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Figure 1: De-rendering from single images. From only a real single-view image collection of “revolutionary” (i.e., solid of revolution)

artefacts with known silhouettes as training data (left), our framework learns to de-render a single image into shape, albedo and complex

lighting and material components, suitable for applications such as novel-view synthesis and relighting (right).

Abstract

Recent works have shown exciting results in unsupervised

image de-rendering—learning to decompose 3D shape, ap-

pearance, and lighting from single-image collections with-

out explicit supervision. However, many of these assume sim-

plistic material and lighting models. We propose a method,

termed RADAR, that can recover environment illumination

and surface materials from real single-image collections, re-

lying neither on explicit 3D supervision, nor on multi-view

or multi-light images. Specifically, we focus on rotationally

symmetric artefacts that exhibit challenging surface prop-

erties including specular reflections, such as vases. We in-

troduce a novel self-supervised albedo discriminator, which

allows the model to recover plausible albedo without requir-

ing any ground-truth during training. In conjunction with

a shape reconstruction module exploiting rotational sym-

metry, we present an end-to-end learning framework that

is able to de-render the world’s revolutionary artefacts. We

conduct experiments on a real vase dataset and demonstrate

compelling decomposition results, allowing for applications

including free-viewpoint rendering and relighting. More re-

sults and code at: https://sorderender.github.io/.

*The work was primarily done during an internship at Google Research.

1. Introduction

Consider one of the vases shown in Fig. 1. From just a sin-

gle image, we can tell a lot about the underlying properties

of that vase. Despite the image’s flatness, we can perceive an

instance of a 3D surface with various lights cast upon it. We

can distinguish between areas where the underlying color of

the vase changes and regions that reflect light, revealing the

glossiness of the surface and its local geometry.

We introduce a model that aims to de-render a sin-

gle image into these factors—geometry, material, and

illumination—which we call RADAR (Revolutionary

Artefact De-rendering And Re-rendering). In particular, our

approach can decompose real images of vase-like objects un-

der complex illumination and with glossy materials. Notably,

our approach can learn this ability just from collections of

single images (i.e., where each object is pictured once), with-

out explicit 3D supervision or multiple images. This allows

us to analyze images obtained in real world settings, such

as artefact collections in museums, and subsequently apply

modifications including relighting, as illustrated in Fig. 1.

Making de-rendering tractable involves simplifying as-

sumptions. In some methods, this means requiring explicit

supervision, e.g., with synthetic [24, 26] or specially cap-

tured data [25]. An alternative to direct supervision is to
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observe an object under multiple viewpoints [6, 43] or mul-

tiple lights [42, 7], but for many existing image collections,

such multiple views are unavailable. Hence, learning to de-

render from single image collections has been of growing

interest [41, 35]. However, these approaches assume sim-

plistic shading or lighting models, such as Lambertian, and

are not applicable to realistic scenarios with complex illumi-

nation effects.

In contrast, our objective in this paper is to explore un-

supervised de-rendering in the presence of more complex

illumination effects. To make our task tractable, we consider

simplifying assumptions on the 3D shape. We draw inspira-

tion from recent work [41] that leverages symmetry priors

for self-supervised decomposition. Specifically, we focus on

de-rendering objects whose shapes are described by solids

of revolution (SoRs, or “revolutionary” objects)—such ob-

jects include many categories of man-made objects such as

vases. This allows us to derive a simple yet effective method

for recovering the 3D geometry and camera viewpoint from

only single images with 2D silhouettes.

Our model de-renders a single image of a revolutionary

object into 3D geometry, viewpoint, albedo, material shini-

ness, and environment lighting. Even with this strong as-

sumption on SoR shape and inductive bias on the rendering

process, this is still an extremely under-constrained problem.

As with most ill-posed inverse problems, we must prevent

degenerate solutions where the model learns no disentangle-

ment at all. Another major challenge is to predict realistic

diffuse albedo in regions saturated by specular reflections.

