNet190 96.68 AlexNet 56.63

1 DenseNet100 95.46 DenseNet 77.15

2 ResNeXt 96.23 EfficientNet-B0 75.80

3 WRN 96.21 ResNeXt50 77.40

4 VGG19 93.34 Inception3 77.25

5 ResNet20 91.73 ResNet152 78.25

6 ResNet32 92.63 ResNet18 69.64

7 ResNet44 93.10 SqueezeNet 58.00

8 ResNet56 93.39 VGG16 71.63

9 ResNet110 93.68 VGG19-BN 74.22

MIN (p min) ResNet20 91.73 AlexNet 56.63

AVG (p avg) 94.25 71.60

MAX (p max) DenseNet190 96.68 ResNet152 78.25

Table 1: Base Model Pools

racy range of selected ensemble teams. For example, it is a

good indicator if the lower bound (min GEnsSet) of the

selected ensemble teams in GEnsSet is higher than the av-

erage accuracy of the base models in the pool, i.e., p avg =

avg BMSet(D), min GEnsSet ≥ p avg. In addition, we

can also measure the number of selected ensemble teams in

GEnsSet, which outperform the base model with the max-

imum accuracy in the pool (p max).

Methods #EnsSet #GEnsSet
Ensemble Acc

Range (%)

Q-CK 1013 555 61.39∼80.50

Q-QS 1013 483 61.39∼80.54

Q-BD 1013 554 61.39∼80.54

Q-FK 1013 553 61.39∼80.50

Q-KW 1013 647 68.72∼80.56

Q-GD 1013 530 70.79∼80.60

Table 2: Ensemble Selection by Q-diversity on ImageNet

Consider the ten base models of ImageNet in Table 1.

We provide the set of ensemble teams selected using the six

Q-diversity metrics in Table 2. We observe that among the

total of 1013 ensemble teams in the candidate set EnsSet,

the four Q-diversity metrics: Q-CK, Q-QS, Q-BD, and Q-

FK all have poor lower bound of 61.39%, in terms of the ac-

curacy range of the selected ensembles in GEnsSet, about

10% lower than the average accuracy of the base model pool

of 71.60% (p avg), showing low quality of ensemble selec-

tions. Although in comparison, Q-GD diversity metric has

the highest lower bound of 70.79%, which is still lower than

the average accuracy of 71.60% over the total of 10 base

models. This motivates us to further analyze the inherent

problems of using Q-diversity metrics to perform ensemble

selection.

Let Y denote a random variable, representing the propor-

tion of models (i.e., i out of S) that fail to recognize a ran-

dom input sample x. The probability of Y = i
S

is denoted

as pi. In Formula (1), p(1) represents the expected proba-

bility of one randomly picked model failing while p(2) de-
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notes the expected probability of both two randomly picked

models failing. Formula (1) presents the definition of the

generalized diversity (GD) metric [15].

p(1) =

S∑

i=1

i

S
pi, p(2) =

S∑

i=1

i(i− 1)

S(S − 1)
pi, GD = 1−

p(2)

p(1)

(1)

GD varies from 0 to 1. The maximum diversity score of

1 occurs when the failure of one model is accompanied by

the correct recognition by the other model, that is p(2) = 0.

When both two models fail, we have p(1) = p(2), leading

to the minimum diversity score of 0.

Let NegSampSet denote a small set of negative sam-

ples randomly sampled from the set of negative samples

of the base model pool, such as 100 negative samples ran-

domly drawn from the training data, on which one or more

base models make errors. This NegSampSet will be used

to compute the Q-GD diversity score for ensemble teams

in the candidate set EnsSet. Due to the space constraint,

the formal definitions of the other five diversity metrics are

given in the supplementary material. To present a consis-

tent view of all six diversity metrics such that the low value

corresponds to high ensemble diversity, we apply (1-value)

when calculating the diversity scores using BD, KW and

GD metrics.

