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Abstract

We explore and analyze the latent style space of Style-

GAN2, a state-of-the-art architecture for image genera-

tion, using models pretrained on several different datasets.

We first show that StyleSpace, the space of channel-wise

style parameters, is significantly more disentangled than

the other intermediate latent spaces explored by previous

works. Next, we describe a method for discovering a large

collection of style channels, each of which is shown to con-

trol a distinct visual attribute in a highly localized and dis-

entangled manner. Third, we propose a simple method for

identifying style channels that control a specific attribute,

using a pretrained classifier or a small number of exam-

ple images. Manipulation of visual attributes via these

StyleSpace controls is shown to be better disentangled than

via those proposed in previous works. To show this, we

make use of a newly proposed Attribute Dependency metric.

Finally, we demonstrate the applicability of StyleSpace con-

trols to the manipulation of real images. Our findings pave

the way to semantically meaningful and well-disentangled

image manipulations via simple and intuitive interfaces.

1. Introduction

Modern Generative Adversarial Networks (GANs) are

able to produce a wide variety of highly realistic synthetic

images. The phenomenal success of these generative mod-

els underscores the need for a better understanding of “what

makes them tick” and what kinds of control these models

offer over the generated data. Of particular practical impor-

tance are controls that are interpretable and disentangled, as

they suggest intuitive image manipulation interfaces.

In traditional GAN architectures, such as DCGAN [25]

and Progressive GAN [16], the generator starts with a ran-

dom latent vector, drawn from a simple distribution, and

transforms it into a realistic image via a sequence of convo-

lutional layers. Recently, style-based designs have become

increasingly popular, where the random latent vector is first

transformed into an intermediate latent code via a mapping

function. This code is then used to modify the channel-

wise activation statistics at each of the generator’s convolu-

tion layers. BigGAN [6] uses class-conditional BatchNorm

[14], while StyleGAN [17] uses AdaIN [13] to modulate

channel-wise means and variances. StyleGAN2 [18] con-

trols channel-wise variances by modulating the weights of

the convolution kernels. It has been shown that the inter-

mediate latent space is more disentangled than the initial

one [17]. Additionally, Shen et al. [28] show that the latent

space of StyleGAN [17, 18] is more disentangled than that

of Progressive GAN [16].

Some control over the generated results may be obtained

via conditioning [20], which requires training the model

with annotated data. In contrast, style-based design enables

discovering a variety of interpretable generator controls af-

ter training the generator. However, current methods require

either a pretrained classifier [10, 28, 29, 34], a large set of

paired examples [15], or manual examination of many can-

didate control directions [12], which limits the versatility of

these approaches. Furthermore, the individual controls dis-

covered by these methods are typically entangled, affecting

multiple attributes, and are often non-local.

In this work, our goal is to understand to what degree

disentanglement is inherent in style-based generator archi-

tectures. Perhaps an even more important question is to how

to find these disentangled controls? In particular, can this

be done in an unsupervised manner, or with only a small

amount of supervision? In this paper we report several find-

ings with respect to these questions.

Recent studies of disentangled representations [8, 27]

consider a latent representation to be perfectly disentan-

gled if each latent dimension controls a single visual at-

tribute (disentanglement), and each attribute is controlled

by a single dimension (completeness). Following this termi-

nology, we explore the latent space of StyleGAN2 [18]. Un-

like other works that analyze the (intermediate) latent space

W or W+ [1], we examine StyleSpace, the space spanned

by the channel-wise style parameters, denoted S . In Sec-

tion 3 we measure and compare the disentanglement and

completeness of these spaces using the metrics proposed

for this purpose [8]. To our knowledge we are the first to

apply this quantitative framework to models trained on real
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Figure 1. Disentanglement in style space, demonstrated using three different datasets. Each of the three groups above shows two manip-

ulations that occur independently inside the same semantic region (hair, bed, and car, from left to right). The indices of the manipulated

layer and channel are indicated in parentheses.

data. Our experiments reveal that S is significantly better

disentangled than W or W+.