To ensure realistic disentanglement, we incorporate novel

components into our model. In particular, we propose a new

adversarial module that we call a Self-supervised Albedo

Discriminator (SAD). The key insight is that the distribution

of diffuse albedo patches should be independent of observed

specular effects—it should not be possible to tell from the

albedo alone whether a particular surface region exhibits a

specular reflection or not. Unlike existing adversarial frame-

works, a key feature of SAD is that the discriminator always

takes its inputs from the predicted albedo and never requires

a ‘real’ albedo, hence the label self-supervised.

In summary, we propose RADAR, an end-to-end frame-

work for de-rendering single images into shape, complex

lighting, and materials, learning only from single-image

collections with 2D silhouettes. We evaluate our approach

numerically on a synthetic dataset, and demonstrate effec-

tive results on real images of revolutionary artefacts from

museum collections, where our approach allows for applica-

tions such as free-viewpoint rendering and relighting.

2. Related Work

There is a vast literature on intrinsic image decomposi-

tion and de-rendering. Many methods build upon some phys-

ical model of the image formation process and complement

such models with representations learned from data. Exist-

ing methods can be roughly divided into three categories:

optimization-based, learning from annotated or synthetic

images, and learning from unannotated image collections.

We focus on single-image decomposition methods.

Optimization-based approaches. Traditional approaches

derive heuristic physical priors and rely on optimization

with such priors to decompose images [15, 5, 23, 4, 12]. In

particular, SIRFS [4] is an extension of classic shape-from-

shading that recovers shape as well as reflectance and illu-

mination, but does not handle non-Lambertian reflectance.

While these methods work well in specific domains, it turns

out to be challenging to design general priors for real images

with complex intrinsic albedo and BRDFs.

Learning from annotated images. Leveraging advances in

deep learning, researchers have explored learning-based in-

trinsic image decomposition. Shi et al. [38] use synthetic

ShapeNet objects for training; Liu et al. [28] extend this

framework for material editing. Others attempt to decom-

pose general objects under flash illumination [26, 36] or

general indoor scenes [24], similarly with synthetic data.

However, models trained purely only synthetic data often

generalize poorly to real scenes due to the domain gap. Some

methods pre-train models on synthetic data and then fine-

tune them on real data [16, 37, 45] for better generalization.

Tremendous efforts are still required to generate large-scale

realistic synthetic data that allows easy fine-tuning.

A few works have also studied learning from controlled

data, such as multi-view or multi-light images. Many of

them also require multiple images during inference [42, 6,

43, 7]. Kulkarni et al. [20] and Ma et al. [29] leverage train-

ing pipelines that allow for single-image inference. However,

the complexity in acquiring controlled multiple images of

the same real-world object has led these models to be trained

again only on synthetic data. Some recent works leverage

photo collections of real scenes [22, 45, 44, 27], but are

often restricted to famous landmarks or street view imagery.

Learning from unannotated image collections. As ex-

plicit or indirect supervision is rarely available for real-

world objects and synthetic datasets often lack sufficient

realism, a few recent papers have attempted to learn image

decomposition directly from unannotated real image collec-

tions [17, 9, 41, 35], but none of them can recover complex

material and lighting effects, such as specular reflection.

Our method follows a similar setup, and is able to re-

cover environment illumination and glossy material proper-

ties from a single image. Inspired by Wu et al. [41], which

leverages a bilateral symmetry assumption to recover shape,

albedo and diffuse lighting, our model also embraces a rota-

tional symmetry prior to obtain the shape of sufficient qual-

ity, allowing us to start to reason about complex material

and illumination in real images. Rotational symmetry has

been exploited for shape recovery in prior work [8, 31, 10],
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Figure 2: RADAR training pipeline. Given a single image of a vase, our model first predicts shape and pose with the shape network fS ,

which is used to unwrap the surface of the object. The lighting network fL and albedo network fA then take in the unwrapped textures

and predict environment lighting, surface material and diffuse albedo, which are recomposed to render the input image. A self-supervised

albedo discriminator is proposed to encourage the decomposition of albedo and lighting, illustrated in Fig. 4. The whole pipeline is trained

end-to-end without any external supervision except for the silhouettes.
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Figure 3: Surface of revolution. We represent the surface using

a vertex grid V ∈ R
L×K×3 generated by rotating a discretized

radius curve r ∈ R
L around the axis of revolution.

but our method also recovers material and lighting.

