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Abstract

Single image dehazing is a challenging ill-posed prob-

lem due to the severe information degeneration. However,

existing deep learning based dehazing methods only adopt

clear images as positive samples to guide the training of de-

hazing network while negative information is unexploited.

Moreover, most of them focus on strengthening the dehaz-

ing network with an increase of depth and width, leading to

a significant requirement of computation and memory. In

this paper, we propose a novel contrastive regularization

(CR) built upon contrastive learning to exploit both the in-

formation of hazy images and clear images as negative and

positive samples, respectively. CR ensures that the restored

image is pulled to closer to the clear image and pushed to

far away from the hazy image in the representation space.

Furthermore, considering trade-off between perfor-

mance and memory storage, we develop a compact dehaz-

ing network based on autoencoder-like (AE) framework. It

involves an adaptive mixup operation and a dynamic fea-

ture enhancement module, which can benefit from preserv-

ing information flow adaptively and expanding the receptive

field to improve the network’s transformation capability, re-

spectively. We term our dehazing network with autoencoder

and contrastive regularization as AECR-Net. The extensive

experiments on synthetic and real-world datasets demon-

strate that our AECR-Net surpass the state-of-the-art ap-

proaches. The code is released in https://github.

com/GlassyWu/AECR-Net.

1. Introduction

Haze is an important factor to cause noticeable visual

quality degradation in object appearance and contrast. In-

∗Equal contribution.
†Corresponding author.

(a) Hazy input (b) Only L1 loss [34] (c) Prior [42]

(d) KDDN [23] (e) Our CR (f) Ground-truth

Figure 1. Comparison with only positive-orient supervision.

put images captured under hazy scenes significantly affect

the performance of high-level computer vision tasks, such

as object detection [26, 8] and scene understanding [39, 40].

Therefore, image dehazing has received a great deal of re-

search focus on image restoration for helping to develop ef-

fective computer vision systems.

Recently, various end-to-end CNN-based methods [35,

30, 34, 23, 10, 42] have been proposed to simplify the de-

hazing problem by directly learning hazy-to-clear image

translation via a dehazing network. However, there ex-

ists several issues: (1) Less effectiveness of only positive-

orient dehazing objective function. Most existing methods

[5, 25, 34, 10] typically adopt clear images (a.k.a. ground-

truth) as positive samples1 to guide the training of dehazing

network via L1/L2 based image reconstruction loss with-

out any regularization. However, only image reconstruction

loss is unable to effectively deal with the details of images,

which may lead to color distortion in the restored images

(see Fig. 1(b)). Recently, additional knowledge from posi-

1In this paper, positive samples, clear images and ground-truth are the

same concept in the image dehazing task.
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Figure 2. The best PSNR-parameter trade-off of our method.

tive samples based regularization [23, 42, 51, 30] has been

proposed to make the dehazing model generate more nat-

ural restored images. For example, Hong et al. [23] in-

troduced an additional teacher network to transfer knowl-

edge from the intermediate representation of the positive

image extracted by the teacher to the student/dehazing net-

work as positive samples based regularization. Although

they utilize the information of positive images as an up-

per bound, the artifacts or unsatisfied results still happen

due to the unexploited information of negative images as

an lower bound (see Fig. 1(d)). (2) Parameter-heavy de-

hazing networks. Previous works [30, 13, 34, 10, 29] focus

on improving the dehazing performance by significantly in-

creasing the depth or width of the dehazing models without

considering memory or computation overhead, which pro-

hibits their usage on resource-limited environments, such

as mobile or embedded devices. For example, TDN [29],

the champion model on NTIRE 2020 Challenge [3] in the

dehazing task has 46.18 million parameters. More state-of-

the-art (SOTA) models about their performance and param-

eters are presented in Fig. 2.

To address these issues, we propose a novel contrastive

regularization (CR), which is inspired by contrastive learn-

ing [15, 32, 21, 16, 7]. As shown in the right panel of Fig.