Figure 1: Q-GD, 1013 Teams (CIFAR-10)

Figure 1 shows the GD metric and its relationship with

ensemble accuracy for the 1013 candidate ensemble teams

in EnsSet for the 10 base models of CIFAR-10 (recall Ta-

ble 1). Each dot represents one ensemble team in EnsSet

and the color indicates the team size S, ranging from 2 to

10 (M = 10), according to the color diagram on the right.

The horizontal blue and black dashed lines are the maxi-

mum base model accuracy 96.68% (p max) and the average

accuracy 94.25% (p avg) of all M = 10 base models re-

spectively. We use such two accuracy bounds to analyze

the quality of the ensemble teams selected. It is visually

clear that using the mean Q-GD diversity value as the cut-

off threshold, as indicated by the red vertical dashed line

in Figure 1, is not effective for selecting good ensembles

from the 1013 candidate teams for two reasons: (1) there is

no clear correlation between ensemble diversity and ensem-

ble accuracy among those selected ensembles in GEnsSet,

which have diversity scores below the mean threshold; and

(2) among those remaining ensemble teams that are dis-

carded, some ensemble teams with high Q-GD diversity

scores also have high ensemble accuracy. Similar observa-

tions can be found in other five Q-diversity metrics as well.

This motivates us to revisit two design components in com-

puting Q-diversity metrics: (1) the Q-diversity scores are

computed for ensembles of different team sizes. Intuitively,

it may not be meaningful to compare the ensemble teams of

different team sizes in terms of their ensemble diversity; and

(2) the negative samples randomly selected from the collec-

tion of negative samples from all base models are used uni-

formly to compute the Q-diversity scores [12, 25] of all can-

didate ensembles. Such design may not adequately capture

the complementary capacity among the member models of

all candidate ensemble teams of different sizes.

Figure 2: FQ-GD,S=5,focal=1,126 Teams (CIFAR-10)

To address the above problems, we propose the concept

of focal model for negative sampling, and compute and

compare the diversity scores for ensemble teams of equal

size for ensemble selection. We conduct a preliminary ex-

periment for CIFAR-10 by only computing and comparing

all candidate ensemble teams of equal size S = 5 using our

FQ-GD diversity metric. Figure 2 shows the set of candi-

date ensemble teams of size 5 measured with the negative

samples from the focal model F1 (denoted by focal=1),

where the red vertical dashed line marks the mean thresh-

old 0.729. From Figure 2, it is visually clear that the focal

model based FQ diversity metrics capture the close to linear

correlation between ensemble diversity scores and ensem-

ble accuracy.

3. FQ-diversity based Ensemble Selection

Based on the analysis of the inherent problems with Q-

diversity metrics and the encouraging preliminary result in

Figure 2, we propose to extend the existing diversity met-
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rics with six new ensemble diversity metrics, coined as

FQ-diversity metrics. Unlike Q-diversity metrics, the FQ-

diversity metrics compute and compare the diversity scores

among the ensemble teams of a fixed size S with the focal

model based negative sampling and the FQ-diversity based

binary partitioning.

(1) Equal Size Ensembles: Given the total of M based

models in the base model pool, we further divide the can-

didate ensemble team set EnsSet into M − 1 partitions,

each consists of ensemble teams of equal size S, denoted

by EnsSet(S) (2 ≤ S ≤ M ). Given M = 10, we will

have a total of 1013 candidate ensembles in EnsSet and a

total of 252 ensembles in EnsSet(S) for S = 5.

(2) Focal Models: The idea of using a focal model is mo-

tivated by ensemble defense against adversarial attacks [13,

4, 21, 22], where the ensemble teams are composed to pro-

tect a target victim (focal) model. We introduce the concept

of focal model, say Ffocal, and use the negative samples

from the focal model to compute the FQ diversity scores for

all ensemble teams of a fixed size S, which have the same

Ffocal as a member, denoted by EnsSet(Ffocal, S). Recall

Figure 2, with focal = 1 and S = 5, the total number of

ensemble teams in EnsSet(Ffocal, S) will be 126. In ad-

dition to the focal model based negative sampling, the FQ-

diversity based ensemble selection will also perform the bi-

nary clustering over EnsSet(Ffocal, S) to select the good

ensemble teams with respect to each focal model and its

corresponding ensembles of equal size S, instead of per-

forming binary clustering over all ensembles in EnsSet.