3. Method

Given a collection of single-view images of revolutionary

artefacts, such as vases, our goal is to learn a de-rendering

function Φ, which takes in a single image I and predicts the

3D shape of the object, its surface material properties, and

the environment illumination. Making this even more chal-

lenging, we do not want to rely on explicit 3D supervision

or multi-view images, as obtaining such supervision is not

only expensive but often simply intractable for precaptured

image collections.

In general, recovering shape, material, and lighting with-

out direct supervision is an extremely ill-posed inverse prob-

lem. In this paper, we consider this task for objects whose

shapes roughly observe solids of revolution (SoRs), and as-

sume that only minimal indirect training supervision is avail-

able, in the form of reasonable silhouettes which can be ob-

tained using off-the-shelf object detectors. SoRs describe a

large subset of real world objects. In particular, we focus

on vases, which are made of materials exhibiting complex

lighting effects such as specular reflections.

Fig. 2 shows an overview of our training pipeline. In

the following sections, we present the main components of

model, including three sub-networks that recover the shape

(fS), lighting (fL), and diffuse albedo (fA) from a single im-

age, along with the reconstruction losses used to train them.

We then describe additional components we introduce to

encourage realistic disentanglement of lighting and albedo.

3.1. SoR Shape and Texture

Vases made on spinning wheels have ‘revolutionary’

shapes known as solids of revolution (SoRs). SoRs are gener-

ated by a plane curve (the generatrix) rotated about a straight

line (the axis of revolution). We model the shape of a vase as

an SoR, parameterized by a vector r 2 R
L giving the radius

(i.e. the perpendicular distance from the axis to the genera-

trix) at L evenly-spaced points along the axis of revolution,

together with the axis height h, as illustrated in Fig. 3.

A complete discretization of the SoR shape is obtained

by rotating the resulting sampled curve r about the axis to

obtain sample points at K evenly-spaced rotation angles in

[0�, 360�). This produces a regular sampling of the surface

in height and angle, and we denote the resulting vertex map

as V 2 R
L⇥K⇥3. To recover the shape from a single image,

we define a shape network fS , which takes an image I and

predicts the radius column r̂ and its height ĥ, as well as the

camera pose v̂ 2 R
4, which specifies pitch and roll Euler
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angles and translation in the X and Y axes:

(r̂, ĥ, v̂) = fS(I). (1)

As described above, the vertex map V̂ can be constructed

from the predicted radius column r̂ and height ĥ. We use a

differentiable renderer RS [18] to render a silhouette of the

predicted SoR mesh with vertices V̂ and camera pose v̂:

Ŝ = RS(V̂ , v̂). (2)

For simplicity, we fix the camera intrinsics for all render-

ing operations in our model. We can train the network by

minimizing the silhouette loss:

Lsil = �skS � Ŝk22 + �dtkdt(S)� Ŝk1, (3)

where � is the Hadamard product and S the target silhouette,

obtained with an off-the-shelf object segmentation technique

(details in Sec. 4.1). dt(·) is the distance transform of the

mask, and �s, �dt are weights balancing the terms.