3, we denote a hazy image, its corresponding restored im-

age generated by a dehazing network and its clear image

(i.e. ground-truth) as negative, anchor and positive respec-

tively. There are two “opposing forces”; One pulls the pre-

diction closer to the clear image, the other one pushes the

prediction farther away from the hazy image in the repre-

sentation space. Therefore, CR constrains the anchor im-

ages into the closed upper and lower bounds via contrastive

learning, which better help the dehazing network approx-

imate the positive images and move away from the nega-

tive images. Furthermore, CR improves the performance

for image dehazing without introducing additional compu-

tation/parameters during testing phase, since it can be di-

rectly removed for inference.

To achieve the best trade-off between performance and

parameters, we also develop a compact dehazing network

by adopting autoencoder-like (AE) framework to make

dense convolution computation in the low-resolution space

and also reduce the number of layers, which is presented in

Fig. 3. The information loss from the reduction of parame-

ters can be made up by adaptive mixup and dynamic feature

enhancement (DFE). Adaptive mixup enables the informa-

tion of shallow features from the downsampling part adap-

tively flow to high-level features from the upsampling one,

which is effective for feature preserving. Inspired by de-

formable convolution [54] with strong transformation mod-

eling capability, DFE module dynamically expands the re-

ceptive field for fusing more spatially structured informa-

tion, which significantly improves the performance of our

dehazing network. We term the proposed image dehazing

framework as AECR-Net by leveraging contrastive regular-

ization into the proposed AE-like dehazing network.

Our main contributions are summarized as follows:

• We propose a novel ACER-Net to effectively gen-

erate high quality haze-free images by contrastive

regularization and highly compact autoencoder-like

based dehazing network. AECR-Net achieves the

best parameter-performance trade-off, compared to the

state-of-the-art approaches.

• The proposed contrastive regularization as a universal

regularization can further improve the performance of

various state-of-the-art dehazing networks.

• Adaptive mixup and dynamic feature enhancement

module in the proposed autoencoder-like (AE) dehaz-

ing network can help the dehazing model preserve in-

formation flow adaptively and enhance the network’s

transformation capability, respectively.

2. Related Work

2.1. Single Image Haze Removal

Single image dehazing aims to generate the haze-free

images from the hazy observation images, which can be

categorized into prior-based methods [45, 17, 53, 4] and

learning-based methods [5, 25, 51, 35, 23].

Prior-based Image Dehazing Methods. These meth-

ods depend on the physical scattering model [31] and usu-

ally remove the haze using handcraft priors from empirical

observation, such as contrast maximization [45], dark chan-

nel prior (DCP) [17], color attenuation prior [53] and non-

local prior [4]. Although these prior-based methods achieve

promising results, the priors depend on the relative assump-

tion and specific target scene, which leads to less robustness
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Figure 3. The architecture of the proposed AECR-Net. It consists of autoencoder-like (AE) dehazing network and constrative regularization

(CR). AE has light parameters with one 4× downsampling module, six FA blocks, one DFE module, one 4× upsampling module and two

adaptive mixup operations. We jointly minimize the L1 based reconstruction loss and constrative regularization to better pull the restored

image (i.e. anchor) to the clear (i.e. positive) image and push the restored image to the hazy (i.e. negative) image.

in the complex practical scene. For instance, DCP [17] can-

not well dehaze the sky regions, since it does not satisfy

with the prior assumption.

Learning-based Image Dehazing Methods. Differ-

ent from prior-based methods, learning-based methods are

data-driven, which often use deep neural networks to es-

timate the transmission map and atmospheric light in the

physical scattering model [5, 36, 25, 51] or directly learn

hazy-to-clear image translation [37, 30, 35, 34, 10].

Early works [5, 36, 25, 51] focus on directly estimat-

ing the transmission map and atmospheric light. However,

these methods may cause a cumulative error to generate the

artifacts, since the inaccurate estimation or some estimation

bias on the transmission map and the global atmospheric

light results in large reconstruction error between the re-

stored images and the clear ones. Besides, it is difficult

or expensive to collect the ground-truth about transmission

map and global atmospheric light in the real world.