(3) Focal Model Based Ensemble Selection: The focal

model based ensemble selection performs two tasks. First,

given a fixed team size S, a focal model Ffocal, and a

FQ-diversity metric, say FQ-GD, we first compute the FQ-

diversity value (q) and the accuracy (acc) for each ensem-

ble team in EnsSet(Ffocal, S) using the negative sam-

ples of the focal model Ffocal (NegSampSet(Ffocal)),
and the output set is denoted as DA(Q)= {(qi, acci)|Ti ∈
EnsSet(Ffocal, S)}. We then employ a binary cluster al-

gorithm, such as K-means, to partition DA(Q) into two clus-

ters, with K=2 and two initial centroids chosen strategically

based on FQ-diversity. Concretely, we choose two specific

points in the 2D space of DA(Q) as the two centroids for

the K-means clustering algorithm. The first centroid should

have the smallest FQ-value and the highest ensemble ac-

curacy measure over DA(Q), denoted as (q1min, acc
1

max),
such that ∀(qi, acci) ∈ DA(Q), q1min ≤ qi and acc1max ≥
acci, and ∃j, k ∈ {1, 2, ..., |EnsSet(Ffocal, S)|}, q

1

min =
qj , acc

1

max = acck. Correspondingly, the second centroid

should have the largest FQ-value and the lowest accuracy

over DA(Q), denoted as (q2max, acc
2

min). The K-means

clustering algorithm will partition DA(Q) into two clus-

ters: Cluster1 with the centroid (q1, acc1) and Cluster2
with the centroid (q2, acc2), satisfying the following prop-

erty: q1 ≤ q2 and acc1 ≥ acc2.

The second task is to leverage the binary clustering

to define the proper threshold for a given FQ diversity

metric, e.g., FQ-GD. Let mindiv(Cluster2) be the low-

est FQ-value in Cluster2 and meandiv(DA(Q)) denote

the mean value of all FQ-diversity values in DA(Q). We

compute the FQ-diversity threshold θFQ(Ffocal, S,Q) =
min(mindiv(Cluster2), meandiv(DA(Q))). By the FQ-

diversity based ensemble selection algorithm, which is

provided in the supplementary material, all ensemble

teams in Cluster1 whose FQ-diversity scores are be-

low the FQ diversity threshold θFQ(Ffocal, S,Q) are se-

lected and placed into the selected set of good ensemble

teams, denoted by GEnsSet(Ffocal, S,Q), i.e., ∀Ti ∈
EnsSet(Ffocal, S), if qi < θFQ(Ffocal, S,Q), then Ti ∈
GEnsSet(Ffocal, S,Q).

(a) focal=1,126 Teams (b) focal=4,126 Teams

Figure 3: K-Means Thresholds for Different Focal Models

(CIFAR-10, S = 5, FQ-GD)

Figure 3a and Figure 3b provide two visual illustrations

of FQ-GD diversity computation on CIFAR-10 with S=5

and F1 (DenseNet100) and F4 (VGG19) as the focal models

respectively. The 10 base models on CIFAR-10 are given in

Table 1. The blue and black horizontal dashed lines indi-

cate p max=96.68% and p avg=94.25%. The red vertical

dashed line marks the diversity threshold computed by us-

ing the K-means binary clustering. Figure 3a shows red and

black clusters for FQ-GD with focal = 1, and the thresh-

old 0.721 is computed using the K-means algorithm with

the red and black unfilled circles as the initial centroids and

the red and black solid circles as the two calculated cen-

troids. Based on the computed threshold marked by the

red vertical line, we select the ensemble teams with FQ-

GD scores below the threshold. Similar analysis for FQ-GD

with focal=4 in Figure 3b. From these two sets of exper-

iments, we make three observations: (1) Both focal model

cases exhibit the close to linear correlation between ensem-

ble diversity (FQ-GD) and ensemble accuracy. (2) Focal

model based ensemble selection can effectively prune out

low quality ensemble teams by leveraging the close to lin-

ear correlation between ensemble diversity and ensemble

accuracy. (3) Interestingly, not all the good ensemble teams

selected by FQ-GD with focal model F1 in Figure 3a are
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also good ensemble teams selected by FQ-GD with a dif-

