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Figure 1. We create a globally consistent 3D scene graph b) by fusing predictions of a graph neural network (GNN) from an incremental

geometric segmentation created from an RGB-D sequence a). Our method merges nodes on the same object instance and naturally grows

and improves over time when new segments and surfaces are discovered, see c). As a by-product, our method produces accurate panoptic

segmentation of large-scale 3D scans. The nodes represent the different object segments.

Abstract

Scene graphs are a compact and explicit representa-

tion successfully used in a variety of 2D scene understand-

ing tasks. This work proposes a method to incrementally

build up semantic scene graphs from a 3D environment

given a sequence of RGB-D frames. To this end, we ag-

gregate PointNet features from primitive scene components

by means of a graph neural network. We also propose a

novel attention mechanism well suited for partial and miss-

ing graph data present in such an incremental reconstruc-

tion scenario. Although our proposed method is designed

to run on submaps of the scene, we show it also transfers

to entire 3D scenes. Experiments show that our approach

outperforms 3D scene graph prediction methods by a large

margin and its accuracy is on par with other 3D semantic

and panoptic segmentation methods while running at 35Hz.

1. Introduction

High-level scene understanding is a fundamental task in

computer vision required for many applications in fields

such as robotics and augmented or mixed reality. Boosted

by the availability of inexpensive depth sensors, real-time

dense SLAM algorithms [33, 21, 35, 56] and large scale

3D datasets [5, 53], the research focus has shifted from re-

constructing the 3D scene geometry to enhancing the 3D

maps with semantic information about scene components.

Several methods have deployed a neural network to pro-

cess a complete 3D scan of a scene [5, 10, 41, 39, 24,

18, 17, 16, 9]. However, these all require 3D geometry

as prior information and they typically operate in an of-

fline fashion, i.e. without satisfying real-time requirements,

which are fundamental for many real-world applications.

Real-time scene understanding that incrementally built 3D

scans poses important challenges such as handling partial,

incomplete, and ambiguous scene geometry where object

shapes may change dramatically over time. Learning a ro-

bust 3D feature that can cope with this variability is difficult.

Furthermore, fusing multiple, potentially contradictory net-

work predictions to ensure consistency in the global map, is

also challenging. Recently, in the image domain, semantic

scene graphs have been used to derive relationships among

scene entities [26, 57, 34, 59, 15]. Scene graphs demon-

strated to be a powerful abstract representation for scene
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understanding. Being compact and explicit, they are bene-

ficial for complex tasks such as image captioning [58, 20],

generation [19], manipulation [7] or visual questioning and

answering [49]. For this reason, recent works have explored

scene graph prediction from entire 3D scans in an offline

manner [54, 1]. Furthermore, building up semantic graph

maps online is a major challenge, requiring not only to ef-

ficiently detect semantic instances in the scene but also to

robustly estimate predicates between them, while dealing

with partial and incomplete 3D geometry.

In this work, we propose a real-time method to incremen-

tally build, in parallel to 3D mapping, a globally consistent

semantic scene graph, as shown in Fig. 1. Our approach re-

lies on a geometric segmentation method [47] and a novel

inductive graph network, which handles missing edges and

nodes in partial 3D point clouds. Our scene nodes are ge-

ometric segments of primitive shapes. Their 3D features

are propagated in a graph network that aggregates features

of neighborhood segments. Our method predicts scene se-

mantics and identifies object instances by learning relation-

ships among clusters of over-segmented regions. Towards

this end, we propose to learn additional relationships, re-

ferred to as same part in an end-to-end manner.

The main contributions of this work can be summarized

as follows: (1) We propose the first online 3D scene graph

prediction, i.e. incrementally fusing predictions from cur-

rently observed sub-maps into a globally consistent seman-

tic graph model. (2) Due to a new relationship type, nodes

are merged into 3D instances, resembling panoptic segmen-

tation.(3) We introduce a novel attention method that can

handle partial and incomplete 3D data, as well as highly dy-

namic edges, which is required for incremental scene graph

prediction. Our experiments show that we outperform 3D

scene graph prediction and achieve on par performance on

3D semantic and instance segmentation benchmarks while

running in 35Hz.