Recently, various end-to-end methods [37, 6, 35, 30,

23, 34, 10] have been proposed to directly learn hazy-to-

clear image translation without using atmospheric scatter-

ing model. Most of them [37, 30, 34, 10] focus on strength-

ening the dehazing network and adopt clear images as posi-

tive samples to guide the dehazing network via image recon-

struction loss without any regularization on images or fea-

tures. For instance, Qin et al. [34] proposed a feature fusion

attention mechanism network to enhance flexibility by deal-

ing with different types of information, which only uses L1

based reconstruction loss between the restored image and

ground-truth. Dong et al. [10] proposed a boosted decoder

to progressively restore the haze-free image by only consid-

ering the reconstruction error using ground-truth as super-

vision. To better use the knowledge from positive samples,

Hong et al. [23] introduced an additional teacher network

to transfer knowledge from the intermediate representation

of the positive image extracted by the teacher to the stu-

dent/dehazing network. Although these methods utilize the

information of positive images as an upper bound, the ar-

tifacts or unsatisfied results still happen due to the unex-

ploited information of negative images as an lower bound.

Moreover, these methods are also performance-oriented to

significantly increase the depth of the dehazing network,

which leads to heavy computation and parameter costs.

Different from these methods, we propose a novel con-

trastive regularization to exploit both the information of

negative images and positive images via contrastive learn-

ing. Furthermore, our dehazing network is compact by

reducing the number of layers and spatial size based on

autoencoder-like framework.

2.2. Contrastive Learning

Contrastive learning are widely used in self-supervised

representation learning [20, 46, 41, 16, 7], where the con-

trastive losses are inspired by noise contrastive estimation

[14], triplet loss [22] or N-pair loss [44]. For a given an-

chor point, contrastive learning aims to pull the anchor close

to positive points and push the anchor far away from neg-

ative points in the representation space. Previous works

[7, 16, 21, 12] often apply contrastive learning into high-

level vision tasks, since these tasks inherently suit for

modeling the contrast between positive and negative sam-

ples/features. Recently, the work in [33] has demonstrated

that contrastive learning can improve unpaired image-to-

image translation quality. However, there are still few works

to apply constrative learning into image dehazing, as the

speciality of this task on constructing contrastive samples

and contrastive loss. Moreover, different from [33], we pro-

posed a new sampling method and a novel pixel-wise con-

trastive loss (a.k.a. contrastive regularization).
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3. Our Method

In this section, we first describe the notations. Then, we

present the proposed autoencoder-like (AE) dehazing net-

work using adaptive mixup for better feature preserving and

a dynamic feature enhancement module for fusing more

spatially structured information. Finally, we employ con-

trastive regularization as a universal regularization applied

into our AE-like dehazing network.

3.1. Notations

End-to-end single image dehazing methods [35, 30, 23,

42] remove haze images by using two losses, image recon-

struction loss and regularization term on the restored image,

which can be formulated as:

argmin
w

‖J − φ(I, w)‖+ βρ(φ(I, w)), (1)

where I is a hazy image, J is the corresponding clear im-

age, and φ(·, θ) is the dehazing network with parameter w.

‖J − φ(I, w)‖ is the data fidelity term, which often uses

L1/L2 norm based loss. ρ(·) is the regularization term to

generate a nature and smooth dehazing image, where TV-

norm [42, 28], DCP prior [42, 28] are widely used in the

regularization term. β is a penalty parameter for balanc-

ing the data fidelity term and regularization term. Different

from the previous regularization, we employ a contrastive

regularization to improve the quality of the restored images.

3.2. Autoencoder­like Dehazing Network.

Inspired by FFA-Net [34] with high effective FA blocks,

we use the FA block as our basic block in the proposed

autoencoder-like (AE) network. Different from FFA-Net,

we significantly reduce the memory storage to generate a

compact dehazing model. As presented in Fig. 3, the AE-

like network first adopts 4× downsampling operation (e.g.

one regular convolution with stride 1 and two convolution

layers all with stride 2) to make dense FA blocks learn the

feature representation in the low-resolution space, and then

employ the corresponding 4× upsampling and one regular

convolution to generate the restored image. Note that we

significantly reduce the number of FA blocks by only us-

ing 6 FA blocks (vs. 57 FA blocks in FFA-Net). To improve

the information flow between layers and fuse more spatially

structured information, we propose two different connectiv-

ity patterns: (1) Adaptive mixup dynamically fuses the fea-

tures between the downsampling layers and the upsampling

layers for feature preserving. (2) Dynamic feature enhance-

ment (DFE) module enhances the transformation capability

by fusing more spatially structured information.

