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Abstract

Weakly Supervised Semantic Segmentation (WSSS) with

image-level annotation uses class activation maps from

the classifier as pseudo-labels for semantic segmentation.

However, such activation maps usually highlight the local

discriminative regions rather than the whole object, which

deviates from the requirement of semantic segmentation. To

explore more comprehensive class-specific activation maps,

we propose an Embedded Discriminative Attention Mecha-

nism (EDAM) by integrating the activation map generation

into the classification network directly for WSSS. Specifi-

cally, a Discriminative Activation (DA) layer is designed

to explicitly produce a series of normalized class-specific

masks, which are then used to generate class-specific pixel-

level pseudo-labels demanded in segmentation. For learn-

ing the pseudo-labels, the masks are multiplied with the fea-

ture maps after the backbone to generate the discriminative

activation maps, each of which encodes the specific infor-

mation of the corresponding category in the input images.

Given such class-specific activation maps, a Collaborative

Multi-Attention (CMA) module is proposed to extract the

collaborative information of each given category from im-

ages in a batch. In inference, we directly use the activation

masks from the DA layer as pseudo-labels for segmenta-

tion. Based on the generated pseudo-labels, we achieve the

mIoU of 70.60% on PASCAL VOC 2012 segmentation test-

set, which is the new state-of-the-art, to our best knowledge.

Code and pre-trained models are available online soon.

1. Introduction

Driven by Deep Neural Networks (DNNs), significant

progress [32, 6, 7] has been made in fully supervised seman-
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Figure 1. Illustration of our motivation. (a) The heatmap from

CAM [52] tends to only highlight the local discriminative regions

instead of the whole object. (b) In our model, the DA layer ex-

tracts class-specific activation maps, called discriminative activa-

tion maps, of multi-images. For each category, the CMA mod-

ule exploits the collaborative information based on the intra-image

and inter-image homogeneity of activation maps. Note that the

black, pink and grey lines indicate the information flow of back-

ground, person and car, respectively. Best viewed in color.

tic segmentation, for which however, it is time-consuming

and costly to attain pixel-level annotations. To deal with

this problem, researchers seek to leverage weaker supervi-

sion, such as bounding boxes [34], scribbles [29], points [3],

and even image-level labels [35], for semantic segmen-

tation, namely, Weakly Supervised Semantic Segmenta-

tion (WSSS). In this paper, we mainly focus on the image-

level labels based WSSS.

Previous WSSS methods [21, 45, 40, 4] with image-

level labels often use a classification network to generate

the initial segmentation response, such as the Class Activa-

tion Map (CAM) [52], to highlight the corresponding fore-

ground. However, the initial response from the classifier

usually focuses on the discriminative object regions, rather

than the whole object, which deviates from a desirable seg-

mentation result. Some approaches improve quality of such

initial responses by region erasing [46, 18], region grow-
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ing [20], or multi-scale feature map fusion [48, 21], which

easily lead to the background regions incorrectly high-

lighted as well. The latest trend is to add auxiliary tasks, in-

cluding consistency regularization [45], sub-category clas-

sification [4] and mining cross-image semantics [40], to

train jointly with the classification network for refining ob-

ject responses. However, these auxiliary tasks usually ex-

plore information in an implicit manner, leading to a com-

plex training process and a non-optimal inference result.

In this work, we propose an Embedded Discrimina-

tive Attention Mechanism (EDAM) to explicitly infer class-

specific masks for WSSS by exploring the intra-image and

inter-image homogeneity. The EDAM consists of a Dis-

criminative Activation layer (DA layer) and a Collabora-

tive Multi-Attention module (CMA module), which is il-

lustrated in Fig. 1. In the DA layer, we first predict the

class-specific masks for foreground categories and back-

ground, which explicitly represent the probability of each

pixel belonging to a specific category, and can directly serve

as the initial segmentation responses for WSSS. These nor-

malized masks are then multiplied with the original feature

maps to generate discriminative activation maps, each of

which encodes the information of each category or back-

ground. After that, the CMA module is used to explore the

collaborative information of the corresponding foreground

object by applying self-attention to the activation maps of

multi-images. We then apply average pooling on the at-

tended activation map of each image, and feed the pool-

ing result into the binary classifier of the corresponding cat-

egory for prediction. Note that the CMA module is only

required in the training stage, as we can acquire the initial

segmentation response via the class-specific masks as afore-

mentioned. In tradition, post-processing is often applied,

where saliency maps are widely used for result enhance-

ment [11, 25, 44, 40]. However, due to the class-agnostic

property, the saliency map usually wrongly highlights the

non-target objects, or suppresses the insignificant target ob-

jects. Therefore, we also develop a new strategy for post-

processing in our method as well for further improvement.