ferent focal model F4. For example, the ensemble team

F0F1F2F3F5 with 96.85% ensemble accuracy is selected

by FQ-GD with focal model F1, but it is not even a legit-

imate candidate ensemble in EnsSet(F4, S=5), in which

all ensemble candidates will include the focal model F4

as a member model. There are a total of 16 ensemble

teams in the intersection of GEnsSet(F1, S=5, FQ-GD)
(48 teams) and GEnsSet(F4, S=5, FQ-GD) (77 teams).

To assign one diversity score to each ensemble team, we

need to further combine different focal model based FQ-

diversity scores to provide efficient ensemble selections.

(4) Combining Different Focal Models: For each of

the FQ-diversity metrics, say FQ-GD, we have per-

formed focal model based ensemble selection by the

steps (1) to (3). At the end of step (3), we obtain

GEnsSet(Ffocal, S, FQ-GD), which contains the good

ensembles selected by FQ-GD from the focal model based

candidate ensemble set EnsSet(Ffocal, S) with respect to

the focal model Ffocal and the ensemble teams of equal

size S. Consider a given ensemble team of size S = 3,

say F0F1F2, this ensemble will have three focal model

based FQ-GD scores, corresponding to the three focal mod-

els. After the first three steps (1)∼(3), there are four pos-

sible results for this specific ensemble team: (a) it is se-

lected by only one of the three focal model based en-

semble selections, say GEnsSet(F0, S=3, FQ-GD); (b)

it is selected by two out of three focal model based

ensemble selections, say GEnsSet(F0, S=3, FQ-GD)
and GEnsSet(F1, S=3, FQ-GD); (c) it is selected by

all three focal model based ensemble selections, i.e.,
⋂

2

i=0
GEnsSet(Fi, S=3, FQ-GD); (d) it is pruned out by

all three focal model based ensemble selections.

In order to produce one unifying FQ-GD score for

each ensemble team, we first scale the FQ-GD scores in

each EnsSet(Ffocal, S) to [0, 1] and then use the sim-

ple averaging over the S number of scaled FQ-GD scores

to produce the unifying FQ-GD score of each ensem-

ble team. Here, we use EnsSetunifyFQ(S, FQ-GD) =
⋃M−1

focal=0
GEnsSet(Ffocal, S, FQ-GD) to denote the set

of selected ensemble teams of size S, each with the

unifying FQ-GD score. We then use the unifying FQ-

GD scores to obtain DA(FQ-GD) = {(qi, acci)|Ti ∈
EnsSetunifyFQ(S, FQ-GD)}. Next we perform binary

clustering over DA(FQ-GD) to obtain the set of good en-

semble teams using their unifying FQ-GD scores, denoted

by GEnsSet(S, FQ-GD).