Texture representation and unwrapping. As described

above, our SoR representation allows us to unwrap the sur-

face into a regular 2D grid, which can be easily triangulated

for rendering. To render textures, we define a 2D texture

map T 2 R
HT⇥WT⇥3 in the unwrapped space aligned with

the vertex map, which is interpolated and mapped onto the

surface during rendering with a differentiable renderer RI :

I = RI(V, v, T ). (4)

We denote by ⌘ the inverse mapping of this texture rendering

operation, which unwraps the textures of a SoR surface into

a texture map T from an image I:

T = ⌘(V, v, I). (5)

As explained in the next section, we decompose material and

lighting in this unwrapped space, since a 2D convolution on

the unwrapped texture map will behave closer to an intrinsic

convolution on the SoR surface, and it is also viewpoint and

shape invariant. See Fig. 3 for an illustration.

3.2. Unsupervised De-rendering

We first describe our lighting model, then the network

architecture that can produces these components. Because

this is still ill-posed, we discuss our methods to encourage

proper disentaglement without explicit supervision.

Lighting model. We use a Phong illumination model [32]

with a normalized specular term and a single-channel envi-

ronment map E 2 R
HE⇥WE to represent the environment

lighting. Each vase is modeled as having a diffuse albedo

texture A 2 R
HT⇥WT⇥3 in the unwrapped space, a constant

shininess scalar ↵, and a constant specular albedo scalar ⇢,

since specular reflections are often due to a layer of glaze on

Random patches 

sorted by variance 

of specularity

… …

… …

Least varying specular

Most varying specular

Albedo 

disc. !

Non-specular

Specular

Predicted albedo !"
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Figure 4: Self-supervised albedo discriminator. We randomly

sample patches from the predicted albedo map and sort them by

the variance of the corresponding specular patches. We feed the two

groups of albedo patches with the lowest and the highest specular

variance to a discriminator, and train our model to prevent it from

telling the two groups apart.

the vase’s surface. Note that for simplicity, we assume gray

illumination leaving the color information to the albedo, and

ignore global illumination. The rendered texture T is given

by the tone-mapped sum of diffuse and specular terms:

T = ⌧(A� Id + ⇢Is), (6)

where the tone-mapper is the inverse gamma function

⌧(I) = I1/γ with � = 2.2. Id, Is 2 R
HT⇥WT are the

diffuse and specular lighting factors also in the unwrapped

space, which are computed as follows.

We treat each pixel i in E as a directional light with inten-

sity Ii and lighting direction ~Li. Since E is an equirectangu-

lar projection of the sphere, ~Li can be determined directly

from the pixel coordinates. Id and Is are then given by

Idj =
X

i2E

Ii( ~Li · ~Nj), (7)

Isj =
↵+ 1

2⇡

X

i2E

Ii(~Ri,j · ~Pj)
α. (8)

Here the subscript j denotes a pixel in the unwrapped space,

N is the surface normal map, and P the view direction map.

Finally, ~Ri,j is the reflected light direction computed from

the environment light direction at pixel i and the surface

normal at pixel j: ~Ri,j = 2( ~Li · ~Nj) ~Nj � ~Li. Inspired by

energy-conserving Phong models [3], we include a normal-

ization term in the specular component, which essentially

ensures that the cosine lobe integrates to a constant. We find

it helpful during training in preventing the specular compo-

nent from vanishing when the shininess ↵ gets large.

Predicting materials and lighting. Recall that our objec-

tive is to de-render an image into various components, spec-

ified by V, v, A,E,↵, and ⇢. Our model takes the predicted

shape and camera pose (V̂ and v̂) as inputs when recovering

the remaining terms (see Fig. 2).
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In order to decompose surface materials and illumina-

tion, we first unwrap the texture of the frontal (visible)

half of the vase from the input image I into a texture map

T 2 R
HT⇥WT⇥3 using Eq. (5) with the predicted shape

and pose: T = ⌘(V̂f, v̂, I), where V̂f denotes the vertices

corresponding to the frontal half of the vase.

We design two networks, fA and fL, to predict albedo

and lighting. The albedo network takes in the unwrapped tex-

ture map T and predicts a diffuse albedo map: Â = fA(T ).
The lighting network takes in an additional normal map N̂

concatenated along channel dimension and predicts the en-

vironment map, shininess, and specular albedo: (Ê, ↵̂, ⇢̂) =
fL(T, N̂). Note that the surface normals N̂ 2 R

HT⇥WT⇥3

are computed from the predicted vertices V̂ and upsampled.

