
Discover Cross-Modality Nuances for Visible-Infrared Person Re-Identification

Qiong Wu1, Pingyang Dai1*, Jie Chen2,7, Chia-Wen Lin3, Yongjian Wu4, Feiyue Huang4,

Bineng Zhong5, Rongrong Ji1,6,7

1Media Analytics and Computing Lab, Department of Artificial Intelligence,

School of Informatics, Xiamen University, 361005, China.
2School of Electronic and Computer Engineering, Peking University, China.

3National Tsing Hua University. 4Tencent Youtu Lab. 5Guangxi Normal University, China.
6Institute of Artificial Intelligence, Xiamen University. 7Peng Cheng Laboratory, Shenzhen, China.

qiong@stu.xmu.edu.cn, pydai@xmu.edu.cn, chenj@pcl.ac.cn, cwlin@ee.nthu.edu.tw,

{littlekenwu, garyhuang}@tencent.com, bnzhong@gxnu.edu.cn, rrji@xmu.edu.cn

Abstract

Visible-infrared person re-identification (Re-ID) aims to

match the pedestrian images of the same identity from dif-

ferent modalities. Existing works mainly focus on alleviat-

ing the modality discrepancy by aligning the distributions

of features from different modalities. However, nuanced but

discriminative information, such as glasses, shoes, and the

length of clothes, has not been fully explored, especially in

the infrared modality. Without discovering nuances, it is

challenging to match pedestrians across modalities using

modality alignment solely, which inevitably reduces feature

distinctiveness. In this paper, we propose a joint Modal-

ity and Pattern Alignment Network (MPANet) to discover

cross-modality nuances in different patterns for visible-

infrared person Re-ID, which introduces a modality alle-

viation module and a pattern alignment module to jointly

extract discriminative features. Specifically, we first pro-

pose a modality alleviation module to dislodge the modality

information from the extracted feature maps. Then, We de-

vise a pattern alignment module, which generates multiple

pattern maps for the diverse patterns of a person, to dis-

cover nuances. Finally, we introduce a mutual mean learn-

ing fashion to alleviate the modality discrepancy and pro-

pose a center cluster loss to guide both identity learning and

nuances discovering. Extensive experiments on the public

SYSU-MM01 and RegDB datasets demonstrate the superi-

ority of MPANet over state-of-the-arts.

1. Introduction
Person re-identification (Re-ID) [3] aims at matching in-

dividual pedestrian images in a query set to ones in a gallery

set captured by different cameras. It is challenging due

to the variations of viewpoints, body poses, illuminations,
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Figure 1. (a) Infrared and (b) visible pedestrian images, where the

images in the same column are captured from the same identity.

The difference among the visible identities is much more obvious

than that among the infrared ones due to the limited information

in the infrared modality. The nuances among different infrared

images in different patterns provide a great number of differences

which worth it discovering.

and backgrounds. Most existing person Re-ID methods

[10, 20, 21, 22, 27, 32, 37, 39, 41, 42] focus on match-

ing pedestrian images captured by visible cameras which

can be formulated as a single-modality matching problem.

However, these methods are not workable for images cap-

tured by visible surveillance cameras under poor illumina-

tion conditions (e.g., at night), from which it is difficult to

extract discriminative information.

Cutting-edge surveillance systems are able to automat-

ically switch from visible to infrared mode, which have

accumulated a significant amount of cross-modality data.

Re-ID problem in such a cross-modality setting thereby be-

comes extremely challenging, which is essentially a cross-

modality retrieval problem. Compared to conventional per-
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son Re-ID, new challenges arise from the modality by dif-

ferent spectrum cameras. As shown in Fig. 1, the in-

frared images of different identities in Fig. 1(a) are indis-

cernible, while the visible images in Fig. 1(b) are easy to

distinguish. In addition, the appearances of a person in-

ter modalities are completely different which is known as

modality discrepancy. To perform visible-infrared person

Re-ID, several methods [1, 4, 12, 29, 33] have been pro-

posed, which aim to alleviate the modality discrepancy by

aligning features or pixel distributions. Despite the encour-

aging achievement, the existing approaches still have lim-

ited ability in learning discriminative features across differ-

ent modalities due to the efficient information buried in the

infrared images that are not discovered. In cross-modality

person Re-ID, the nuances in different image pairs arise in

various patterns, such as the lengths of T-shirts and pants,

the type of shoes, and wearing glasses or not. If this in-

formation is not well discovered, the discriminability of in-

frared features will be worse than the visible ones as shown

in Fig. 1(c). Discovering nuances while alleviating modal-

ity discrepancy plays an important role in visible-infrared

person Re-ID. Quite a few fine-grained person Re-ID ap-

proaches [15, 24, 27, 36, 40, 43] have been proposed re-

cently, which mainly brings together identity classification,

person auxiliary information into a framework to consider

the details of a person. However, these methods require ad-

ditional labeled priors, e.g., attributes, key points, and hu-

man parsing information, looking for certain parts and treat

these parts equally rather than selecting them adaptively.