Figure 4a shows a visualization to illustrate the final en-

semble selection using the unifying FQ-GD scores for can-

didate ensembles of equal size S = 5. The red verti-

cal dashed line marks the learned diversity threshold (K-

means threshold for short), based on the binary cluster-

ing on EnsSetunifyFQ(S, FQ-GD) using the K-means

algorithm with K=2. The black dots on the right side

represent the ensemble teams pruned out by this thresh-

old while the red dots mark the selected ensemble teams

in GEnsSet(S, FQ-GD) from the candidate ensemble set

EnsSetunifyFQ(S, FQ-GD). The yellow dots mark those

ensemble teams that were removed already by focal model

specific pruning in step (3). The unifying FQ-GD ensem-

ble selection is built on top of the set of S focal model

specific FQ-GD scores by unifying them with simple av-

eraging for each ensemble team. From Figure 4a, it is

clear that the ensemble selection using the unifying FQ-GD

scores further improves the overall quality of the ensem-

ble teams selected by further pruning out some low qual-

ity ensemble teams. For example, the unifying FQ-GD

further pruned out 58 out of 172 ensemble teams and in-

creased the ensemble accuracy lower bound from 95.84%

to 95.90%. In summary, we have GEnSet(FQ-GD) =
⋃M−1

S=2
GEnsSet(S, FQ-GD) as the set of selected ensem-

bles by using our unifying FQ-GD ensemble selection algo-

rithm. Similar ensemble selection can be obtained by us-

ing the other five FQ-diversity metrics, improving the cor-

responding Q-diversity metrics.

(a) FQ-GD, 252 Teams (b) FQ-KW, 252 Teams

Figure 4: K-Means Thresholds on Equal Size Ensembles for Dif-

ferent FQ Metrics (CIFAR-10, S = 5)

(5) FQ Fusion Based Ensemble Selection: With the unify-

ing FQ scores, ensemble teams of the equal size can be di-

rectly compared for ensemble selection based on FQ diver-

sity. We have shown the FQ-GD based ensemble selection

for ensemble teams of size S=5 in Figure 4a. The same pro-

cess can be applied to the other five FQ-diversity metrics.

Figure 4b shows the ensemble team selection with equal

size ensembles (S = 5) using FQ-KW scores. Similarly, the

red vertical dashed line marks the learned diversity thresh-

old based on the K-means binary clustering. The black

dots on the right side represent the ensemble teams pruned

out by this threshold while the red dots mark the selected

ensemble teams in GEnsSet(S, FQ-KW ) from the can-

didate ensemble teams in EnsSetunifyFQ(S, FQ-KW ).
Similarly, we observe that ensemble selection using the

unifying FQ-KW scores further prunes out low quality

ensemble teams for FQ-KW as well. For example, the

FQ-KW unifying ensemble selection further pruned out
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Methods #EnsSet #GEnsSet
Ensemble Acc

Range (%)

Ensemble

Acc Avg (%)

# (Acc >=

m max)

% (Acc >=

m max)

# (Acc >=

96.68% p max)

% (Acc >=

96.68% p max)

FQ-CK 1013 72 95.04∼97.01 96.04 13 18.06% 6 8.33%

FQ-QS 1013 42 94.40∼96.73 96.07 9 21.43% 2 4.76%

FQ-BD 1013 369 95.23∼97.15 96.37 109 29.54% 60 16.26%

FQ-FK 1013 75 95.04∼97.01 96.03 13 17.33% 6 8.00%

FQ-KW 1013 370 95.09∼97.15 96.36 110 29.73% 61 16.49%

FQ-GD 1013 443 95.23∼97.15 96.38 120 27.09% 66 14.90%

EQ (BD+KW+GD) 1013 336 95.23∼97.15 96.40 107 31.85% 60 17.86%

Table 3: The Experimental Comparison of FQ and EQ-diversity based Ensemble Selection on CIFAR-10

50 out of 145 ensemble teams and increased the en-

semble accuracy lower bound from 95.50% to 95.90%.

From Figure 4a and Figure 4b, we also observe that

FQ-GD selected more teams (114 teams) than FQ-KW

(95 teams), showing that different FQ-diversity metrics

may select different ensemble teams. Concretely, the

intersection of GEnsSet(S, FQ-GD) (114 teams) and

GEnsSet(S, FQ-KW ) (95 teams) contains 92 ensemble

teams. Hence, we can further prune out a fair number of low

quality teams, that is 22 teams from GEnsSet(S, FQ-GD)
and 3 teams from GEnsSet(S, FQ-KW ), which are all

below the p max=96.68% accuracy, by using the intersec-

tion of FQ-GD and FQ-KW. This motivates us to design the

EQ-diversity measure to combine the top performing FQ-

diversity metrics and further boost the overall ensemble ac-

curacy of selected ensemble teams.