We claim that the proposed EDAM enjoys two advan-

tages for WSSS. First, using a class-specific activation

map eliminates some impact of other irrelevant categories

or background, and thus benefits the classification accu-

racy. Also, as the collaborative information for classifica-

tion stems from the discriminative activation maps, optimiz-

ing the classifiers is able to directly enhance the prediction

of class-specific masks.

Our main contributions can be summarized as follows:

• The Embedded Discriminative Attention Mecha-

nism (EDAM) is proposed to seamlessly integrate the

semantic segmentation task into the classification net-

work. To our best knowledge, this work is the first

trail of explicitly modeling the semantic segmentation

in classification networks for WSSS.

• Different from the existing attention-based meth-

ods [40, 45], we explore the collaborative information

based on the intra-image and inter-image homogene-

ity of discriminative activation maps simultaneously,

which can make full use of the supervision informa-

tion of image-level labels.

• We propose a new strategy for post-processing, includ-

ing the foreground pop-up and background suppres-

sion, which further enhances the quality of pseudo-

labels for training segmentation networks.

• On the PASCAL VOC 2012, our approach achieves the

new state-of-the-art, with mIoU of 70.9% and 70.6%

on validation and test sets respectively.

2. Related Work

We briefly review the prior works on WSSS, including

pseudo-labels generation and refinement, followed by those

on the self-attention and its applications.

2.1. Pseudo­label Generation

The common solution to WSSS with image-level super-

vision is to train the segmentation network with the pseudo-

labels generated by the classification network using network

visualization techniques. Especially, the Class Activation

Map (CAM) [52] is the most widely used. The CAM is to

combine the weight of the linear layer with the feature map

before global average pooling to determine the contribution

of each pixel to the classification result. However, CAM

only highlights the most discriminative regions of the image

since it is merely trained by classification tasks, and thus the

regions of pseudo-labels generated by CAM are usually in-

complete. A lot of works have been proposed to expand the

activation regions of CAM. Among them, some make the

network focus on more regions of the object by constantly

erasing the most discriminative region of the object [18, 46];

some works aggregate multiple CAMs to expand the tar-

get regions using dilated convolution with different dilate

rates [48, 25], different epochs’ parameters [21] or different

layers to generate multiple CAMs [26]. In addition, some

latest works explore auxiliary tasks to automatically make

the network focus on more pixels. For example, SEAM [45]

adopts the consistency regularization on CAMs from trans-

formed images; [4] explores the sub-category for classifica-

tion; [40] exploits the cross-image semantic relations. Dif-

ferent from the above methods, our EDAM directly predicts

the activation map for segmentation by seamlessly integrat-

ing it into the classification network for joint learning.
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2.2. Pseudo­labels Refinement

Some methods focus on refining the segmentation

pseudo-labels generated by the classification network

through class-agnostic post-processing. The SEC [23] de-

velops three principles of seed, expansion and constrain-

ing, to refine the CAM, which is followed by many other

works. DSRG [20] inspired by seeded region growing uses

CAM as seed cues and expands the regions of interest.

AffinityNet [2] trains another network to learn the similar-

ity between pixels, which generates a transition matrix and

implements the semantic propagation by a random walk.

OAA+ [4] uses an integral attention model to strengthen

the lower attention values of target object regions while

constraining the excess expansion of attention regions to

the background. Also, many methods [11, 20, 48, 25, 27,

44, 46, 40] use the CAMs as foreground cues, and class-

agnostic saliency maps generated by other pre-trained net-

works as background cues.