2. Related Work

2.1. Semantic SLAM

Several 3D scene understanding methods leverage deep

learning to perform either semantic segmentation [5, 10,

41, 39, 18], or instance segmentation/object detection [17,

37, 24, 9] from the complete 3D volume or point cloud

of the scene. Conversely, incremental semantic SLAM ap-

proaches do not assume a full 3D scan to be available, in-

stead directly operate on the incoming frames of RGB(-

D) sequences [29, 50, 42]. Such methods simultaneously

carry out a 3D reconstruction of the scene, while extract-

ing the corresponding semantics of the currently observed

surface. To this end, some incremental methods transfer im-

age predictions from a convolutional neural network (CNN)

to 3D, passing the data from the image to the 3D recon-

struction [29]. [46] propose a monocular approach that

constructs the 3D geometry from a depth prediction, rather

than a depth image. These incremental approaches often re-

quire a sophisticated fusion and/or a regularization method

to deal with multiple, potentially contradictory, predictions,

and to handle spatial and temporal consistency [29, 31, 46].

Other approaches fuse the 2D image and 3D reconstruc-

tion [60]. These semantic SLAM methods such as Seman-

ticFusion [29], ProgressiveFusion [36] or FusionAware [60]

are able to reconstruct 3D semantic scene maps in real-time,

but are not able to differentiate between individual object

instances. Object-level SLAM approaches focus on object

instances while sometimes requiring prior knowledge of the

scene such as an object database or semantic class annota-

tions [44, 48, 28, 11, 14].

Segmentation techniques are often used to reduce data

complexity and meet the required runtime on limited re-

sources. Several methods [48, 25, 30, 55, 14] incorporate

the efficient incremental segmentation method proposed

in [47] to perform online scene understanding.

Semantic SLAM methods achieve great performance in

computing a semantic or object-level representation but nei-

ther focus on semantic scene graphs nor on semantic rela-

tionships between object instances.

2.2. Scene Graphs for Images and 3D Data

Graph Neural Networks (GNNs) have recently emerged

as a popular inference tool for many challenging tasks [51,

40, 27, 52, 3, 45]. In particular, GNNs have been pro-

posed to infer scene graphs from images [59, 40], where

scene entities are the nodes of the graph, e.g. object in-

stances. Scene graph prediction goes beyond instance seg-

mentation by adding relationships between instances. Al-

though scene graphs are adapted from computer graphics,

their semantic extension has become an important research

area in computer vision. Since the introduction of a large

scale 2D scene graph dataset [23], several graph prediction

methods have been proposed focusing on message passing

with recurrent neural networks [57], iterative statistical op-

timization [6] or methods to handle limited data [2, 8]. Fur-

thermore, recent datasets with 3D semantic scene graph an-

notations have been proposed [12, 1, 54], alongside with

3D graph estimation methods. [54] predict semantic scene

graphs from a ground truth class-agnostic segmentation of

the 3D scene. [12] use an object detector on a sequence of

images to construct 3D quadrics – their object representa-

tion of choice. The geometric and visual features are then

processed with a recurrent neural network. [1] use mask

predictions and a multi-view regularization technique on

sampled images to compute relationships derived from de-

tected object instances. They construct a 3D scene graph of

a building that includes object semantics, rooms and cam-

eras, as well as the relationships between these entities. [43]
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Figure 2. Overview of the proposed SceneGraphFusion framework. Our method takes a stream of RGB-D images a) as input to create an

incremental geometric segmentation b). Then, the properties of each segment and a neighbor graph between segments are constructed. The

properties d) and neighbor graph e) of the segments that have been updated in the current frame c) are used as the inputs to compute node

and edge features f) and to predict a 3D scene graph g). Finally, the predictions are h) fused back into a globally consistent 3D graph.
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Figure 3. A representation of our efficient graph update strategy.