We then apply Eqs. (7) and (8) to generate predicted

lighting factors Îd, Îs, and render a reconstruction of the

input image using the differentiable renderer RI :

T̂ = ⌧(Â� Îd + ⇢̂Îs), (9)

Î = RI(V̂f, v̂, T̂ ). (10)

We can then train the networks with a reconstruction loss:

Lim = kS̃ � (I � Î)k1, (11)

where S̃ is the intersection of the ground-truth silhouette S

and the rendered silhouette of the frontal visible part Ŝf.

3.3. Disentangling Lighting and Albedo

Thus far, we have introduced three networks (fS , fA, fE)

to de-render an image into its shape, material, and lighting

components. While the loss Lim ensures these components

combine to faithfully reproduce the input image, recovering

the individual terms correctly remains underconstrained.

From the lighting model (Eq. (6)) we can identify two

prominent failure modes when training only with the recon-

struction loss. First, the model can always predict little or

no specularity and leave all the specular reflections in the

albedo map. Second, a non-empty specular map is still in-

sufficient to ensure accurate albedo, as there is no incentive

for the model to disentangle these components correctly, or

to reconstruct realistic albedo in regions saturated by specu-

larity. In the following, we introduce additional components

to our model to prevent these failure modes.

Single-color albedo rendering. To encourage the model to

utilize the lighting components, we replace the predicted

diffuse albedo map Â with a single average color of it Âµ,

and obtain a second reconstructed image Îµ with this single-

color albedo. We then define another reconstruction loss

Lalb similar to Eq. (11):

Lalb = kS̃ � (I � Îµ)k1. (12)

This auxiliary loss encourages the lighting network to make

a coarse lighting prediction, such that the reconstructed im-

age rendered with single-color albedo can still recover some

color variation in the input image resulting from the lighting

alone. However, this does not guarantee correct lighting or

albedo predictions, as the single-color approximation does

not reflect the color diversity in real vases, or provide a use-

ful signal to reconstruct albedo in saturated specular regions.

Hence, we address these limitations next.

Self-supervised albedo discriminator. In order to success-

fully recover the diffuse material, we must incentivize the

model to predict a realistic albedo map free of specular

effects. This is particularly challenging for large patches sat-

urated by specular reflections, which require an inpainting-

like solution to recover the underlying albedo. To this

end, we propose a novel specularity-guided Self-supervised

Albedo Discriminator (SAD).

Starting with the weak assumption that our model can

predict a moderately reasonable specular map, we make two

key insights. First, the distribution of patches in the true dif-

fuse albedo is independent of the specular map, i.e., it should

not be possible to predict specular reflection from the albedo

alone. Second, the accuracy of the predicted albedo for an

image patch is generally inversely related to the amount of

specularity in the patch. This follows from the observation

that where the specularity is low, the input texture map is

much closer to the true albedo compared to image patches

saturated by specular reflections.

From these observations, it follows that we can improve

the albedo prediction in highly specular regions by making

their distribution indistinguishable from that of the albedo

patches in low specular regions. We realize this idea with

an adversarial framework [13]. As illustrated in Fig. 4,

for each iteration of during training, we randomly sam-

ple patches from the predicted tone-mapped diffuse albedo

maps {⌧(Â(i))}Bi=1 in a batch, and separate them into two

groups according to the variance of their specularity values:

one group Pnonspec with low specularity variance (“real”),

and the other Pspec with high specularity variance (“fake”).

We then have a discriminator network D that tries to tell

apart these two groups of albedo patches, and introduce an

additional GAN loss to our decomposition model:

LSAD = Ep12Pnonspec
[logD(p1)]+Ep22Pspec

[log(1�D(p2))].
(13)

We label our discriminator as self-supervised, as no “real”

albedo data is necessary in training our framework. We show

in Fig. 7 that SAD significantly improves the quality of the

albedo prediction, especially in saturated specular regions.