2.3. Self­attention Mechanism

Recently, the attention mechanism [42] has become in-

creasingly popular in many research fields including the

semantic segmentation. The non-local convolution net-

work [43] is firstly proposed to solve the short dependency

caused by the convolution. After that, in [53] an asymmet-

ric non-local network is proposed as a condensed version

of the non-local network. [19] presents the CCNet which

improves the efficiency by reducing the calculation flops in

non-local blocks. In [12], a dual attention network consist-

ing of one channel attention module and one spatial atten-

tion module is developed for scene segmentation. In Visual

Question Answering area, co-attention [33, 50] is used to

improve performance by introducing the question-guided

image attention and image-guided question attention. In

this work, we involve the self-attention of class-specific ac-

tivation maps based on intra-image and inter-image homo-

geneity to explore the collaborative information for WSSS.

3. Our Approach

We elaborate on the proposed Embedded Discrimina-

tive Attention Mechanism (EDAM) for WSSS, including

the DA layer and the CMA module, as well as a new post-

processing strategy.

3.1. Overview of EDAM

Commonly, a classification network is trained with

image-level labels to highlight the discriminative regions of

the object as the initial response for semantic segmentation.

To improve the quality of initial response, our Embedded

Discriminative Attention Mechanism (EDAM) seamlessly

integrates the response generation into the classification net-

work for joint learning, as shown in Fig. 2.

Besides the backbone network, the EDAM includes a

Discriminative Activation (DA) layer and a Collaborative

Multi-Attention (CMA) module. Unlike most previous

works [48, 2, 25, 21, 4] using a single activation map for

classification, we add a DA layer after the backbone to gen-

erate the class-specific activation map for each category.

Such an activation map encodes the specific information of

a single category, and is thus named as class-specific dis-

criminative activation map. Given the class-specific dis-

criminative activation maps of multiple images in a training

batch, the CMA module is used to explore the intra-image

and inter-image homogeneity, which we call collaborative

information, by applying a self-attention mechanism. Fi-

nally, the collaborative information of each image is inde-

pendently fed into the classifier for final prediction.

We find through experiments (see Sec. 4.5.2) that the

number of images for collaborative information extraction

has little impact upon the quality of the initial response.

Therefore, we simply use two images in the CMA module

for training efficiency. In the inference stage, we remove the

CMA module and directly use the class-specific masks from

the DA layer as the initial response of foreground objects.

3.2. Discriminative Activation Layer

Denote the training data as I = {(In, ln)}N , where In

is the n-th image, and ln ∈ {0, 1}K represents the corre-

sponding image-level labels of K categories. The DA layer

appended after the CNN backbone network takes the fea-

ture maps Fn ∈ R
C×H×W of In as input, and outputs the

class-specific activation mask Mn ∈ R
(K+1)×H×W for the

K object categories and the background. It should be noted

that, to prevent the region of background scattering over the

area of foreground objects, we explicitly model the back-

ground mask in Mn.

Since the activation mask is required to indicate the prob-

ability of each pixel belonging to a corresponding category

or the background, we apply L2-norm along the channel

axis of Mn as follows:

M̂n(i, j) = norm(|Mn(i, j)|). (1)

After that, M̂n(i, j) can be considered as the pixel-wise

category distribution at position (i, j), and M̂k
n(i, j) is the

k-th value of the distribution vector. Hitherto, we can easily

obtain the class-specific activation map of the image In for

each category by

F
k
n = Fn · M̂k

n (2)

where F k
n is the class-specific activation map of the image

In on the category k, and k ∈ [0,K]. Note again that the

background activation map is removed as it is useless in the

following procedures.

Overall, in the DA layer, multi-head class-specific infor-

mation is separated from the whole activation map. Each
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Figure 2. Overall architecture of the proposed EDAM for WSSS. EDAM consists of a Discriminative Activation (DA) layer and a Collab-

orative Multi-Attention (CMA) module. Note the CMA module is not required in inference. Best viewed in color.

head concentrates on the discriminative information of each

category, which is why it is named the discriminative activa-

tion map. Since the noise from background or irrelevant cat-

egories is eliminated in the discriminative activation map,

the performance of each head can be greatly enhanced, as

we will see in the ablation study (see Sec. 4.5.1).

3.3. Collaborative Multi­Attention Module

Given a series of class-specific discriminative activation

maps of an image set on a certain category, the CMA mod-

ule is to highlight the similar regions, namely collaborative

information, of these activation maps. Inspired by the atten-

tion matrix in self-attention that indicates the compatibility

of query and key [42], we propose to use the self-attention

mechanism directly in our CMA module to explore the col-

laborative information.