EQ-diversity Ensemble Selection. For each FQ-diversity

metric, we obtain a set of high diversity ensembles, denoted

by GEnsSet(FQ-Q), by combining the selections for dif-

ferent team sizes (2 ≤ S ≤ M − 1). Let GEnsSetFQ

denote the union of GEnsSet(FQ-Q) for six FQ-diversity

metrics. A simple and yet representative approach to com-

bine the six FQ-diversity scores for all ensemble teams in

GEnsSetFQ is to simply take the set intersection (∩) of

the teams selected by the top three FQ-diversity metrics,

based on the accuracy range defined by min and max en-

semble accuracy of all teams selected under a given FQ

metric. An example could be GEnsSetFQ(CK +KW +
GD) = GEnsSet(FQ-CK) ∩ GEnsSet(FQ-KW ) ∩
GEnsSet(FQ-GD). This approach removes those ensem-

ble teams that are not included in the intersection of the en-

semble teams chosen by the top 3 FQ-diversity metrics. Our

experimental results show that the ensembles selected by

this EQ-diversity measure can outperform ensembles cho-

sen by both FQ-diversity metrics and Q-diversity metrics

with consistent performance for booting ensemble accuracy.

4. Experimental Analysis

We conduct extensive experiments on two benchmark

datasets (CIFAR-10 [10] and ImageNet [16]), each with ten

base models as the base model pool (see Table 1), to com-

pare and evaluate the effectiveness of high quality ensemble

selection using the proposed FQ and EQ-diversity metrics.

All experiments are conducted on an Intel Xeon E5-1620

server with the NVIDIA GeForce GTX 1080 Ti (11GB)

GPU, installed with Ubuntu 16.04 LTS, CUDA 8.0.

4.1. Performance of FQ Metrics on CIFAR10

Table 3 shows the experimental comparison of the en-

semble teams selected by using ensemble diversity of FQ

and EQ for CIFAR-10. We use the evaluation metrics in-

troduced in Section 2 to evaluate the quality of selected en-

semble teams, including the ensemble accuracy range, en-

semble accuracy average and the number and percentage of

selected ensemble teams that outperform their best member

model (m max) and the maximum base model in the pool

(p max). The max single base model accuracy from the 10

base models is 96.68% from DenseNet190. We highlight

three observations. First, the ensemble teams selected by

all FQ/EQ-diversity metrics provide a high ensemble accu-

racy lower bound of 94.40%, which is a significant improve-

ment over the average accuracy 94.25% of 10 base mod-

els and also over the lower bound of 93.56% of using the

corresponding Q-diversity metrics. 5 out of 6 FQ-diversity

metrics can further increase this ensemble accuracy lower

bound to above 95.04%. In particular, FQ-BD, FQ-KW,

and FQ-GD can identify over 100 teams with ensemble ac-

curacy above the max member model accuracy (m max)

and over 60 teams with ensemble accuracy above p max

of 96.68%, the max accuracy of the 10 base models for

CIFAR-10. Second, the upper bound for 5 out of 6 FQ-

diversity metrics is above 97.01%. It further demonstrates

that our FQ-diversity based ensemble selection can select

high quality ensemble teams while pruning out low quality

ensemble teams. Third, the EQ-diversity method can lever-

age FQ-diversity fusion to further improve the quality of

ensemble selection compared to FQ metrics, further boost-

ing the overall ensemble accuracy of the selected ensemble

teams, by pruning out those ensembles that are not in the

intersection of the selected teams by the top three FQ met-

rics. For CIFAR-10, the EQ-diversity with BD+KW+GD

improved the average ensemble accuracy to 96.40%.