Due to the lack of necessary information and the variations

of modality, these methods fail to learn discriminative fea-

tures in the cross-modality setting. Therefore, discovering

nuances that are not fully exploited in existing methods can

naturally improve the discrimination of features.

To fully explore nuanced information, we propose a

novel cross-modality person Re-ID framework, termed

joint Modality and Pattern Alignment Network (MPANet),

which discovers cross-modality nuances while alleviating

the modality discrepancy for visible-infrared person Re-ID.

As shown in Fig. 2 , the proposed MPANet framework con-

sists of two Modality Alleviation Modules (MAM) to al-

leviate modality discrepancy, a Pattern Alignment Module

(PAM) to discover nuances in different patterns, and a mu-

tual mean learning fashion to train the model with a center

cluster loss and a cross-entropy loss for identity recognition.

Specifically, MAM uses an instance normalization to allevi-

ate the modality discrepancy while maintaining discrimina-

tive to the extend. By a light-weight generator, the pattern

alignment module generates a group of pattern maps, which

attend different patterns to discover nuances. The output of

this module is obtained by concatenating both pattern fea-

tures and the global feature. To discover nuances in an un-

supervised manner, a region separation constraint is devised

to ensure each pattern map attends to a different pattern. A

center cluster loss is then proposed to reduce the distance

among certain pattern features of the same identity while

increasing the distance among the feature centers of differ-

ent identities. We further apply two modality-specific clas-

sifiers to learn the identity of features from each modality

and predict classification results of the same feature with

them. Moreover, modality discrepancy is alleviated by re-

ducing the distribution discrepancy between the predictions

of the same image generated by different modality-specific

classifiers in a mutual mean learning fashion. Finally, these

two modules are cascaded and jointly optimized in an end-

to-end manner. With the above work, the features extracted

by MPANet are modality-invariant and can represent the nu-

ances in different patterns.

Our main contributions are summarized below:

• We address the nuances discovery and modality dis-

crepancy for visible-infrared person Re-ID in a unified

framework. The former is not explored in the litera-

ture, while the latter is the key to matching the person

across modalities.

• To discover the nuances and extract discriminative fea-

tures, the pattern alignment module (PAM) is proposed

to discover nuances in different patterns with a pro-

posed center cluster loss and separation loss in an un-

supervised manner.

• To alleviate the modality discrepancy while keeping

the identity information, the modality alleviation mod-

ule (MAM) is proposed which selectively applies in-

stance normalization with the guide of a mutual mean

learning manner.

2. Related Work

Visible-infrared Person Re-ID. Visible-infrared Per-

son Re-ID has received increasing attention in recent years

due to its effectiveness under poor illumination conditions.

To address the challenge caused by modality discrepancy,

many cross-modality person Re-ID approaches have been

proposed. Wu et al. [33] proposed a deep zero-padding net-

work learning features in a common space and construct

the first large-scale visible-infrared dataset named SYSU-

MM01. To constrain the intra-modality and inter-modality

variations, an end-to-end dual-stream hyper-sphere mani-

fold embedding model was proposed in [5]. In [35], a dual-

path network with a bi-directional dual-constrained top-

ranking loss was introduced to learn modality alignment

feature representations. And Ye et al. also proposed a hi-

erarchical cross-modality matching model that jointly op-

timizes the modality-specific and modality-shared metrics

in [34]. DFE [4] was proposed to align the information

both in region and modality. Some works are GAN-based
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Figure 2. Framework of the proposed joint Modality and Pattern Alignment Network (MPANet). The Modality Alleviation Module

(MAM) receives feature maps from the former block to extract modality-irrelevant feature maps. Subsequently, the Pattern Alignment

Module (PAM) generates pattern maps to discover nuances in different patterns. A separation loss is proposed to ensure the pattern maps

focus on the different patterns. Then the proposed center cluster loss instructs each pattern map to focus on a certain pattern and guide

identity learning with the cross-entropy loss jointly. For guiding the network to alleviate the modality discrepancy, two modality-specific

classifiers are applied with two corresponding mean classifiers in a mutual mean learning fashion.

approaches, cmGAN [1], D2RL [29], AlignGAN [25] and

JSIA-ReID [26]. cmGAN adopted generative adversarial

training to map the features into a common space. D2RL

applied GANs to generate missing modality information ex-

tending the input of the feature extractor to four dimen-

sions. Furthermore, AlignGAN and JSIA-ReID imple-

mented pixel and feature dual-level alignment in a unified

GAN framework. Similar, Li et al. [12] and cm-SSFT [14]

generated a new modality between these two modalities to

alleviate the modality discrepancy. Nevertheless, these ap-

proaches proposed to replenish the modality information

or directly map the features into a common feature space.