Denoting Fk = [F k
1 ,F

k
2 , ...,F

k
B ] ∈ R

B×C×H×W as

the activation maps of B images on the k-th category, we

first reduce the channel number of Fk to d by a 1 × 1 con-

volutional layer and permute it to F̂k ∈ R
1×(B×H×W )×d,

which can be considered as a sequence of B × H × W

tokens. Similar to self-attention, we add two kinds of po-

sitional encodings onto F̂k. Specifically, within each sub-

sequence F̂ k
i ∈ R

(H×W )×d, a shared 1-D positional encod-

ing of length H ×W is embedded for each activation map.

Across the activation maps in F̂k, B positional encoding

vectors are injected, each of which is repeated for H × W

times to fit the input dimension.

With the input embedding, the self-attention module

is directly used to explore the collaborative information

of class-specific activation maps. Different from the co-

attention manner, the self-attention mechanism considers

the attention of descriptors within an image and among im-

ages simultaneously, and thus is more effective for explor-

ing collaborative information. Moreover, the labels of im-

ages in the same batch are not required to be similar, as the

inter-image homogeneity is able to provide enough infor-

mation for learning. More details can be found in ablation

study (see Sec. 4.5.2).

As the output of the self-attention module has the same

size to its input activation maps, we perform global average

pooling on the output activation map of each image for each

specific category, and use the corresponding class-specific

classifier for label prediction. As the input image may have

multiple categories, we solve them as multiple binary clas-

sification tasks, and the loss function can be written as

Lcls =
1

B ×K

B
∑

n=1

K
∑

k=1

LBCE(Linear(GAP (Ak
n)), l

k
n)

(3)

[Ak
1 ,A

k
2 , ...,A

k
B ] = SelfAttention(F̂k) (4)

where Ak
n is the output activation map of the image In

on the k-th category after the self-attention module, and

lkn ∈ [0, 1] is the ground-truth label of the image In on the

k-th category. Finally, since the self-attention module re-

ceives as input the class-specific activation maps of a single

category, K independent self-attentions are integrated into

CMA module for all foreground categories, respectively.

3.4. Post­processing

During inference, we use the normalized activation mask

M̂ from the DA layer as the foreground object cues, and

follow the popular pipeline of WSSS [11, 20, 48, 25, 27,

44, 46, 40] by using the saliency map [31, 17] to refine the

background regions. Specifically, the foreground regions

and object categories are extracted by selecting the pixel-

wise label map according to the maximum value of the ac-
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Algorithm 1 Pseudo-labels Generation

Input: Normalized Activation Mask M̂ ; Saliency map S;

Category Number K; Thresholds θ, α, β

Output: Pseudo Label Map P

// Assume the background label is 0

P = argmaxk(M̂
k), where k ∈ [0,K]

Si,j =

{

0, if Si,j < θ

1, otherwise

Pi,j =











0, if Si,j == 1&&M̂
Pi,j

i,j < α

Pi,j , elif Si,j == 0&&M̂
Pi,j

i,j > β

Pi,j ∗ Si,j , otherwise

tivation mask along the channel dimension. Meanwhile, the

saliency detection [31] is used to extract the saliency map of

an image, whose value varies within [0, 255], and the region

of the label map is considered as background if the saliency

value is less than the threshold θ.

However, the saliency map is class-agnostic and tends to

highlight the most discriminative objects in the image, in

which case the non-target objects would be treated as fore-

ground. Meanwhile, due to the diversity of input images,

some foreground objects may locate at the image corner,

and are usually treated as background by the saliency map.

Therefore, we arbitrarily set the salient regions as back-

ground if the maximum pixel-wise value of the correspond-

ing region in the activation mask is less than the predefined

threshold α; otherwise we consider the insignificant parts of

the saliency map as foreground if the maximum pixel-wise

value of the corresponding region in the activation mask

exceeds the predefined threshold β. The whole process of

post-processing is shown in Alg. 1.