In Section 4 we propose a simple method for detect-

ing StyleSpace channels that control the appearance of lo-

cal semantic regions in the image. By computing the gra-

dient maps of generated images with respect to different

style parameters, we identify those channels that are con-

sistently active in specific semantic regions, such as hair

or mouth, in the case of portraits. We demonstrate the ef-

fectiveness of this approach across three different datasets

(FFHQ [17], LSUN Bedroom, and LSUN Car [36]). The

StyleSpace channels that we detect are highly localized, af-

fecting only a specific area without any visible impact of

other regions. They are also surprisingly well disentangled

from each other, as demonstrated in Figure 1.

Our next goal is to identify style channels that control a

specific target attribute. To achieve this goal we require a

set of exemplar images that exhibit the attribute of interest.

The basic idea is to compare the average style vector across

the exemplar set to the population average, thereby detect-

ing dimensions that deviate the most. Our experiments indi-

cate that such dimensions usually indeed control the target

attribute, and reveal that a single attribute is typically con-

trolled by only a few different StyleSpace channels.

To our knowledge, there is no metric to compare the

disentanglement of different image manipulation controls.

In Section 6 we propose Attribute Dependency (AD) as

a measure for how manipulating a target attribute affects

other attributes. Comparing manipulations performed in

StyleSpace to those in W and W+ spaces [12, 29], shows

that our controls exhibit significantly lower AD.

Finally, we share our insights about the pros and cons

of two major image inversion methods, latent optimization

[18, 1, 2] and encoders [38]. We show that a combination

of the two may be used in order to apply our StyleSpace

controls to disentangled manipulation of real images.

2. Related Work

Understanding the latent representations of pretrained

generators has attracted considerable attention, since it con-

tributes to better GAN architecture design and facilitates

controllable manipulation. Bau et al. [5, 3] utilized seman-

tic segmentation to analyze Progressive GAN [16] and de-

tect causal units that control the presence of certain objects

through ablation. Shen et al. [29] and Yang et al. [34] uti-

lize classifiers to analyze StyleGAN [17] and show that a

linear manipulation in W space can control a specific tar-

get attribute. They further show that in W+ space, early

layers control layout, middle layers control the presence of

objects, and late layers control final rendering. Collins et

al. [7] transfer the appearance of a specific object part from

a reference image to a target image, through swapping be-

tween style codes. Concurrent work by Xu et al. [33] shows

that style space can be used for a variety of discriminative

and generative tasks.

By utilizing the weights of pretrained generators, sev-

eral works [1, 2, 9, 11, 22] design different latent optimiza-

tion methods to do inpainting, style transfer, morphing, col-

orization, denoising and super resolution. Instead of latent

optimization, Nitzan et al. [21] use the generator as a fixed

decoder, and facilitate disentanglement by training an en-

coder for identity and another encoder for pose. Richardson

et al. [26] do image translation by training encoders from

sketches or semantic maps into StyleGAN’s W space.

To facilitate attribute manipulations in an unsupervised

manner, Voynov and Babenko [31] detect interpretable con-

trols through training a direction matrix and a reconstructor

simultaneously. Härkönen et al. [12] detect interpretable

controls based on PCA applied either to the latent space of

StyleGAN [17] or to the feature space of BigGAN [6]. Lay-

erwise perturbations along the principle directions give rise

to a variety of useful controls. Similarly, Shen et al. [30]

do eigenvector decomposition in the affine transformation
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layer between W and S spaces, and use eigenvectors with

the highest eigenvalues as manipulation directions. Peebles

et al. [23] identify interpretable controls by minimizing a

Hessian loss. However, in unsupervised settings, users must

examine many different manipulation directions and manu-

ally identify meaningful controls.

In contrast, we discover a large amount of localized con-

trols using semantic maps (Section 4). The controls are

ranked making it easier to detect meaningful localized ma-

nipulations in each semantic region. Furthermore, our con-

trols are surprisingly well disentangled and fine-grained.

We also detect attribute-specific controls using a small num-

ber of examples (Section 5).