They mainly focus on alleviating the modality discrepancy

while ignoring the effect of nuances, and it inevitably limits

the boost of the performance.

Attention Mechanisms. The human visual system has

an important property that humans selectively pay attention

to salient parts of a series of glimpses to capture valuable

information. Refer to the human visual system, there have

been several attempts to adopt the attention mechanisms im-

proving the performance of CNNs. Hu et al. introduced

SENet [7] to exploit the dimension-wise relationship. They

propose the Squeeze-and-Excitation module to apply atten-

tion mechanisms on the dimensions with global average-

pooled features. Considering the relationship between any

two positions, [28] proposed non-local neural network to

capture the relationships among them. To broaden horizon,

namely to make it can see ’what’ and ’where’ at the same

time, CBAM [31] was proposed which exploits both spatial

and dimension-wise attention. Following these methods, we

propose the modality alleviation module (MAM) to protect

identity by attention on channels while alleviating modality

discrepancy. And we propose the pattern alignment module

(PAM) to discover the nuances in different patterns.

Teacher-Student Models. In semi-supervised learn-

ing methods and knowledge distillation methods, teacher-

student models play an important role. The critical idea of

teacher-student models is to create consistent training su-

pervision for each sample by collecting predictions from

different models. Temporal ensembling [11] saved an aver-

age prediction in an exponential moving way for each sam-

ple as the supervisions of the unlabeled samples. To reduce

the cost of saving predictions, Mean Teacher [23] tempo-

rally averaged model weights at different training iterations

to create the supervisions for unlabeled samples. Differ-

ent from the one-way transfer between a teacher and a stu-

dent, deep mutual learning [38] was an ensemble of students

who learn collaboratively and teach each other throughout

the training process. Combines mutual learning and mean

teaching, MMT [2] aimed to reduce the impact of noise

from the pseudo label by using two mean teachers to gener-

ate soft labels for another two networks. Inspired by these

methods, we make two modality-specific classifiers to pre-

dict features from both two modalities. In this way, the net-

work is guided to extract modality-irrelevant features in this

process by making the two classifiers with modality-specific

knowledge but predict the same result.

3. Methodology

3.1. Problem Formulation

Let V = {xi
v}

Nv

i=1 and R = {xi
r}

Nr

i=1 respectively denote

the visible images and infrared images in a cross-modality

person Re-ID dataset, where Nv and Nr are the numbers

of samples in each of the two modalities. There are totally

N = Nv+Nr samples in the dataset with the corresponding

ground-truth label set Y = {yi}
Np

i=1, where Np is the num-

ber of identities. Given a query of a certain pedestrian, the
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cross-modality person Re-ID aims to match the same per-

son by finding a ranked list of images from another modal-

ity image set according to the similarity.

As shown in Fig. 2, the joint Modality and Pattern Align-

ment Network (MPANet) learns cross-modality represen-

tations to perform visible-infrared person Re-ID. MPANet

adopts a pretrained one-stream CNN to extract feature maps

from the visible and infrared modalities. The feature maps

extracted by convolutional block 3 and 4 are respectively

fed into the Modality Alleviation Module (MAM) that re-

fines the feature maps to alleviate the modality discrepancy

while preserving the identity discriminating ability of fea-

ture maps. To learn nuanced and discriminative features, the

Pattern Alignment Module (PAM) generates pattern maps

aiming to identify the nuances in different patterns of a

person. These two modules are cascaded and jointly opti-

mized by a mutual mean learning fashion to learn modality-

irrelevant features and, meanwhile, are supervised by the

cross-entropy and center cluster losses to learn identity-

aware features for visible-infrared person Re-ID.

3.2. Modality Alleviation Module (MAM)

For an input image x, we denote its feature map Z ∈
R

h×w×c extracted by the convolutional block as the input

of MAM, where h,w, c denote the height, width, and di-

mension of the feature map. To alleviate the modality dis-

crepancy, we apply Instance Normalization (IN) which can

reduce the discrepancy among instances [17]. Neverthe-

less, directly applying IN may damage identify information,

thereby adversely affecting the Re-ID task.