Given a network with a basic encoder (Encl=0) and two message

passing layers (GNNl=1,GNNl=2), by storing different layers of

features separately. When node A is updated, we can reuse the

lower-layer features from other nodes without recomputing them.

We visualize the operations needed at each node with color.

extended this model to include dynamic scene entities, e.g.

humans. Nevertheless, all of these methods work offline

and expect the reconstructed 3D scene as an input.

Similarly to [54], we predict graphs of semantic nature, but

in contrast to [54], our graph prediction does not require any

prior scene knowledge and is able to segment instances and

their semantic information, as well as their relationships, in

real-time, while the scene is being reconstructed.

3. Incremental 3D Scene Graph Framework

Fig. 2 illustrates the pipeline of our SceneGraphFusion

framework. Our system consists of two separate cores: a

reconstruction and segmentation pipeline adapted from [47]

(Sec. 3.1), and a scene graph prediction network (SPN)

(Sec. 4). Our system takes a sequence of RGB-D frames

with associated poses as input to reconstruct a segmented

map of the scene, while estimating a neighbor graph and

properties of each segment. Then, a subset of the neighbor

graph and the properties of the segments that have been re-

cently observed are fed into our graph network to predict

node and edge semantics. Finally, the predictions are fused

into the globally consistent 3D scene graph. To maintain

real-time performance of our system, we separate the scene

graph prediction process into a different thread. The 3D

scene graph is asynchronously predicted and fused from the

reconstruction pipeline. Our semantic scene graph G con-

sists of a set of tuples (V, E) with nodes V and edges E .

Nodes represent segments with their object categories, and

edges represent the semantic relationships (predicates) be-

tween nodes, such as standing on and attached to.

3.1. Scene Reconstruction with Property Building

An incremental and computationally efficient method of

estimating instances is required to enable construction of a

scene graph in real-time. We use the incremental geometri-

cal segmentation method in [47] to build a globally consis-

tent segmentation map, and incorporate it with our online

property update and neighbor graph building.

Geometric Segmentation and Reconstruction. Given

input RGB-D frames and associated poses, the incremen-

tal segmentation algorithm generates a global 3D segmen-

tation map, shown in Fig. 2b, by performing incremental

segmentation on top of a dense reconstruction algorithm.

The 3D segmentation map consists of a set of segments

S = {s1, . . . , sn}. Each segment stores a set of 3D points

Pi where each point has a 3D coordinate a normal and a

color. Our map is updated at every new frame, by adding

new segments and merging or removing old ones.

Segment Properties. In addition to segment reconstruc-

tion, we compute segment properties (see Fig. 2d) to de-

scribe a segment shape, i.e. centroid pi 2 R
3, standard de-

viation of the position of points σi 2 R
3, size of the axis-

aligned bounding box bi = (bx, by, bz) 2 R
3, maximum

length li = max (bx, by, bz) 2 R and bounding box volume

⌫i = bx ·by ·bz 2 R. Reconstructing the segments in this in-

cremental manner allows us to update the properties of each

node efficiently. These properties are updated by checking

every modification of the points in the segment.
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Neighbor Graph. Additionally, we construct a neighbor

graph having nodes as segments and edges as the connec-

tion between the segments, as depicted in Fig. 2e. To find

the adjacent segments, we compute the distances between

all the combinations of the bounding box of the segments.

The segment pairs where the distance is less than a certain

threshold are added as edges (we use 0.5 meters as a prox-

imity threshold in our experiments).

3.2. Prediction with Graph Structure

Next, we feed the segments properties and the neighbor

graph to our graph network to predict the segment label and

predicate on each segment and edge, shown in Fig. 2f-g.