3.2.1 Adaptive Mixup for Feature Preserving

Low-level features (e.g. edges and contours) can be cap-

tured in the shallow layers of CNNs [49]. However, with

↓	Original

↑	Original
...

↓	1/2↓	1/4

↑	1/4 ↑	1/2

...

Figure 4. Adaptive mixup. The first and second rows are down-

sampling and upsampling operations, respectively.

Normal grid kernel Deformable kernelHazy input

Figure 5. Dynamic feature enhancement module.

an increase of the network’s depth, the shallow features de-

grades gradually [18]. To deal with this issue, several previ-

ous works [38, 18] integrate the shallow and deep features to

generate new features via the skip connections with an ad-

dition or concatenation operation. Actually, FA block [34]

also use addition based skip connections to fuse the internal

input and output features. However, there are missing con-

nection between the features from the downsampling lay-

ers and upsampling layers in our image dehazing network,

which causes shallow features (e.g. edge and corner) lost.

Thus, we apply the adaptive mixup operation [50] to fuse

the information from these two layers for feature preserv-

ing (see Fig. 4). In our case, we consider two downsam-

pling layers and two upsampling layers, such that the final

output of the mixup operations can be formulated as:

f↑2 = Mix(f↓1,f↑1) = σ(θ1) ∗ f↓1 + (1− σ(θ1)) ∗ f↑1,

f↑ = Mix(f↓2,f↑2) = σ(θ2) ∗ f↓2 + (1− σ(θ2)) ∗ f↑2,
(2)

where f↓i and f↑i are feature maps from the i-th down-

sampling and upsampling layer, respectively. f↑ is the final

output. σ(θi), i = 1, 2 is the i-th learnable factor to fuse

the inputs from the i-th downsampling layer and the i-th

upsampling one, whose value is determined by the sigmoid

operator σ on parameter θi. During training, we can effec-

tively learn these two learnable factors, which achieves bet-

ter performance than the constant factors (see Section 4.3).

3.2.2 Dynamic Feature Enhancement

Previous works [35, 30, 34, 23, 10, 42] usually employ the

fixed grid kernel (e.g. 3x3) as shown in Fig. 5 middle, which

limits the receptive field and cannot exploit the structured

information in the feature space [47]. Alternatively, the di-

lated convolutional layer [48] is introduced to expanse the

receptive field. However, it will potentially cause the grid-
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ding artifacts. On the other hand, the shape of receptive field

is also important to enlarge the receptive field. As shown in

Fig. 5 right, the deformable convolution can capture more

important information since the kernel is dynamic and flex-

ible. In fact, the work [47] has demonstrated that spatially-

invariant convolution kernels could result in corrupted im-

age textures and over-smoothing artifacts, such that the de-

formable 2D kernels was proposed to enhance the feature

for image denoising. Therefore, we introduce dynamic fea-

ture enhancement module (DFE) via deformable convolu-

tion [9] to expand receptive field with adaptive shape and

improve the model’s transformation capability for better im-

age dehazing. In particular, we employ two deformable

convolutional layers to enable more free-form deformation

of the sampling grid, as shown in Fig. 3. As such, the

network can dynamically pay more attention to the compu-

tation of the interest region to fuse more spatially structured

information. We also find that DFE deployed after the deep

layer achieves better performance than the shallow layers.

3.3. Contrastive Regularization

Inspired by contrastive learning [15, 32, 21, 16, 7], it

aims to learn a representation to pull “positive ” pairs in

some metric space and push apart the representation be-

tween “negative” pairs. We propose a new contrastive reg-

ularization (CR) to generate better restored images. There-

fore, we need to consider two aspects in CR: one is to con-

struct the “positive” pairs and “negative” pairs, the other one

is to find the latent feature space of these pairs for contrast.