In order to overcome these shortcomings, we apply chan-

nel attention-guided IN to alleviate modality discrepancy

while preserving identity information:

F = mC ⊙ Z+ (1−mC)⊙ Ẑ, (1)

where, mC is the channel-wise mask indicating the

identity-relevant channels, and Ẑ is the instance-normalized

result of input Z. Note that, the shape of F is the same as

Z.

Following SE-Net [8], we generate the dimension-wise

mask mC by

mC = σ(W2δ(W1g(Z))), (2)

where g(·) denotes global average pooling, W1 ∈ R
c
r
×c

and W2 ∈ R
c× c

r are learnable parameters in the two

bias-free fully-connected (FC) layers which are followed by

ReLU activation function δ(·) and sigmoid activation func-

tion σ(·). To balance the performance and complexity, the

dimension reduction ratio r = 16 is used.

The parameter-free IN is defined as

Ẑk = IN(Zk) =
Zk − E[Zk]

√

Var[Zk] + ǫ
, (3)

where Zk ∈ R
h×w is the k-th dimension of feature map

Z, ǫ is used to avoid dividing-by-zero, the mean E[·] and

standard-deviation Var[·] are calculated per-dimension.

3.3. Pattern Alignment Module (PAM)

To obtain discriminative features, PAM aims to discover

the nuances in different patterns across identities. We split

the feature map into l patterns with pattern maps M =
[M1,M2, ...,Ml] ∈ R

h×w×l. The maps are generated by a

light-weight generator A(·) as follows:

M = σ(A(F)), (4)

where σ(·) is the sigmoid activation function, A is a con-

volution with kernel size 1. Note that, each of the pattern

maps should pay attention to different patterns to discover

the nuances included in them.

With these pattern maps, we can split the feature map F

into l patterns as follows:

Pk = Mk ⊙ F(k = 1, 2, ..., l), (5)

where ⊙ denotes element-wise multiplication.

Once the feature map is split into l patterns accord-

ing to the pattern maps, the feature of the k-th pattern

pk = g(Pk) ∈ R
c is extracted by global average pooling

g(·). Finally, the output feature f ∈ R
(l+1)c of PAM can be

represented by

f = [p1
T ,p2

T , ...,pl
T , g(F)

T
]T . (6)

Generating pattern maps by the attention mechanism

plays a key role in identifying cross-modality nuances. For

person Re-ID, the pattern maps should cover diverse pat-

terns of a person so that we can identify nuances involved

in the diverse patterns. To ensure the pattern maps can cap-

ture different patterns, we apply the separation loss to force

each map attending to different patterns. After resizing the

mask Mh×w×l to Mhw×l, the separation loss is defined as

Lsep =
2

l(l − 1)

l−1
∑

i=1

l
∑

j=i+1

(MTM)ij , (7)

where (MTM)ij is the element of MTM on row i and

column j. By minimizing the overlapping area between ev-

ery two masks, the separation loss can supervise the pattern

maps to learn features from diverse patterns.

3.4. Modality Learning (ML)

Given features fv from the visible modality and fr from

the infrared modality, the modality-specific classifiers pro-

vide their predictions. These classifiers are trained with the

44333



following cross-entropy loss in a supervised manner:

Lsid = −
1

n

n
∑

i=1

logP (yi
v|Cv(f

i
v|θv))

−
1

m

m
∑

j=1

logP (yj
r|Cr(f

j
r |θr)),

(8)

where n and m respectively denote the numbers of visi-

ble and infrared images in the current batch, yi
v and yj

r re-

spectively denote the corresponding label of f iv and f jr , and

Cv(f
i
v|θv) and Cr(f

j
r |θr) are predictions of the two classi-

fiers with parameter θv and θr, respectively.

As the training images fed to each classifier come from

a certain modality, the classifier learns the knowledge only

from its corresponding modality. Thus, given a feature f ,

no matter which modality it comes from, if two modality-

specific classifiers provide the same prediction, it means this

feature can be regarded as from both two modalities. In

other words, the modality discrepancy is eliminated.

To this end, we impose a modality constraint based on

Kullback-Leibler divergence as

LM =
1

n

n
∑

i=1

Cr(f
i
v|θr) log

Cr(f
i
v|θr)

Cv(f iv|θv)

+
1

m

m
∑

j=1

Cv(f
j
r |θv) log

Cv(f
j
r |θv)

Cr(f
j
r |θr)

.