The detailed description of our graph network architecture

can be found in Sec. 4. Since our segment reconstruction

process is incremental, only those segments that are cur-

rently observed in the input frame are updated. Therefore,

we only feed a subset of the segments and the neighbor

graph which consists of the segments that have been up-

dated in recent frames, this improving scalability and effi-

ciency. To identify the newly updated segments, we store

the segment size and timestamp whenever the segment is

fed into the network. If the segment size changes more

than 10%, or the segment has not been updated for 60

frames, they are flagged and fed into the network. Segments

are continuously observed and outdated segments and their

neighbors are extracted and processed with our graph neu-

ral network. For the sake of efficiency we store all features

computed from our SPN in our neighbor graph. Accord-

ing to the message passing process in GNN [13], when a

lower-layer feature of a node is updated, only the higher-

layer features of this node, its direct neighbors, and their

edge features are affected. This allows us to re-use previ-

ously computed features, as shown in Fig. 3, and greatly

improve prediction efficiency and scalability.

3.3. Temporal Scene Graph Fusion

Finally, the predicted semantics of nodes and edges in

the neighbor graph are fused into a globally consistent se-

mantic scene graph, depicted in Fig. 2h. Due to the incre-

mental nature of our method, as described in Sec. 3.2, the

semantics of each segment and edge are predicted multi-

ple times, resulting in potentially contradictory outcomes.

To handle this, we apply a running average approach [4] to

fuse the predictions of the same segment or edge. For each

segment and edge in our neighbor graph, we store a weight

w and a probability µ for each class or predicate prediction.

Given a new prediction with probability µt at time t, we

update the previously stored weight wt−1 and probability

µt−1 as

µt =
µt · wt + µt−1 · wt−1

wt + wt−1
, (1)

wt = min
�

wmax, w
t + wt−1

�

, (2)

where wmax = 100 is the maximum weight value. Impor-

tantly, since our framework predicts semantics at segment

level, we are able to store and preserve the whole label prob-

ability distribution using a much smaller memory footprint

compared to point-level methods [29].

4. Scene Graph Prediction

The use of segments obtained by the geometric segmen-

tation method requires the design of a robust feature, since

the shape of each segment is usually incomplete and rela-

tively simple, and changes overtime during reconstruction.

The feature of each segment can be enhanced with neigh-

bor information by using a GNN. However, the number of

neighbors of each segment changes over time, posing a se-

rious challenge for the training process.

Dealing with dynamic nodes and edges in a GNN is

known as inductive learning. Existing methods focus

mainly on how to spread attention across all the neigh-

bors [51, 52], or estimate the attention between nodes [3].

However, in either case, a missing edge still affects all the

aggregated messages. To deal with this problem, we pro-

pose a novel feature-wise-attention (FAT), that re-weights

individual latent features at each target node. By applying a

max function on this re-weighted embedding, this strategy

yields aggregated features that are less affected by missing

neighboring points.

4.1. Network Architecture

The network architecture of our framework is shown in

Fig. 2f-g (grey box). Our architecture is inspired from [54],

with modification of some major components. Given a) a

set of segments, b) the properties of each segment, and c) a

neighbor graph, our network outputs a semantic scene graph

by predicting class and predicate for each segment and edge

respectively.

Node Feature. The point cloud Pi of each segment si
is encoded with a PointNet [38] fp (·) into a latent fea-

ture that represents the primitive shape of each segment.

We concatenate the spatial invariant properties described in

Sec. 3.1, i.e. standard deviation σi, log of bounding box size

bi, length li, and volume ⌫i, with fp(Pi) to handle the scale

insensitive limitation caused by normalization of the input

points on the unit sphere such that

vi = [fp (Pi) ,σi, ln (bi), ln (⌫i) ln (li)], (3)

where [·] denotes a concatenation function.
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Edge Feature. The visual features of the edges are com-

puted with the properties of the connected segments. Given

an edge between a source node i and a target node j where

j 6= i, the edge visual feature eij is computed such that

rij = [pi � pj ,σi � σj ,bi � bj , ln
⇣

li
lj

⌘

, ln
⇣

⌫i

⌫j

⌘

], (4)

eij = gs (rij) , (5)

where gs (·) is a multi-layer perception (MLP) projecting

the paired segment properties into a latent space.