4.2. Performance of FQ Metrics on ImageNet

We performed the same set of experiments on Ima-

geNet. Table 4 shows the experimental results. For Ima-

geNet, the maximum single base model accuracy is 78.25%
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Methods #EnsSet #GEnsSet
Ensemble Acc

Range (%)

Ensemble

Acc Avg (%)

# (Acc >=

m max)

% (Acc >=

m max)

# (Acc >=

78.25% p max)

% (Acc >=

78.25% p max)

FQ-CK 1013 30 73.26∼79.55 77.92 22 73.33% 18 60.00%

FQ-QS 1013 127 74.51∼80.54 79.11 119 93.70% 108 85.04%

FQ-BD 1013 550 74.65∼80.77 79.47 541 98.36% 510 92.73%

FQ-FK 1013 30 73.26∼79.55 77.92 22 73.33% 18 60.00%

FQ-KW 1013 563 74.65∼80.77 79.45 554 98.40% 521 92.54%

FQ-GD 1013 539 75.27∼80.77 79.51 531 98.52% 504 93.51%

EQ (BD+KW+GD) 1013 512 75.27∼80.77 79.52 504 98.44% 479 93.55%

Table 4: The Experimental Comparison of FQ and EQ-diversity based Ensemble Selection on ImageNet

Ensemble Team 12345 2345 245 1234 12348 1248 124 123467 128 1289

Ensemble Accuracy (%) 80.77 80.70 80.42 80.29 80.15 79.86 79.84 79.45 78.67 78.62

Highest Member Accuracy (%) 78.25 78.25 78.25 77.40 77.40 77.25 77.25 77.4 77.15 77.15

Highest Member Model F5 F5 F5 F3 F3 F4 F4 F3 F1 F1

Accuracy Improvement (%) 2.52 2.45 2.17 2.89 2.75 2.61 2.59 2.05 1.52 1.47

Table 5: 10 examples of good ensemble teams identified by our FQ-GD metric on ImageNet

(ResNet152), and the average accuracy of the 10 base mod-

els is 71.60% (see details on Table 1). We highlight three

observations. First, all FQ/EQ-diversity metrics provide a

high ensemble accuracy lower bound of 73.26%, compared

to the average accuracy of 71.60% of the base model pool

(p avg). 4 out of 6 FQ-diversity metrics further improved

this ensemble accuracy lower bound to above 74.51%.

Moreover, FQ-BD, FQ-KW, and FQ-GD perform consis-

tently better than the other three FQ-diversity metrics, and

over 92% of the ensembles selected by each of the three FQ-

diversity metrics achieve higher ensemble accuracy than the

maximum base model accuracy (p max). Second, the per-

centage of ensemble teams selected by all FQ/EQ-diversity

metrics, which are above their respective member max ac-

curacy (m max) among the selected ensemble teams, is very

high. FQ-BD, FQ-KW and FQ-GD are in the range of

98.36% to 98.52% with 93.70% for FQ-QS and 73.33%

for FQ-CK and FQ-FK. Third, the EQ-diversity further im-

proved the quality of selected ensemble teams by leverag-

ing FQ diversity fusion. For ImageNet, the EQ-diversity

with BD+KW+GD improved the ensemble accuracy aver-

age to 79.52%. In particular, 98.44% of the ensemble teams

selected are achieving higher ensemble accuracy than their

respective member max accuracy (m max). Furthermore,

93.55% of ensembles selected by our EQ-diversity method

have ensemble accuracy over p max=78.25%.

Quality of Selected Ensemble Teams: Table 5 gives 10

examples of ImageNet ensemble teams selected by using

our FQ-GD diversity metric as a case study. We use the

notation of 128 to denote the ensemble team with base

models F1, F2, F8. Among the total of 539 selected en-

semble teams, 504 out of 539 have ensemble accuracy on

par or higher than p max=78.25% (see Table 4). We ran-

domly choose 10 ensemble teams from the group of 504

teams in Table 5. We also include the highest accuracy of

the member models for each of the 10 ensemble teams. It

is observed that (1) these 10 selected ensemble teams suc-

cessfully improve their highest member model accuracy by

at least 1.47%, and (2) an ensemble team without the model

F5 with the p max accuracy (78.25%) in the pool, such as

1234, 1248 and 128, can outperform not only its high-

est member accuracy but also the p max=78.25% accuracy.