(9)

This loss encourages the modality-specific classifiers to

provide consistent predictions for the same-identity feature,

no matter what modalities it comes from. However, train-

ing the model with Eq. (9) directly will make the predic-

tions of the two classifiers become similar quickly since the

classifiers learn the knowledge from another modality with

Eq. (9), rather than learning modality-irrelevant features.

To address the above problem, we propose two mean

classifiers with the same network structure as the modality-

specific classifiers to provide predictions for samples from

another modality. In this way, Eq. (9) can be modified as

LMM =
1

n

n
∑

i=1

Cr(f
i
v|E[θr]) log

Cr(f
i
v|E[θr])

Cv(f iv|θv)

+
1

m

m
∑

j=1

Cv(f
j
r |E[θv]) log

Cv(f
j
r |E[θv])

Cr(f
j
r |θr)

,

(10)

where E[θv] and E[θr] denote the parameters of the two

mean classifiers, respectively. These parameters are up-

dated in a temporal average manner. Thus, at the t-th it-

eration, parameters E(t)[θv] and E(t)[θr] are calculated by

E(t)[θv] = (1− α)E(t−1)[θv] + αθv,

E(t)[θr] = (1− α)E(t−1)[θr] + αθr,
(11)

where E(t)[θ] and E(t−1)[θ] respectively denote the param-

eters of mean classifiers in the current iteration and last iter-

ation. The mean classifiers are initialized as E(0)[θv] = θv
and E(0)[θr] = θr. The parameter α is the updating ratio

within the range of (0, 1].

3.5. Objective Functions

Once the features have been extracted by the model, we

train the model with the cross-entropy loss and center clus-

ter loss. The following cross-entropy loss is imposed on

classifier C(·) to predict the identities:

Lid = −
1

n

n
∑

i=1

logP (yi
v|C(f

i
v|θ))

−
1

m

m
∑

j=1

logP (yj
r|C(f

j
r |θ)),

(12)

where C(f iv|θ) and C(f jr |θ) are the identity predictions of f iv
and f jr with a same classifier.

Furthermore, we propose the center cluster loss to learn

the relationships among the identities and ensure each pat-

tern map can always focus on a certain pattern as follows:

Lcc =
1

n+m

n+m
∑

i=1

||fi − hyi
||2

+
2

P (P − 1)

P−1
∑

k=1

P
∑

j=k+1

[ρ− ||hyk
− hyj

||2]+,

(13)

where hyi
is the mean of features with label yi in the current

batch, P is the number of identities in the current batch and

ρ is the least margin among the centers.

The center cluster loss aims at gathering the features to

their center. Besides, the pattern features extracted from

a certain intra-identity pattern will get close to each other.

In this process, the model learns nuance information in an

unsupervised manner. Meanwhile, the loss builds the re-

lationship among classes directly rather than among sam-

ples, which bases the identity learning on the class-level and

avoids increasing the modality discrepancy while pushing

away different-identity samples.

3.6. Optimization

The total loss L of MPANet is defined as

L = Lid + Lcc + λ1Lsep + λ2Lsid + λ3LMM , (14)

where λ1, λ2 and λ3 are hype-parameters to balance the

contributions of individual loss terms.

4. Experiments

4.1. Datasets and Experimental Setting

Datasets. We evaluate our method on two public

datasets SYSU-MM01 [33] and RegDB [16].
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Table 1. Comparison of CMC (%) and mAP (%) performances with the state-of-the-art methods on SYSU-MM01

Method

All-Search Indoor-Search

Single-Shot Multi-Shot Single-Shot Multi-Shot

R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

Two-stream [33] 11.65 47.99 65.50 12.85 16.33 58.35 74.46 8.03 15.60 61.18 81.02 21.49 22.49 72.22 88.61 13.92

One-stream [33] 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04

Zero-Padding [33] 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.86

cmGAN [1] 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76

D2RL [29] 28.90 70.60 82.40 29.20 - - - - - - - - - - - -

JSIA-ReID [26] 38.10 80.70 89.90 36.90 45.10 85.70 93.80 29.50 43.80 86.20 94.20 52.90 52.70 91.10 96.40 42.70

AlignGAN [25] 42.40 85.00 93.70 40.70 51.50 89.40 95.70 33.90 45.90 87.60 94.40 54.30 57.10 92.70 97.40 45.30