3.4. End-to-end Training

After combining all the components of our model, there

remains an inherent ambiguity between the intensity level of

the light and the brightness level of the albedo. Thus, we add

a consistency regularizer on the diffuse map Îd, encouraging
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Figure 5: Qualitative comparison. We compare the decomposition results of our model against several prior methods. Our method recovers

accurate geometry and achieves significantly better decomposition compared to other methods, including supervised models trained on

synthetic objects or specially captured data [38, 26].

Method Albedo§ (×10
−2 ) ↓ Normal‡ ↓

Ours 0.71 ±0.92 5.81 ±0.51

ShapeNet-Intrinsics [38] 3.24 ±3.24 -

Single-Image SVBRDF [26] 3.34 ±2.48 36.39 ±6.92

SIRFS [4] 2.74 ±3.28 35.85 ±11.15

Table 1: Quantitative comparison on synthetic vases. We evalu-

ate different methods quantitatively on our synthetic vase dataset.

Our method significantly outperforms other prior methods. Er-

ror metrics: §scale-invariant MSE, following Grosse et al. [14],
‡angular deviation in degrees.

its average brightness to reside in a specified interval:

Ldiff = max
⇣
�

�

�

1

HW

X

i

Îd,i � ⇠
�

�

�
�∆, 0

⌘2

, (14)

where ⇠ specifies the target brightness level and ∆ is the

margin, which are respectively set to 0.5 and 0.1 in our

experiments. The total loss used to train our model end-to-

end is a weighted sum of the five loss terms:

Ltotal = Lsil + �imLim + �albLalb + �SADLSAD + �diffLdiff.

(15)

4. Experiments

4.1. Datasets and Implementation Details

Metropolitan Museum vases. We collected a dataset of

real vase images from the Metropolitan Museum of Art Col-

Input Albedo Specular Novel view Relight Relight

Figure 6: Novel view and relighting. Our method recovers accu-

rate geometry and surface material, allowing us to render the vases

from novel viewpoints and with new environment lighting. Note

that the last two examples are taken from Open Images [21], which

shows that the model trained on museum images generalizes well

to diverse input images beyond the training distribution.

lection via the open-access API [2]. We first obtain 5,061 im-

ages with the query keyword “vase”, and pass them through

PointRend [19] to generate bounding boxes and segmen-

tation masks for each vase instance. The images are then

cropped and resized to 256⇥ 256, and GrabCut [34] is ap-

plied to refine the masks. We roughly filter out vases with

non-SoR shapes manually, and split the remaining images

into 1,888 training images and 526 testing images.

6343



Method Pose† ↓ Normal‡ ↓ Albedo§ (×10
−2 ) ↓ Shininess† ↓ Spec. albedo† ↓ Env. map§ ↓

Supervised 0.16 ±0.18 5.91 ±0.56 0.48 ±0.59 43.61 ±34.35 0.15 ±0.12 0.75 ±0.51

No decomposition - - 3.08 ±2.39 - - -

Ours full 0.43 ±0.40 5.81 ±0.51 0.71 ±0.92 42.04 ±34.83 0.23 ±0.21 0.41 ±0.37

w/o Lalb 2.77 ±4.64 8.23 ±4.54 2.83 ±2.28 70.53 ±58.51 0.35 ±0.25 0.91 ±0.50

w/o LSAD 0.48 ±0.49 5.83 ±0.48 0.75 ±1.09 43.57 ±33.59 0.21 ±0.18 0.41 ±0.39

w/o Ldiff 0.45 ±0.42 5.78 ±0.49 0.82 ±0.98 43.27 ±34.00 0.33 ±0.21 0.46 ±0.35

Table 2: Baselines and ablations. We evaluate the predictions against the ground-truth on the synthetic vase dataset. The performance of

our model approaches the supervised baseline trained with full supervision, and the accuracy of the albedo prediction is clearly higher than

lower-bound with no decomposition. The ablation studies validate the effectiveness of each component. Error metrics: †
RMSE, ‡angular

deviation in degrees, §scale-invariant MSE, following Grosse et al. [14].
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!'())

Input

Albedo Diffuse Specular

Input

Figure 7: Qualitative ablation. We visualize the decomposition

results of our full model and its variants. Our full model recovers

more realistic albedo and lighting compared to other variants.