In our CR, the positive pair and negative pair are generated

by the group of a clear image J and its restored image Ĵ by

the AE-like dehazing network φ, and the group of Ĵ and a

hazy image I , respectively. For simplicity, we call the re-

stored image, the clear image and the hazy image as anchor,

positive and negative, respectively. For the latent feature

space, we select the common intermediate feature from the

same fixed pre-trained model G, e.g. VGG-19 [43]. Thus,

the objective function in Eq. (1) can be reformulated as:

min‖J −φ(I, w)‖+β · ρ
(

G(I), G(J), G(φ(I, w))
)

, (3)

where the first term is the reconstruction loss to align be-

tween the restored image and its ground-truth in the data

field. We employ L1 loss, as it achieves the better per-

formance compared to L2 loss [52]. The second term

ρ
(

G(I), G(J), G(φ(I, w))
)

is the contrastive regulariza-

tion among I, J and φ(I, w) under the same latent feature

space, which plays a role of opposing forces pulling the

restored image φ(I, w) to its clear image J and pushing

φ(I, w) to its hazy image I . β is a hyperparameter for bal-

ancing the reconstruction loss and CR. To enhance the con-

trastive ability, we extract the hidden features from different

layers of the fixed pre-trained model.

Therefore, the overall dehazing loss function Eq. (3) can

be further formulated as:

min‖J −φ(I, w)‖1 + β

n
∑

i=1

ωi ·
D
(

Gi(J), Gi(φ(I, w))
)

D
(

Gi(I), Gi(φ(I, w))
) , (4)

where Gi, i = 1, 2, · · ·n extracts the i-th hidden features

from the fixed pre-trained model. D(x, y) is the L1 dis-

tance between x and y. ωi is a weight coefficient. Eq. (4)

can be trained via an optimizer (e.g. Adam) in an end-to-end

manner. Related to our CR, perceptual loss [24] measures

the visual difference between the prediction and the ground

truth by leveraging multi-layer features extracted from a

pre-trained deep neural network. Different from the percep-

tual loss with positive-oriented regularization, we also adopt

hazy image (input of dehazing network) as negatives to con-

strain the solution space, and experiments demonstrate our

CR outperforms it for image dehazing (see Section 4.3).

4. Experiments

4.1. Experiment Setup

Implementation Details. Our AECR-Net is imple-

mented by PyTorch 1.2.0 and MindSpore with one NVIDIA

TITAN RTX GPU. The models are trained using Adam op-

timizer with exponential decay rates β1 and β2 equal to 0.9

and 0.999, respectively. The initial learning rate and batch-

size are set to 0.0002 and 16, respectively. We use cosine

annealing strategy [19] to adjust the learning rate. We em-

pirically set the penalty parameter β to 0.1 and the total

number of epoch to 100. We set the L1 distance loss in

Eq. (4) after the latent features of the 1st, 3rd, 5th, 9th and

13th layers from the fixed pre-trained VGG-19, and their

corresponding coefficients ωi, i = 1, · · · , 5 to 1

32
, 1

16
, 1

8
, 1

4

and 1, respectively.

Datasets. We evaluate the proposed method on synthetic

dataset and real-world datasets. RESIDE [27] is a widely

used synthetic dataset, which consists of five subsets: In-

door Training Set (ITS), Outdoor Training Set (OTS), Syn-

thetic Objective Testing Set (SOTS), Real World task-

driven Testing Set (RTTS), and Hybrid Subjective Testing

Set (HSTS). ITS, OTS and SOTS are synthetic datasets,

RTTS is the real-world dataset, HSTS consists of syn-

thetic and real-word hazy images. Following the works

[30, 34, 23, 10], we select ITS and SOTS indoor as our

training and testing datasets. In order to further evaluate the

robustness of our method in the real-world scene, we also

adopt two real-world datasets: Dense-Haze [1] and NH-

HAZE [2]. More details are provided in the supplementary.