cm-SSFT(sq) [14] 47.70 - - 54.10 - - - - 57.40 - - 59.10 - - - -

DFE [4] 48.71 88.86 95.27 48.59 54.63 91.62 96.83 42.14 52.25 89.86 95.85 59.68 59.62 94.45 98.07 50.60

XIV-ReID [12] 49.92 89.79 95.96 50.73 - - - - - - - - - - - -

CMM+CML [13] 51.80 92.72 97.71 51.21 56.27 94.08 98.12 43.39 54.98 94.38 99.41 63.70 60.42 96.88 99.50 53.52

SIM [9] 56.93 - - 60.88 - - - - - - - - - - - -

CoAL [30] 57.22 92.29 97.57 57.20 - - - - 63.86 95.41 98.79 70.84 - - - -

DG-VAE [18] 59.49 93.77 - 58.46 - - - - - - - - - - - -

cm-SSFT [14] 61.60 89.20 93.90 63.20 63.40 91.20 95.70 62.00 70.50 94.90 97.70 72.60 73.00 96.30 99.10 72.40

MPANet (Ours) 70.58 96.21 98.80 68.24 75.58 97.91 99.43 62.91 76.74 98.21 99.57 80.95 84.22 99.66 99.96 75.11

• SYSU-MM01 is a large-scale dataset collected by four

visible cameras and two near-infrared ones, includ-

ing both indoor and outdoor environments. The train-

ing set contains 22, 258 visible images and 11, 909 in-

frared ones involving 395 identities, while the query

set and the gallery set contain 3, 803 infrared images

and 301 (3, 010) randomly sampled visible images

from 96 identities for single-shot (multi-shot).

• RegDB is constructed by a pair of aligned cameras

(one visible and one thermal). It contains 8, 240 im-

ages of 412 identities, each having 10 images from the

visible camera and 10 images from the thermal one.

The dataset is randomly split into two halves: the im-

ages of 206 identities for training and the rest also in-

volving 206 identities for testing.

Evaluation metrics. To perform a fair comparison with

existing methods, all experiments follow the common eval-

uation settings in existing cross-modality Re-ID methods.

SYSU-MM01 has two different evaluation settings: the all-

search mode and indoor-search mode. In the all-search

mode, the gallery set contains images from all the visible

cameras, while in the indoor-search mode, the gallery set

only contains images from the indoor visible cameras. Fol-

lowing [35], RegDB contains two test modes: use infrared

images as query set and visible images as gallery set, and

vice versa. For both datasets, the Cumulative Matching

Characteristic (CMC) and mean Average Precision (mAP)

metrics are adopted to evaluate the performance.

Implementation details. We implement our MPANet

with PyTorch and train it on a single RTX2080Ti GPU. The

mini-batch size is set to 128. For each mini-batch, we ran-

domly sample 16 identities and 8 images for each identity.

The model is optimized by using Adam with an initial learn-

ing rate of 3.5× 10−4, which decays at the 80th and 120th
epoch with a decay factor of 0.1, and the weight decay is

set to 5 × 10−4. The total number of training epochs is set

to 140. The center cluster loss margin ρ is set to 0.7. The

update ratio α is set to 0.2. The hype-parameters λ1, λ2 and

λ3 are set to 0.5, 0.5 and 2.5, respectively.

The ResNet-50 [6] pre-trained on ImageNet is employed

as the backbone, where the stride size of the last convolu-

tional layer is set to 1. The classifier Cv , Cr, and C are im-

plemented by a single FC layer without bias. Consider the

aspect ratio of raw images, the input images are re-scaled to

a fixed size of 384×128. In the training stage, the input im-

ages are randomly flipped and erased with 50% probability.

4.2. Comparison with Stateoftheart Methods

We compare our MPANet with state-of-the-art (SOTA)

visible-infrared cross-modality person Re-ID approaches.

The compared SOTAs include three base methods (Two-

stream, One-stream and Zero-Padding) [33], three GAN-

based methods (cmGAN [1], AlignGAN [25] and JSIA-

ReID [26]), three methods by aligning the modality on

a middle modality (XIV-ReID [12], cm-SSFT [14] and

CMM+CML [13]), one similarity-based method (SIM [9]),

one distribution alignment with image generation method

(DG-VAE [18]), and three dual-level alignment methods

(DFE [4], D2RL [29] and CoAL [30]).