Synthetic vases. Since we do not have ground-truth for the

decomposed components on the real vases, in order to as-

sess the performance of our model quantitatively, we pre-

pare a dataset of synthetic vases. We randomly generate

vase-like SoR curves using combinations of sine curves, and

take albedo maps from a public material dataset (CC0 Tex-

tures [1]) with various augmentations. We then render the

synthetic vases from random elevation angles in (0, 20�),
assuming a Phong illumination model with random shini-

ness values in (1, 200) and spherical Gaussian environment

lighting [40, 24] with 3 Gaussian lobes randomly sampled

from the front upper hemisphere. We generated 4,115 train-

ing images and 460 testing images. See the supplementary

material for some examples.

Implementation details. The shape network fS consists

of an encoder and two decoder branches. The first decoder

branch uses 1D upsampling convolutions to produce an L⇥1
radius column r̂, exploiting the structural prior of convolu-

tions to obtain a smooth curve. The second branch is simply

2 FC layers that predict the height ĥ and pose v̂. The albedo

network fA is a U-Net [33] with 6 downsampling and 6
upsampling layers. The lighting network fL is similar to

fS , except that it predicts an environment map Ê with 2D

upsampling convolutions, and a shininess scalar ↵̂ and a

specular albedo scalar ⇢̂ with 2 FC layers. We use a Least

Square GAN [30] for SAD, and the discriminator D is a

simple encoder network comprised of 5 downsampling con-

volution layers. All networks are trained with Adam with a

learning rate of 0.0002 and a batch size of 24 for approxi-

mately 40k iterations.

Both input images and unwrapped frontal texture maps

are 256 ⇥ 256. We use a projective camera with a narrow

fixed field of view of 10�, since the images are cropped

around the objects. In practice, we only unwrap the frontal

one third of the whole 360� circular texture map to ignore

the back of the vase and compensate for perspective pro-

jection. The sizes of the vertex maps and the environment

maps are 32⇥96 and 16⇥48 respectively. For visualization,

we replicate the texture maps three-fold, and use dimmed

textures for the inside of the vase. More details are included

in the supplementary material.

4.2. Qualitative Results on Real Vases

Our method recovers geometry, specular material and

lighting from a single image, and assumes no ground-truth

labels except for object silhouettes during training. To the

best of our knowledge, no prior work tackles this problem

under such a setting. Nevertheless, we have identified sev-

eral closest methods, and show a comparison in Fig. 5.

SIRFS [4] is an optimization-based method for decom-

posing albedo and diffuse shading from a single image, with-

out considering specular materials. ShapeNet-Intrinsics [38]

predicts albedo, diffuse shading and specular shading from

a single image without explicitly modeling lighting. It is

trained on synthetic ShapeNet objects with full supervision.

Single-Image SVBRDF [26] is another supervised method

that predicts spatially-varying BRDF and environment light-

ing from a single input image, but assumes that images are

captured under camera flash. We also compare to Double-

DIP [11], an unsupervised method that decomposes a single

image into multiple layers by exploiting the internal image
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statistics using “Deep-Image-Prior” networks [39], without

requiring training data. It achieves impressive decomposi-

tion results in several tasks, including reflection separation,

motivating us to test it on the task of specularity separation.

Our method recovers accurate geometry and plausible

disentanglement of material and lighting, whereas all other

methods fail to decompose these components accurately.