It takes about 20 minutes on a single PC for selecting these

high quality ensemble teams with our FQ-GD diversity met-

ric. Comparing to the typical time for designing, training

or searching for novel neural networks, which takes sev-

eral days or even several months [6, 11, 27], our proposed

method of using high diversity ensemble teams for improv-

ing prediction performance is more cost-effective, and it can

be potentially applied to many computer vision tasks.

Visualization of FQ-GD Ensemble Selection. Table 6

presents the visualization of 4 examples from ImageNet to

illustrate the effectiveness of our FQ-diversity metrics and

FQ-diversity based ensemble selection using FQ-GD. We

show the prediction results with Top-5 classification con-

fidence from two ensemble teams selected by our FQ-GD

ensemble selection algorithm in Table 5. They are F2F4F5

and F1F2F3F4 with their best member model F5 and F3

respectively. For all 4 images, the best member models

fail to give the correct prediction, whereas the FQ-GD se-

lected ensemble teams can generate the correct predictions,

repair the wrong predictions by its high performing member

model (with maximum member model accuracy), and boost

the overall ensemble prediction accuracy.

4.3. Computation Time Comparison

Table 7 shows a comparison of the total time in seconds

for performing ensemble selection using the Q-diversity

metrics and FQ-diversity metrics respectively on the two

benchmark datasets. Although computing FQ-diversity

scores is more involved in first computing the focal model

specific FQ-diversity scores and then the final ensemble se-
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Image

Ground

Truth Label
beacon measuring cup sports car table lamp

F5 (ResNet152)

p max,78.25%

F2F4F5, 80.42%

(EfficientNet-B0,

Inception3,

ResNet152)

F3 (ResNeXt50)

m max, 77.40%

F1F2F3F4, 80.29%

(DenseNet,

EfficientNet-B0,

ResNeXt50,

Inception3)

Table 6: Examples on ImageNet and Top-5 Classification Confidence

lection with the unifying FQ scores for ensemble teams of

equal size S for S=2, . . . ,M − 1, this table shows that the

time cost of FQ diversity computation is about 2 ∼ 3×
compared to the Q diversity computation, such as 89.93

seconds for CIFAR-10 by FQ diversity, which is about 1.5

minutes, compared to 27.72 seconds spent on average for

the Q diversity based ensemble selection. The dominating

cost in FQ-diversity based computation is the time of run-

ning complex DNN models (e.g., ImageNet) to compute the

focal model based ensemble diversity on each focal model

based negative sample set. The actual cost of making the en-

semble selection based on the computed FQ diversity scores

is relatively small. Furthermore, serving a query of whether

an ensemble team with a new base model should be selected

is much faster for both datasets.

Computation Time (s) CIFAR-10 ImageNet

Q-Diversity 27.72 2480.15

FQ-Diversity 89.93 4876.84

Ensemble Query 0.25 14.29

Table 7: Computation time for Q/FQ

5. Conclusion

We have presented new ensemble diversity metrics,

coined as FQ-diversity, which extend the respective Q-

diversity metrics with three optimizations: (1) separately

computing the FQ-diversity scores for ensembles of equal

size, (2) leveraging the concept of focal model for both neg-

ative sampling and for computing the FQ-diversity scores

to better capture the failure independence among member

models of an ensemble team, and (3) utilizing binary clus-

tering with strategic centroid selection to partition candidate

ensemble teams of equal size S for S = 2, . . . ,M − 1, for

a given base model pool of size M , and select high qual-

ity ensemble teams below the K-means FQ-diversity thresh-

old. In addition, we introduce the EQ-diversity as a fusion

of the top three performing FQ-diversity metrics to further

boost the overall ensemble accuracy of the selected ensem-

ble teams. Extensive experiments on ten base models for

each of the two datasets (CIFAR-10 and ImageNet) show

that our FQ and EQ diversity metrics are effective for se-

lecting high diversity ensemble teams and boosting overall

ensemble accuracy.
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