4. Experiments

4.1. Datasets and Evaluation Metric

We evaluate our approach on the PASCAL VOC 2012

dataset [9] and the COCO-Stuff 10k dataset [30]. As im-

plemented in most previous works [11, 48, 25, 44, 40], we

use the augmented training set [14] which includes 10,582

images in VOC for model training. We only use image-

level labels during training, and each image contains one

or multiple categories. To compare our approach with the

competitors, we evaluate our results on both validation and

test sets. For all experiments, the mean Intersection over

Union (mIoU) is used as the evaluation metric. Since the

ground-truths of the test set are not publicly available, the

mIoU of test set is obtained by submitting the results to the

official evaluation website of PASCAL VOC.

4.2. Implementation Details

In our experiments, we use ResNet38 [49] as backbone

for our EDAM architecture. It is pre-trained on the Ima-

geNet dataset [8] and is fine-tuned on the target dataset, in-

cluding PASCAL VOC 2012 and COCO-Stuff. The input

images are randomly re-scaled and cropped to 368 × 368.

We also use random horizontal flip and color jitter as data

augmentation during training. In pseudo label generation,

the bilinear interpolation is used to expand the output of the

DA layer to the size of the original images. During segmen-

tation, DeepLab-LargeFOV [6] is used as our segmentation

network with the ResNet101 [15] as backbone.

Our model is implemented with Pytorch and trained on

4 Tesla V100 GPUs with 16 GB memory. We use the SGD

optimizer with learning rate 1e− 3, and warm up the train-

ing in first 2k iterations with learning rate 1e − 4, which is

then gradually reduced in each iteration. We run the clas-

sification network for 30k iterations totally. Other hyper-

parameters are set as follows: the batch-size is 8, the weight

decay is 0.0002, and the momentum is 0.9. Unless other-

wise specified, the default values of θ, α and β are 20, 0.25

and 0.95, which are tuned by grid-search on evaluation set.

4.3. Comparisons to State­of­the­arts

In the experiments, the post-processed pseudo-labels

from the DA layer are used to fully-supervised train the

DeepLab-LargeFOV to get the final semantic segmentation

results. The accuracy of each category is shown in Table

1, and the comparison with some latest methods is shown

in Table 2. As we can see, our method not only achieves

significantly better performance on both validation set and

test set (with overall 3.1% and 2.6% enhancement of mIoU

comparing to [10]), but also dominates on most of the cat-

egories (with the highest mIoU in 16 of the 21 categories).

Moreover, it should be noted that our initial response is di-

rectly generated by the DA layer without too many bells and

whistles. In Fig. 3, we present some examples of [40] and

our final semantic segmentation results. It can be seen that

our framework generates good segmentation, even though

the images contain multiple objects of different categories

or different sizes.

4.4. Learning WSSS with Extra Data

Besides the PASCAL VOC training set, we explore the

performance of our EDAM method for WSSS by using ex-

tra training data. Following [28, 40], we train our network

with extra single-label images from Caltech-256 [13] and

web data [37]. Specifically, we manually select 3,995 extra

images across 20 categories of PASCAL VOC 2012 from

Caltech-256, and use the full set of 76,683 images from web

data for training data expansion.

As shown in Table 3, compared to previous works [28,

40] under similar settings, our results can be greatly im-
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Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

MCOF [44] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3

AffinityNet [2] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7

Zeng et al. [51] 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3

SEAM [45] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5

FickleNet [25] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9

Chang et al. [4] 88.8 51.6 30.3 82.9 53.0 75.8 88.6 74.8 86.6 32.4 79.9 53.8 82.3 78.5 70.4 71.2 40.2 78.3 42.9 66.8 58.8 66.1

Ours 92.0 87.0 42.4 83.0 70.0 76.4 89.5 79.5 88.6 29.0 87.2 24.7 83.8 83.0 81.0 82.1 51.9 83.6 35.1 82.0 58.0 70.9

Table 1. Comparison of per-category performance on PASCAL VOC 2012 validation set.