Evaluation Metric and Compatitors. To evaluate the

performance of our method, we adopt the Peak Signal to

Noise Ratio (PSNR) and the Structural Similarity index

(SSIM) as the evaluation metrics, which are usually used

as criteria to evaluate image quality in the image dehaz-

ing task. We compare with the prior-based method (e.g.
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Table 1. Quantitative comparisons with SOTA methods on the synthetic and real-world dehazing datasets.

Method
SOTS [27] Dense-Haze [1] NH-HAZE [2]

# Param
PSNR SSIM PSNR SSIM PSNR SSIM

(TPAMI’10) DCP [17] 15.09 0.7649 10.06 0.3856 10.57 0.5196 -

(TIP’16) DehazeNet [5] 20.64 0.7995 13.84 0.4252 16.62 0.5238 0.01M

(ICCV’17) AOD-Net [25] 19.82 0.8178 13.14 0.4144 15.40 0.5693 0.002M

(ICCV’19) GridDehazeNet [30] 32.16 0.9836 13.31 0.3681 13.80 0.5370 0.96M

(AAAI’20) FFA-Net [34] 36.39 0.9886 14.39 0.4524 19.87 0.6915 4.68M

(CVPR’20) MSBDN [10] 33.79 0.9840 15.37 0.4858 19.23 0.7056 31.35M

(CVPR’20) KDDN [23] 34.72 0.9845 14.28 0.4074 17.39 0.5897 5.99M

(ECCV’20) FDU [11] 32.68 0.9760 - - - - -

Ours 37.17 0.9901 15.80 0.4660 19.88 0.7173 2.61M

(a) Hazy input (b) DCP [17] (c) DehazeNet [5] (d) AOD-Net [25] (e) GridDehazeNet [30]

(f) FFA-Net [34] (g) MSBDN [10] (h) KDDN [23] (i) Ours (j) Ground-truth

Figure 6. Visual results comparison on SOTS [27] dataset. Zoom in for best view.

DCP [17]), physical model based methods (e.g. DehazeNet

[5] and AOD-Net [25]), and hazy-to-clear image translation

based methods (e.g. GridDehazeNet [30], FFA-Net [34],

MSBDN [10] and KDDN [23]).

4.2. Comparison with State­of­the­art Methods

Results on Synthetic Dataset. In Table 1, we summa-

rize the performance of our AECR-Net and SOTA meth-

ods on RESIDE dataset [27] (a.k.a, SOTS). Our AECR-

Net achieves the best performance with 37.17dB PSNR and

0.9901 SSIM, compared to SOTA methods. In particu-

lar, compared to FFA-Net [34] with the second top perfor-

mance, our AECR-Net achieves 0.78dB PSNR and 0.0015

SSIM performance gains with the significant reduction of

2M parameters. We also compare our AECR-Net with

SOTA methods on the quality of the restored images, which

is shown in Fig. 6. We can observe that DCP [17] and

DehazeNet [5] and AOD-Net [25] cannot successfully re-

move dense haze, and suffer from the color distortion (see

Fig. 6(b)-6(d)). Compared to DCP, DehazeNet and AOD-

Net, the hazy-to-clear image translation based methods in

an end-to-end manner (e.g. GridDehazeNet [30], FFA-Net

[34], MSBDN [10] and KDDN [23]) achieve the restored

images with higher quality. However, they still generate

some gray mottled artifacts as shown in Fig. 6(e)-6(f) and

cannot completely remove the haze in some regions (see the

red rectangles of Fig. 6(g)-6(h)). Our method generates the

most natural images and achieves the similar patterns to the

ground-truth both in low and high frequency regions. More

examples can be found in the supplementary.

Results on Real-world Datasets. We also compare our

AECR-Net with SOTA methods on Dense-Haze [1] and

NH-HAZE [2] datasets. As shown in Table 1, we can

observe: (1) Our AECR-Net outperforms all SOTA meth-

ods with 19.88dB PSNR and 0.7173 SSIM on NH-HAZE

dataset. (2) Our AECR-Net also achieves the highest PSNR

of 15.80dB, compared to SOTA methods. Note that MS-

BDN achieves only about 0.02 higher SSIM, but with 12×
parameters, compared to our AECR-Net. (3) Compared to

RESIDE dataset, Dense-Haze and NH-HAZE dataset are

more difficult to remove the haze, especially on Dense-Haze

dataset. This is due to the real dense haze which leads to

the severe degradation of information. We also compare

our AECR-Net with SOTA methods on the quality of re-

stored images, which are presented in Fig. 7 and Fig. 8.