Since ShapeNet-Intrinsics and Single-Image SVBRDF are

trained with synthetic objects and real objects captured un-

der camera flash respectively, they do not generalize well to

these real vases under various lighting environments. SIRFS

results in poor decomposition in the presence of specular-

ity, as it assumes only diffuse shading. It is worth noting

that Double-DIP in fact achieves plausible decomposition

of albedo and specularity in scenarios where the surface tex-

tures are simple, although it fails when textures are more

complicated. However, it does not consider 3D geometry

and thus does not allow for realistic 3D editing.

Novel views and relighting. Since our model recovers the

3D shape, surface material and lighting from a single image,

we can easily render the object from arbitrary viewpoints

under different lighting conditions, as shown in Fig. 6.

Generalization. We further apply the trained model to di-

verse input images taken from the Open Images dataset [21],

shown in the last two row in Fig. 6. The model generalizes

reasonably well to images beyond the training distribution

of museum images, where the environment lighting may be

more complicated or the vase may be partially occluded.

4.3. Quantitative Comparisons on Synthetic Data

To quantify the prediction accuracy, we evaluate it on our

synthetic vase dataset, and report a numerical comparison

of different methods in Table 1. We measure the accuracy

of the albedo in the predicted region using a scale-invariant

mean square error metric [14], since the scales of the albedo

intensity and the lighting intensity are ambiguous (one can

trade off one for the other), and measure the accuracy of

normal maps in degrees of angular deviation. It is evident

in Table 1 that our method outperforms other methods for

both albedo and shape predictions.

4.4. Baselines and Ablations

We conduct a thorough evaluation of all the predictions

of our model on the synthetic dataset and compare the re-

sults with two baselines and various ablated models in Ta-

ble 2 and Fig. 7. The first baseline is a supervised model

trained with ground-truth labels on all predictions, which

gives an performance upper-bound. We also report a per-

formance lower-bound on the albedo decomposition, ob-

tained by simply evaluating the albedo error metric on the

input image without any decomposition. The error of our

predicted albedo is clearly much lower than the original un-

Input Albedo Specular Input Albedo Specular

(a) (c)

(b) (d)

Figure 8: Limitations. (a) Incorrect environment lighting and spec-

ularity prediction in the presence of high contrast textures. (b)

Spatially-varying material properties. (c) Complicated environ-

ment lighting. (d) Non-revolutionary shapes.

decomposed image, and our model overall achieves high

performance close to the supervised baseline on all metrics.

Comparing our full model to the ablated models, it is

evident that without the single-color albedo rendering loss

Lalb, the model fails to learn various components. The dif-

fuse regularizer Ldiff largely improves the lighting prediction

and consequently other predicted components as well. The

albedo discriminator loss LSAD also improves accuracy of

albedo prediction, and more importantly, it helps inpaint the

albedo in the specular regions as visualized in Fig. 7.

5. Conclusion

We introduce an end-to-end framework for de-rendering

a single image into shape, lighting, and surface material

components, learning only from single-image collections

with 2D silhouettes. Our method works well on both syn-

thetic and real images of revolutionary artefacts and enables

applications such as free-view rendering and relighting.

Limitations and future work. Fig. 8 illustrates limitations

of our method. First, it tends to predict specularity in bright

texture regions, which could lead to unrealistic environment

lighting in the presence of high-contrast textures. This could

be improved by adding constraints on the lighting model.

Second, since we use a Phong model with a single shini-

ness constant for each vase and a low-resolution environ-

ment illumination map, our model cannot handle objects

with spatially-varying material properties or complex light-

ing. We intend to incorporate more sophisticated graphics

models in future work. Last, as a first step to tackle this

extremely challenging problem, we assume revolutionary

objects, and hence our model does not work well on objects

whose shapes are not revolutionary. However, the proposed

components for disentangling lighting and albedo, including

the self-supervised discriminator, are not specific to revolu-

tionary objects and it would be interesting to extend these

ideas to general real-world objects.
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