Method Backbone Val Test

SEC [23] VGG16 50.7 51.1

AE-PSL [46] VGG16 55.0 55.7

MDC [48] VGG16 60.4 60.8

MCOF [44] ResNet101 60.3 61.2

DCSP [5] ResNet101 60.8 61.9

SeeNet [18] ResNet101 63.1 62.8

DSRG [20] ResNet101 61.4 63.2

AffinityNet [2] ResNet38 61.7 63.2

IRNet [1] ResNet50 63.5 64.8

FickleNet [25] ResNet101 64.9 65.3

SSDD [39] ResNet101 64.9 65.5

OAA+ [21] ResNet101 65.2 66.4

Cian [11] ResNet101 64.3 65.3

SEAM [45] ResNet38 64.5 65.7

Chang et al. [4] ResNet101 66.1 65.9

MCIS [40] ResNet101 66.2 66.9

ICD [10] ResNet101 67.8 68.0

Ours ResNet101 70.9 70.6

Table 2. Comparison to previous state-of-the-art approaches of

weakly-supervised semantic segmentation on PASCAL VOC 2012

validation and test sets.

Method Val Test

MCNN [41] - 36.9

MIL-seg [35] 42.0 40.6

AttnBN [28] 66.1 65.9

MCIS [40] 67.1 67.2

Ours 72.0 71.4

Table 3. Results of WSSS with extra simple single-label images.

proved with the expanded dataset. Particularly, note that,

different from the previous best-performing work [40] us-

ing 20k extra images from both Caltech-256 and ImageNet

CLS-LOC [36], we use only 4k extra images from Caltech-

256 while achieving better performance. Table 4 shows fur-

ther improved performance of our method with extra web

data on test set, even though there exists noise.

4.5. Ablation Studies

In this subsection, we conduct extensive ablation exper-

iments to prove the effectiveness of our method design.

Since our method focuses on the improvement of pseudo-

Method Val Test

MCNN [41] 38.1 39.8

STC [47] 49.8 51.2

WebS-i2 [22] 53.4 55.3

Hong et al. [16] 58.1 58.7

BDWSS [38] 63.0 63.9

MCIS [40] 67.7 67.5

Ours 71.3 71.6

Table 4. Results of WSSS with extra noisy web images/videos.

CAM DA CMA dCRF mIoU

X 47.55%

X X 51.58%

X X X 52.83%

X X X X 58.18%

Table 5. Ablation study of each component of our network.

labels, we train the network on the augmented training im-

ages for PASCAL VOC segmentation task with only image-

level labels, and evaluate the mIoU of pseudo-labels on the

images for fully-supervised segmentation task.

4.5.1 Contribution of Components

In the experiments, we investigate the contribution of dif-

ferent components in our method, including the DA layer,

the CMA module, and the dense Conditional Random Field

(dCRF) [24]. Specifically, we use ResNet-38 as the clas-

sification backbone, and the CAMs generated by the fine-

tuned ResNet-38 model as our baseline. To select the back-

ground region, we carefully tune the threshold for different

results, and report the best of them. It is worth noting that,

to conduct fair comparison, the post-processing is not used

in these experiments.

As shown in Table 5, compared with the baseline, the DA

layer improves the mIoU of pseudo-labels by over 4%. By

introducing the CMA module for collaborative information

exploration, we achieve another 1.2% enhancement, reach-

ing up to 52.83% mIoU. For efficiency, the class-specific

activation maps of two images with similar labels are fed

into CMA module. Actually such a constraint on similar

labels is unnecessary, as proved in Sec. 4.5.2. We also eval-
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Figure 3. Qualitative segmentation results on PASCAL VOC 2012 validation set. (a) Original images. (b) Ground truth. (c) Segmentation

results by [40]. (d) Segmentation results by DeepLab-LargeFOV model retrained on our pseudo-labels.

Input Data mIoU

Single image 52.14%

Two random images 52.77%

Two similar images 52.83%

Three similar images 52.77%

Four similar images 52.52%

Table 6. The influence of different inputs on the mIoU.

uate the results after dCRF that is for further refinement,

and achieve mIoU of 58.18%, which may be benefited from

taking our results as high-quality initialization.

In Figure 4, we compare the heatmaps generated by

baseline and our method without dCRF. It can be observed

that our network can better extract the complete object in-

stead of discriminative object parts. Especially, for the im-

ages with multiple instances, EDAM can highlight all the

instances, while CAM tends to focus on some of them.