Comparisons on SYSU-MM01. The comparison re-

sults on SYSU-MM01 are shown in Table 1. The pro-

posed MPANet outperforms existing SOTAs by large mar-

gins. Specifically, MPANet achieves the Rank-1 accuracy

of 70.58% and mAP of 68.24% in the all-search and single-

shot mode, significantly improving the Rank-1 accuracy by

8.98% and mAP by 5.04% over the best SOTA cm-SSFT.
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Table 2. Comparison of the CMC (%) and mAP (%) performances

with SOTAs on RegDB

Method
infrared2visible visible2infrared

Rank-1 mAP Rank-1 mAP

Zero-Padding [33] 16.7 17.9 17.8 18.9

D2RL [29] - - 43.4 44.1

JSIA-ReID [26] 48.1 48.9 48.5 49.3

AlignGAN [25] 56.3 53.4 57.9 53.6

CMM+CML [13] 59.8 60.9 - -

XIV-ReID [12] 62.3 60.2 - -

DFE [4] 68.0 66.7 70.2 69.2

cm-SSFT [14] 71.0 71.7 72.3 72.9

DG-VAE [18] - - 73.0 71.8

CoAL [30] 74.1 69.9 - -

SIM [9] 75.2 78.3 74.7 75.2

MPANet(Ours) 82.8 80.7 83.7 80.9

Table 3. Ablation study in terms of CMC (%) and mAP (%) on

SYSU-MM01

Method

SYSU-MM01

single-shot all-search

Rank-1 Rank-10 Rank-20 mAP

Baseline 54.50 88.55 94.69 51.84

B + CC 57.56 91.74 96.89 56.59

B + ML 58.55 90.01 94.75 55.06

B + ML + CC 64.24 93.70 97.48 61.39

B + ML + CC + PAM 68.27 93.97 97.84 64.98

B + ML + CC + PAM + MAM 70.58 96.21 98.80 68.24

When compared to the SOTAs in indoor-search and multi-

shot mode, the performance margin between our MPANet

and cm-SSFT are also significantly, e.g., the Rank-1 boost

is 11.22%, and the mAP boost is 2.71%.

Comparisons on RegDB. We also evaluate MPANet on

a small-scale dataset, RegDB, as shown in Table 2. Similar

to the results on SYSU-MM01, MPANet consistently out-

performs current SOTAs. Specifically, we achieve Rank-1

accuracy of 82.8% and mAP of 80.7% in infrared2visible

mode, and Rank-1 accuracy of 83.7% and mAP of 80.9% in

visible2infrared mode, significantly improving the Rank-1

by 7.6% and mAP by 2.4% in infrared2visible mode over

the best SOTA SIM.

The above results demonstrate the outstanding perfor-

mance of MPANet thanks to its ability in cross-modality

nuances discovery for visible-infrared person Re-ID.

4.3. Ablation Study

In this section, we conduct an ablation experiment to

evaluate the contribution of each module. The baseline

method uses ResNet-50 as the backbone network followed

by the BN neck and an FC layer as the classifier and trained

with Lid in the same setting. The ablation experiment is

conducted on SYSU-MM01 in the all-search single-shot

mode. To illustrate the contribution of each module or ob-

jective function, we add them into the model one by one.

As shown in Table 3, the effectiveness of each compo-

(a)

Pattern 1 Pattern 3Pattern 2 Pattern 6Pattern 5Pattern 4

(c)

(b)

Figure 3. Visualization result of PAM on SYSU-MM01. For each

row, we show an input image and six patterns corresponding to six

pattern maps. The patterns in the same column are extracted by the

same channel of pattern maps. (a) and (b) have the same identity,

and (c) has a different identity.

nent is revealed. Compare with baseline, the center cluster

(CC) loss and modality learning (ML) manner respectively

improve the mAP accuracy by 4.75% and 3.22%. When

these two objective functions work together to learn iden-

tity and alleviate modality discrepancy, the Rank-1 accuracy

and mAP accuracy are significantly improved by 9.74% and

9.55%. Based on the above results, the PAM and MAM

further improve the Rank-1 accuracy by 4.03% and 2.31%,

respectively, with the guide of center cluster loss and mu-

tual mean learning manner. The results demonstrate that

each module plays a role effectively in alleviating modality

discrepancy or improving discriminability.

4.4. Discussions

Attention to Patterns. One of the keys to visible-

infrared person Re-ID is to improve the discriminability

of features. To further illustrate the effectiveness of PAM

which can attend diverse patterns for discovering the nu-

ances, we visualize the pixel-wise pattern maps learned by

PAM. In general, each pattern map should have a corre-

sponding pattern of interest. We apply Grad-Cam [19] to

visualize these areas by highlighting them on the image.

Fig. 3 illustrates individual attention patterns for the three

pedestrian images of two identities, where the k-th column

is the visualization result of Mk ⊙ F. We can observe that

every pattern map generated by PAM focuses on a certain

pattern different from the others without the effect of modal-

ity and pose. The visualization demonstrates the importance

of nuances in this task, and the PAM works well on it.