Obviously, our AECR-Net generates the most natural im-

ages, compared to other methods. The restored images by

DCP [17], DehazeNet [5], AOD-Net [25], GridDehazeNet

[30], FFA-Net [34] and KDDN [23] suffer from the seri-

ous color distortion and texture loss. Besides, there are still
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(a) Hazy input (b) DCP [17] (c) DehazeNet [5] (d) AOD-Net [25] (e) GridDehazeNet [30]

(f) FFA-Net [34] (g) MSBDN [10] (h) KDDN [23] (i) Ours (j) Ground-truth

Figure 7. Visual comparison on the Dense-Haze dataset.

(a) Hazy input (b) DCP [17] (c) DehazeNet [5] (d) AOD-Net [25] (e) GridDehazeNet [30]

(f) FFA-Net [34] (g) MSBDN [10] (h) KDDN [23] (i) Ours (j) Ground-truth

Figure 8. Visual comparison on NH-HAZE datasets.

Table 2. Ablation study on AECR-Net. * denotes only positive

samples are used for training. SC means skip connection.

Model CR PSNR SSIM

base - 33.85 0.9820

base+mixup - 34.04 0.9838

base+DFE - 35.50 0.9853

base+DFE+SC - 35.59 0.9858

base+DFE+mixup - 36.20 0.9869

base+DFE+mixup+CR*
√

(w/o negative) 36.46 0.9889

Ours
√

37.17 0.9901

some thick haze existed in the restored images by MSBDN

[10] and KDDN [23]. More examples can be found in the

supplementary.

4.3. Ablation Study

To demonstrate the effectiveness of the proposed AECR-

Net, we conduct ablation study to analyze different ele-

ments, including mixup, DFE and CR.

We first construct our base network as the baseline of

dehazing network, which mainly consists of two downsam-

pling layers, six FA blocks and two upsampling layers. Sub-

sequently, we add the different modules into base network

as: (1) base+mixup: Add the mixup operation into base-

line. (2) base+DFE: Add the DFE module into baseline.

(3) base+DFE+mixup: Add both DFE module and mixup

operation into baseline, a.k.a. our AE-like dehazing net-

work. (4) base+DFE+mixup+CR*: Add CR without us-

ing negative samples into our AE-like dehazing network. It

means that only positive samples are utilized to train the de-

hazing network. (5) Ours: The combination of our AE-like

dehazing network and the proposed CR, which allows both

negative and positive samples for training.

We employ L1 loss as image reconstruction loss (i.e. the

first term in Eq. (4)), and use RESIDE [27] dataset for both

training and testing. The performance of these models are

summarized in Table 2.

Effect of Adaptive Mixup Operation. Adaptive mixup

operation can improve the dehazing network with additional

negligible parameter, which provides additional flexibility

to fuse the different features. In Table 2, it can improve

the performance of our base network, e.g. the increases of

0.19dB and 0.7dB in PSNR from base to base+mixup and

from base+DFE to base+DFE+mixup, respectively. Fur-

thermore, we compare our adaptive mixup operation with

skip connection (SC) operation. The factors (i.e. σ(θ1) and

σ(θ2) in Eq. (2)) in our adaptive mixup operation are learn-

10557



able, while SC has the identical information fusion. Adap-

tive mixup operation achieves 0.61dB PSNR gains over SC.

Effect of DFE Module. DFE module significantly

improves the performance from base to base+DFE with

an increase of 1.65dB PSNR and from base+mixup to

base+DFE+mixup with an increase of 2.16dB PSNR.

Therefore, DFE is an more important factor than adaptive

mixup, due to the higher performance gains. We also evalu-

ate the effect of DFE positions before and after 6 FA blocks.