4.5.2 Data Configuration for CMA Module

Here we evaluate the impact of different datasets on the

CMA module without post-processing. As we know, the

CMA can explore the collaborative information from mul-

tiple images, and we conduct most experiments by feeding

two images with similar labels into CMA module, namely

“Two similar images”. By using more similar images, we

achieve comparable results to those of “Two similar im-

ages”, as shown in the 3rd and 4th row of Table 6. The per-

formance drop of “Four similar images” may be caused by

our using smaller images due to memory limit. Meanwhile,

we also randomly feed two images into the CMA module,

and achieve mIoU of 52.77% (see “Two random images” in

Figure 4. Visualization of heat maps. The first row is the original

image, the second row is the heatmap from CAM, and the final

row is the heatmap of EDAM without dCRF.

Table 6), which indicates the CMA module could explore

the collaborative information in an inter-image manner, and

the requirement for similar images in a batch is not compul-

sory. Besides, we present the result of using only a single

image during training. It shows that the results of all multi-

ple images configurations are better than using a single im-

age, which proves the effectiveness of inter-image context.

4.5.3 Thresholds in Post-processing

In Table 7, we show the ablative results for different strate-

gies in post-processing by carefully tuning the threshold θ,
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Figure 5. Visualization of strategies in post-processing. (a) Original images. (b) Ground-truths. (c) Saliency maps. (d) Pseudo-labels with

saliency map fusion. (e) Suppressing non-target regions. (f) Popup high-confident regions. (g) Final fusion result.

Baseline θ α β mIoU

X 58.18%

X X 66.10%

X X X 66.98%

X X X 67.22%

X X X X 68.11%

Table 7. Ablation study for α and β in post-processing.

α, and β respectively. We use the final label map of EDAM

after dCRF as the baseline. By using the saliency map and

tuning the threshold θ, the mIoU of pseudo-label reaches

66.11%. Like most previous works, this strategy can greatly

improve the quality of initial responses. However, there are

still some drawbacks with the saliency map. More details

can be found in Sec. 3.4, where we propose two strategies

to improve the results. By introducing the α and β for map

fusion, the mIoU can be increased by 0.88% and 1.12%,

respectively. Moreover, the fusion of all strategies can fur-

ther improve the quality of pseudo-labels, reaching up to

68.11% in our experiments.

We visualize some results to reveal why the post-

processing can improve final performance. In Fig. 5 (c) and

(d), we can find that the saliency map may focus on some

non-target objects, such as the windows and wall painting.

By suppressing the incorrect foreground with α, some non-

target regions are removed in Fig. 5 (e). Also, we can popup

the high-confident regions generated by the DA layer as

shown in Fig. 5 (f). The final fusion result of those strate-

gies can be found in Fig. 5 (g), which greatly enhances the

quality of the initial segmentation response.

4.6. Learning WSSS on COCO­Stuff 10k dataset

In addition to the PASCAL VOC 2012, we also ex-

plore the effectiveness of EDAM on COCO-Stuff 10k [30].

Specifically, we select 9,000 images of 20 categories the

same as PASCAL VOC for training, and use remaining

categories as background. The final mIoU of DeepLab-

LargeFOV trained with pseudo-labels generated by EDAM

reaches mIoU of 51.44% on test set, while the mIoU of

DeepLab-LargeFOV trained with fully-supervised labels is

55.90%. Even in more complex scenarios, our EDAM can

achieve comparable results to those with full-supervision.

5. Conclusion

In this paper, we propose a simple yet effective frame-

work, namely EDAM, for weakly-supervised semantic seg-

mentation (WSSS). This framework is implemented by

seamlessly integrating the segmentation task into the classi-

fication network to reduce the annotation gap. Specifically,

the DA layer predicts the class-specific mask and generates

the discriminative activation map for each category. As the

region of background and irrelevant foreground objects are

removed in the class-specific activation map, to some ex-

tent, the performance of classification can be greatly im-

proved. After that, the CMA module is used to explore the

collaborative information by concatenating multiple class-

specific activation maps of the images. Based on the idea of

self-attention, the intra-image and inter-image homogene-

ity can be explored simultaneously. In inference, we can

directly use the activation mask from the DA layer to gener-

ate the pseudo-labels without any additional computational

cost. Finally, a new post-processing strategy is proposed

to further improve the quality of the initial segmentation

response. Based on the improved initial response of our

method, the segmentation network achieves new state-of-

the-art performance of WSSS on the PASCAL VOC 2012

segmentation dataset.
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