Visualized Distributions. To illustrate the impact of

MPANet on alleviating modality discrepancy and on in-

creasing discriminability, we randomly select 10 identities
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(a) (b) (c)

Init Baseline MPANet

Figure 4. Visualization of learned features, where each color rep-

resents an identity in the testing set. The circles and triangles indi-

cate the features extracted from the visible and infrared modalities.

(a) Features extracted by the baseline pre-trained on ImageNet; (b)

Features extracted by the baseline; (c) Features extracted by our

MPANet. It is obvious that MPANet better alleviates the modality

discrepancy and improves the discriminability.

from the testing set to visualize the distributions of learned

features by t-SNE in Fig. 4, where each distinct color rep-

resents an identity while the circles and triangles indicat-

ing the features of visible and infrared images, respectively.

As shown in Fig. 4(a), the initial features have significant

modality discrepancy and it is difficult to match the same

person across the modalities. In Fig. 4(b), although most

features extracted by the baseline can be clustered well, the

intra-identity modality discrepancy remains obvious. More-

over, the infrared images of some identities (such as light

blue, pink, and gray) are gathered. Thus some infrared im-

ages (for example, the gray triangles) may match the wrong

visible ones. This motivates the need for discovering the

nuances while alleviating the modality discrepancy. In con-

trast, as shown in Fig. 4(c), the learned features of different

modalities with MPANet are well grouped by identity. Fur-

thermore, improving the discriminability of features by dis-

covering nuances, especially for the features from infrared

images achieves a significant improvement.

Effect of Attention Mechanisms. The attention mech-

anisms play an important role in the proposed MPANet.

To demonstrate the advantages of the proposed MAM and

PAM, we compare them with existing attention methods,

including SE block [8], CBAM [31] and Non-local block

[28], and replace MAM with Instance Normalization to di-

rectly alleviate the modality discrepancy. As shown in Ta-

ble 4, ’A → B’ means replace A with B while keeping the

other modules. For a fair comparison, the different attention

mechanism modules which work on channels or spatial are

used to replace the modules that work in the same way.

When MAM is replaced by the SE block, it selects the

channels including the identity relevant information but ig-

nores alleviating the modality discrepancy. Although re-

placing MAM with Instance Normalization can alleviate

the modality discrepancy but the discriminability will be

harmed at the same time. Compare with MPANet, these two

methods drop the Rank-1 accuracy by 4.75% and 9.26%.

When PAM is replaced by Non-local Block, the model

mines the relationship in the spatial domain rather than dis-

covers the nuances, and the Rank-1 accuracy and mAP ac-

Table 4. Performance comparison with other attention mechanisms

in terms of CMC (%) and mAP (%) on SYSU-MM01

Method

SYSU-MM01

single-shot all-search

Rank-1 Rank-10 Rank-20 mAP

MPANet 70.58 96.21 98.80 68.24

MAM → SE 65.83 93.92 97.62 63.29

MAM → IN 61.32 91.36 96.11 58.35

PAM → NL 63.87 93.20 97.36 60.39

MAM + PAM → CBAM 63.72 93.48 97.26 61.54

curacy drop by 6.71% and 7.85%, respectively. Finally, we

replace MAM and PAM with CBAM, the Rank-1 accuracy

and mAP accuracy drop by 6.86% and 6.70%, respectively.

The result indicates that MAM and PAM outperform the

other attention methods for visible-infrared person Re-ID.

5. Conclusion

In this paper, we proposed the joint modality and pat-

tern alignment network, termed MPANet, to discover cross-

modality nuances for visible-infrared person Re-ID. Our

method aims to both alleviate the modality discrepancy and

discover the nuances in different patterns which are the keys

to solving this task. To this end, the proposed MPANet fo-

cuses on extracting modality-irrelevant features that partic-

ularly attend to the identity-aware nuances among identi-

ties. Specifically, MPANet first employs two Modality Al-

leviation Modules (MAM) which selectively apply instance

normalization to alleviate the modality discrepancy while

preserving the identity information. Then, in the Pattern

Alignment Module (PAM), the feature maps are split into

multiple patterns according to the pattern maps to extract

features from each pattern to discover the nuances. We opti-

mize the MPANet in an end-to-end manner, where a mutual

mean learning fashion that works as a cross-modality dis-

crepancy constraint. And the center cluster loss is proposed

to learn nuance information and guides identity learning on

the class-level. Experiment results on two public datasets

SYSU-MM01 and RegDB amply proves essential to dis-

cover cross-modality nuances in cross-modality retrieval

problem and demonstrate the effectiveness of MPANet for

visible-infrared person Re-ID.
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