GNN Feature. After the initial feature embedding on

nodes and edges, we propagate the features using a GNN

with 2 message passing layers to enhance the features by

enclosing the neighborhood information. Our GNN updates

both node and edge features in each message passing layer

`. In each layer, the node and v`
i and edge features e`ij are

updated as follows:

v`+1
i = gv

✓

[v`

i , max
j∈N (i)

�

FAN
�

v`

i , e
`

ij ,v
`

j

��

]

◆

, (6)

e`+1
ij = ge

�

[v`

i , e
`

ij ,v
`

j ]
�

, (7)

where gv (·) and ge (·) are MLPs, N (i) is the set of neigh-

bors indices of node i, and FAN(·) is the proposed feature-

wise attention network, which is detailed in Sec. 4.2.

Class Prediction and Losses. Finally, the node class and

the edge predicate are predicted by means of two MLP clas-

sifiers. Similarly to [54], our network can be trained end-to-

end with a joint cross entropy loss, for both, object Lobj and

predicates Lpred.

4.2. Feature-wise Attention

Our feature-wise attention (FAT) module takes as input

a query Q of dimensions dq and targets T of dimensions

d⌧ . It estimates a weight distribution of dimensions d⌧ by

using a MLP ga (·) with a softmax operation to normalize

and distribute the weight. Then, the attention is calculated

by element-wise multiplication of the weight matrix and the

target T,

FAT(Q,T) = softmax (ga(Q))�T, (8)

where � denotes element-wise multiplication.

The use of softmax across the entire target dimension d⌧
gives us a single weight matrix across all feature dimen-

sions. We employ a multi-head approach as in [51, 45]

to allow a more flexible attention distribution. The input

feature dimension of Q and T are divided into h heads

Q = [q1, . . . ,qh] and T = [τ1, . . . , τh] with qi 2 R
dq/h

and τi 2 R
dτ/h. For each head, the same attention func-

tion as in equation (8) is applied, then the values from each

ground truth
instance segmentation

same part relationship of 
geometric segmentation

Figure 4. The same part relationship is generated between the

segments corresponding to the same object instance.

head are concatenated back to the dimensions d⌧ to obtain

the multi-head attention:

MFAT (Q,T) =
⇥

FAT(qi, τi)
⇤h

i=1
. (9)

Unlike scaled dot-product attention [51], our approach does

not distribute across edges. Instead, it learns to spread

the attention across the feature dimensions of each target

node. Towards this end, we design a feature-wise attention

network (FAN). Given a source node feature vi, an edge

feature eij , and a target node feature vj , we compute the

weighted message as

FAN (vi, eij ,vj) =

MFAT ([ĝq (vi) , ĝe (eij)] , ĝ⌧ (vj)) ,
(10)

where ĝq (·) , ĝe (·) , ĝ⌧ (·) are single layer perceptrons to

map vi, eij ,vj to dimensions
dq

2 ,
dq

2 , d⌧ respectively.