The results demonstrate that DFE deployed after the deeper

layers achieves better performance than the shallow layers.

The detailed performance are shown in the supplementary.

Effect of Contrastive Regularization. We consider the

effect of CR whether uses negative samples. CR* represents

only positive samples are used for training, which is similar

to perceptual loss [24]. Compared to base+DFE+mixup,

adding CR* on that (i.e. base+DFE+mixup+CR*) only

achieves slightly higher PSNR and SSIM with the gains

of 0.26dB and 0.002, respectively. Our AECR-Net em-

ploys the proposed CR adding both negative and positive

samples for training, which significantly achieves perfor-

mance gains over base+DFE+mixup+CR*. For example,

our AECR-Net achieves a higher PSNR of 37.17dB, com-

pared to base+DFE+mixup+CR* with 36.46dB PSNR.

4.4. Universal Contrastive Regularization

To evaluate the universality of the proposed CR, we add

our CR into various SOTA methods [30, 34, 10, 23]. As

presented in Table 3, CR can further improve the perfor-

mance of SOTA methods. In other words, our CR is model-

agnostic to train the dehazing networks effectively. Further-

more, our CR cannot increase the additional parameters for

inference, since it can be directly removed for testing.

CR can also enhance the visual quality of SOTA meth-

ods. For example, adding our CR into SOTA methods can

reduce the effect of black spots and color distortion (see

supplementary on these examples).

Table 3. Results of applying CR into SOTA methods.

Method PSNR SSIM

GridDehazeNet [30] 32.99 (↑ 0.83) 0.9863 (↑ 0.0027)

FFA-Net [34] 36.74 (↑ 0.35) 0.9906 (↑ 0.0020)

KDDN [23] 35.18 (↑ 0.46) 0.9854 (↑ 0.0009)

MSBDN [10] 34.45 (↑ 0.66) 0.9861 (↑ 0.0021)

4.5. Discussion

We further explore the effect of different rates (i.e. r) be-

tween positive and negative samples on CR. If the number

of negative samples is r, we will take the current hazy input

as one sample and randomly select the other r − 1 negative

samples from the the same batch to the input haze image.

For positive samples, we select the corresponding clear im-

ages to the selected negative samples as positive ones. We

Table 4. Comparisons of different positive and negative sample

rates on CR. The baseline is AECR-Net with the rate of 1:1.

Rate # Positive # Negative PSNR SSIM

1:1 1 1 37.17 0.9901

1:r 1 10 37.41 0.9906

r:1 10 1 35.61 0.9862

r:r 10 10 35.65 0.9861

select our AECR-Net with the rate of 1:1 as baseline, and

conduct all experiments on RESIDE dataset. Additionally,

we consider at most 10 positive or negative samples, be-

cause of the limited GPU memory size.

As shown in Table 4, adding more negative samples into

CR achieves the better performance, while adding more

positive samples achieves the opposite results. We conjec-

ture this is due to the different positive pattern that confuses

the anchor to learn good pattern. For negative samples, the

more negative samples, the farther away from the worse pat-

tern in the hazy images. Therefore, our AECR-Net with

the rate of 1:10 achieves the best performance. However,

it takes longer training time when increasing the number

of negative samples. For example, Our AECR-Net with the

rate of 1:10 takes about 200 hours in total (i.e. 2×) for train-

ing, compare to total 100 hours at the rate of 1:12.

5. Conclusion

In this paper, we propose a novel AECR-Net for single

image dehazing, which consists of contrastive regulariza-

tion (CR) and autoencoder-like (AE) network. CR is built

upon contrastive learning to ensure that the restored im-

age is pulled to closer to the clear image and pushed to far

away from the hazy image in representation space. AE-

like dehazing network based on the adaptive mixup opera-

tion and a dynamic feature enhancement module is compact

and benefits from preserving information flow adaptively

and expanding the receptive field to improve the network’s

transformation capability. We have comprehensively evalu-

ated the performance of AECR-Net on synthetic and real-

world datasets, which demonstrates the superior perfor-

mance gains over the SOTA methods.
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