5. Data Generation

We introduce a same part relationship to allow our

network to cluster segments from the same object, enabling

instance-level object segmentation on the over-segmented

map. We generate training and testing data using the esti-

mated segmentation and the ground truth instance annota-

tions. Given a scene segmented by a geometrical segmen-

tation method and its corresponding ground truth provided

as object instance annotations, we find the best match be-

tween each estimated segment and the ground truth objects

via nearest neighbor search. In particular, the best match

is obtained by maximizing the area of intersection between

the given segment and the ground truth objects. We reject

matches where the area of intersection is less than 50% of

the segment surface. In addition, we consider a valid match

only if its corresponding segment does not cover any other

ground truth objects by more than 10% of their area. In the

case of multiple segments corresponding to the same object

instance, we add the same part relationship between all

of them, as shown in Fig. 4. Finally, if ground truth rela-

tionships exist on that object instance, they are inherited by

all the segments.
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Relationship Object Predicate

R@50 R@100 R@5 R@10 R@3 R@5

Baseline [54] 0.39 0.45 0.66 0.77 0.62 0.88

3DSSG [54] 0.40 0.66 0.68 0.78 0.89 0.93

Ours 0.85 0.87 0.70 0.80 0.97 0.99

Table 1. Evaluation of the scene graph prediction task on

3RScan/3DSSG [54] with 160 objects and 26 predicate classes.

The experiments were conducted on the complete 3D data.

6. Evaluation

In Sec. 6.1 we evaluate our scene graph prediction on

3DSSG [54]. The performance of our method is reported on

full scenes given ground truth instances and second with ge-

ometric segments. We then show how relationships/graphs

help with object prediction. In Sec. 6.2 we focus on the by-

product of our method, panoptic segmentation by reporting

segmentation scores on ScanNet [5]. Finally, in Sec. 6.3 we

provide a runtime analysis of our method compared to other

incremental semantic segmentation approaches.

6.1. Semantic Scene Graph Prediction

Following the evaluation scheme in [54], we separately

report relationship, object, and predicate prediction accu-

racy with a top-n evaluation metric. Following [59], the re-

lationship score is the multiplication of the object, subject,

and predicate probability. Object and predicate metrics are

calculated directly with the respective classification scores.

Ground Truth Instances. In Tbl. 1 we report the 3D

scene graph prediction accuracy independently from the

segmentation quality. The evaluation was conducted on the

full 3D scene with the class-agnostic ground truth segmen-

tation, as carried out in [54]. We followed the data split pro-

posed in 3DSSG with 160 object classes and 26 different re-

lationships. Our method outperforms [54] with a significant

margin of +0.45 / +0.21 (R@50 / R@100) for relationship

prediction due to small improvements in predicate and ob-

ject classification. Note that our method can run offline on

the pre-computed 3D data – as done here – but is also able

to handle partial and incomplete shapes in an incremental

online setup which is analyzed in following paragraph.

Geometric Segments. In Tbl. 2 we compare the perfor-

mance of incremental 6�- 7� and full scene graph predic-

tion 5� based on our geometric segmentation. 6� is slightly

worse than 5� but generates predictions on the fly. Our pro-

posed fusion 7� improves the performance further. Tbl. 2

additionally shows that we outperform 3DSSG [54] with a

small margin without any attention method and with a large

margin when using our proposed feature-wise attention,

FAT 5�. FAT 5� also outperforms other attention mech-

anisms GAT [52] 3� and SDPA [51] 4� for 3D semantic

Relationship Object Predicate

Method (Attention) R@1 R@3 R@1 R@3 R@1 R@2

1� 3DSSG (none) (f) 0.38 0.59 0.61 0.85 0.83 0.98

2� Ours (none) (f) 0.41 0.62 0.62 0.88 0.84 0.98

3� Ours (GAT) (f) 0.12 0.22 0.25 0.64 0.85 0.98

4� Ours (SDPA) (f) 0.39 0.62 0.62 0.87 0.85 0.98

5� Ours (FAT) (f) 0.55 0.78 0.75 0.93 0.86 0.98

6� Ours (FAT) (i) 0.51 0.67 0.78 0.94 0.77 0.98

7� Ours Fusion (FAT) (i) 0.52 0.70 0.79 0.94 0.78 0.98

Table 2. Evaluation of the semantic scene graph prediction on ge-

ometric segments of 3RScan/3DSSG [54] with 20 objects and 8

predicate classes. (f) indicates a prediction on the full 3D scene

while (i) is the incremental result from the RGB-D sequence.

Relationship Object Predicate

R@1 R@3 R@1 R@3 R@1 R@2

Ours without Lpred 0.26 0.36 0.62 0.87 0.59 0.75

Ours with Lpred 0.55 0.78 0.75 0.93 0.86 0.98

Table 3. Ablation Study: Comparison of training with and without

predicate loss Lpred on 3RScan/3DSSG [54] with 20 object and

8 predicate classes. Note that the comparison is based on graphs

computed from the full 3D scene (f).

scene graph prediction. The input of the methods is either

the full 3D scene 1�- 6�, processed offline (f) or a stream

of RGB-D images processed incrementally (i), 6�, 7�. For

these experiments, we first acquired the geometric segmen-

tation [46] from the RGB-D sequences of 3RScan [53]. The

final training data was generated with the pipeline described

in Sec. 5. We trained the networks with 20 NYUv2 [32]

object classes used on the ScanNet [5] benchmark. Fur-

thermore, only support predicates are used and relationships

with too few occurrences are ignored. This leads to 8 pred-

icates, including the same part relationship which we

added in the data generation process. More details on the

training setup and chosen hyper-parameters used in this ex-

periment can be found in the supplementary material. A

qualitative result of our graph prediction is shown in Fig. 5,

more examples can also be found in the supplementary.

Predicate Influence on Object Classification. To verify

if learning inter-instance relationship improves object clas-

sification, we train our network without the predicate loss.

Tbl. 3 shows that object classification indeed benefits from

joint relationship prediction.

6.2. 3D Panoptic/Semantic Segmentation

To evaluate the quality of the semantic/panoptic segmen-

tation of our method, we trained the network with Scan-

Net [5]. We follow the ScanNet benchmark and evaluate

with the IoU metric. Since InSeg [47] reconstructs and seg-

ments the scene with a different reconstruction algorithm

and excludes small and unstable geometric segments, some
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random colors are used for object instances, while walls are and the floor is .

points might be missing in our 3D map. When evaluating,

we address this issue by either a) mapping the points in our

reconstruction to the nearest neighbor (NN) of the ScanNet

ground truth 3D model or b) ignoring points where no cor-

responding 3D geometry was reconstructed.

3D Semantic Segmentation. In Tbl. 5, we compare our

method against other incremental semantic segmentation

methods, specifically SemanticFusion [29], ProgressiveFu-

sion [36] and FusionAware [60] using the mean average pre-

cision (mAP). Our method has the second best mAP while

running at 35Hz on a CPU, as detailed in Sec. 6.3 and the

supplementary material. Qualitative results of our semantic

segmentation are shown in the bottom row of Fig. 6.

3D Panoptic Segmentation. To evaluate panoptic seg-

mentation we use the metrics proposed in [22], namely

panoptic quality (PQ), segmentation quality (SQ), and

recognition quality (RQ). In Tbl. 4 we compare our method

against PanopticFusion [31]. Due to the missing scene ge-

ometry on which our approach relies, PanopticFusion out-

performs our method with respect to the computed RQ.

Nevertheless, SQ and PQ are on par or slightly worse. A

comparison of only valid scene regions – by skipping un-

reconstructed parts – often results in a better performance.

We provide an ablation study in Tbl. 6 to validate the effec-

tiveness of the same part relationship and our proposed

fusion mechanism. Finally, the qualitative results of our

panoptic segmentation are shown in the top row of Fig. 6.

7521



Metric All Things Stuff

PanopticFusion [31] PQ 33.5 30.8 58.4

Ours (NN mapping) PQ 31.5 30.2 43.4

Ours (skipped missing) PQ 36.3 34.7 51.0

PanopticFusion [31] SQ 73.0 73.3 70.7

Ours (NN mapping) SQ 72.9 73.0 72.6

Ours (skipped missing) SQ 76.1 75.9 77.9

PanopticFusion [31] RQ 45.3 41.3 80.9

Ours (NN mapping) RQ 42.2 40.3 59.3

Ours (skipped missing) RQ 46.8 44.8 64.7

Table 4. 3D panoptic segmentation results on the ScanNet v2 open

test set. We report the numbers of PanopticFusion [31] and our

fusion method either by a NN mapping or by skipping those miss-

ing regions. Our (NN mapping) outperforms PanopticFusion in 7

classes, more information can be found in the supplementary ma-

terial. Note that Our (skipped missing) is not considered when

highlighting the best score since its not directly comparable.

Hardware Runtime [Hz] mAP

SemanticFusion [29] GPU + CPU 25 51.8

ProgressiveFusion [36] GPU + CPU 10 – 15 56.6

Fusionaware [60] - 10 76.4

Ours CPU 35 63.7

Table 5. Comparison of incremental semantic segmentation meth-

ods on the open test set of ScanNet [5]. Runtime have been taken

from the respective papers with potentially different hardware se-

tups, therefore not directly comparable.

PQ SQ RQ

1� Ours without Fusion 35.4 76.3 35.4

2� Ours without same part 10.9 59.1 16.0

3� Ours 36.3 76.1 46.8

Table 6. Ablation study: Analysis of the effect of our fusion mech-

anism and the same part relationship on the panoptic segmen-

tation task evaluated on ScanNet [5]. PQ stands for panoptic, SQ

for segmentation, and RQ for recognition quality.

Robustness against Missing Information. In this ex-

periment, we evaluate the robustness of different atten-

tion methods against noisy data in form of missing edges.

We train our network without attention, using GAT [52],

SDPA [51], and our proposed FAT. The experimental setup

is shared with Tbl. 2. In Tbl. 7 we compare the performance

of the different attention methods on the full scene (f ) and

all edges (@1.0, left column) and with a random edge drop

of 50% (@0.5, right column), see Tbl. 7.

The reference metric is the intersection over union (IoU).

Our proposed attention mechanism, FAT, consistently out-

performs the other approaches in full-edge and drop-edge

scenarios. For the sake of space, a more detailed per-class

avg. IoU (@1.0) avg. IoU (@0.5)

Ours w/o attention 33.5 29.5

Ours SDPA [51] 33.0 29.7

Ours GAT [52] 11.5 12.5

Ours FAT 49.3 41.9

Table 7. Ablation study: Segment classification of InSeg [47] on

3RScan [53] reporting avg. IoU on segment-level. The complete

per-class evaluation can be found in the supplementary material.

Segmentation Node Edge GNN

Mean [ms] 28 8 17 108

Table 8. Runtime [ms] of the different components of our method.

evaluation is available in the supplementary, interestingly

showing that some classes rely on the messages from neigh-

bors more than others such as e.g. bathtub, shower curtain,

and windows.

6.3. Runtime Analysis

We measured the runtime of our system on the ScanNet

sequence scene0645 01. Our machine is equipped with

an Intel Core i7-8700 CPU 3.2GHz CPU with 12 threads.

Notably, our method only uses 2 threads: one for the scene

reconstruction and the other one for 3D scene graph predic-

tion. The scene reconstruction requires 28 ms on average

while the graph prediction sums up to 133ms running the

GNN and fusing the results.

7. Conclusion

In this work, we presented SceneGraphFusion, a 3D

scene graph method that incrementally fuses partial graph

predictions from a geometric segmentation into a globally

consistent semantic map. Our network outperforms other

3D scene graph prediction methods; FAT works better than

any other attention mechanism in handling missing graph

information and the semantic/panoptic segmentation – the

by-product of our method – achieves performance on par

with other incremental methods while running in 35Hz.

Due to this efficiency, incremental semantic scene graphs

could be beneficial in future work, when retrieving camera

poses or detecting loop-closures in a SLAM framework.
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