3. Disentanglement of StyleGAN latent spaces

The StyleGAN/StyleGAN2 generation process involves

a number of latent spaces. The first latent space, Z , is typ-

ically normally distributed. Random noise vectors z ∈ Z
are transformed into an intermediate latent space W via a

sequence of fully connected layers. The W space is claimed

to better reflect the disentangled nature of the learned distri-

bution [17]. Each w ∈ W is further transformed to channel-

wise style parameters s, using a different learned affine

transformation for each layer of the generator. We refer to

the space spanned by these style parameters as StyleSpace,

or S . Some works make use of another latent space, W+,

where a different intermediate latent vector w is fed to each

of the generator’s layers. W+ is mainly used for style mix-

ing [17] and for image inversion [1, 18, 38].

In StyleGAN2 [18], there is a single style parameter per

channel, which controls the feature map variances by mod-

ulating the convolution kernel weights. Additional style pa-

rameters are used by the tRGB blocks that transform fea-

ture maps to RGB images at each resolution [18]. Thus,

in a 1024 × 1024 StyleGAN2 with 18 layers, W has 512

dimensions, W+ has 9216 dimensions, and S has 9088 di-

mensions in total, consisting of 6048 dimensions applied

to feature maps, and 3040 additional dimensions for tRGB

blocks. See supp. Section 9 for more detail. Below we refer

to individual dimensions of S as StyleSpace channels.

Our first goal is to determine which of these latent spaces

offers the most disentangled representation. To this end, we

use the recently proposed DCI (disentanglement / complete-

ness / informativeness) metrics [8], which are suitable for

comparing latent representations with different dimensions.

The DCI metrics employ regressors trained using a set of

latent vectors paired with corresponding attribute vectors

(split into training and testing sets). Disentanglement mea-

sures the degree to which each latent dimension captures

at most one attribute, completeness measures the degree to

which each attribute is controlled by at most one latent di-

mension, while informativeness measures the classification

accuracy of the attributes, given the latent representation.

Comparison w/ Z and W
Disent. Compl. Inform.

Z 0.31 0.21 0.72

W 0.54 0.57 0.97

S 0.75 0.87 0.99

Comparison with W+
Disent. Compl. Inform.

W+ 0.54 0.64 0.94

S 0.63 0.81 0.98

Table 1. Disentanglement, completeness and informativeness for

different latent spaces (larger is better, maximum is 1). The two

comparisons are performed using different sets of images; thus,

the scores are not comparable between the two tables.

Rather than analyzing the degree of disentanglement us-

ing a synthetically generated dataset, where the factors of

variations are few and known [8], we analyze StyleGAN2

trained on a real dataset, specifically FFHQ. To generate the

training data for the DCI regressors, we employ 40 binary

classifiers pretrained on the CelebA attributes [17]. The

classifiers are trained to detect common features in portraits

such as gray hair, smiling, and lipstick, and their logit out-

come is converted to a binary one via a sigmoid activation.

We first randomly sample 500K latent vectors z ∈ Z and

record their corresponding w and s vectors, as well as the

generated images. Each image is then annotated by each

of the 40 classifiers, where we record the logit, rather than

just the binary outcome. Since not all attributes are well

represented in the generated images (for example, there are

very few portraits with a necktie), we only consider 31 at-

tributes for which there are more than 5% positive and 5%

negative outcomes. Similarly to Shen et al. [29], we reduce

classifer uncertainty by using only the most positive 2% and

most negative 2% examples, for each attribute, and split the

examples equally into training and testing sets.

Finally, we compute the DCI metrics [8] to compare the

latent spaces Z , W and S . As shown in Table 1 (left), while

the informativeness of both W and S is high and compara-

ble, S scores much higher in terms of disentanglement and

completeness. This indicates that each dimension of S is

more likely to control a single attribute and vice versa.

Since W+ is often used for StyleGAN inversion [1, 18],

we also perform a separate experiment to compare between

W+ and S . Specifically, we first randomly sample 500K

intermediate latent codes w ∈ W , and construct each w+
by concatenating nl random w codes (nl = 18 for a 1024×
1024 StyleGAN2). The resulting images are somewhat less

natural than those obtained in the standard manner, resulting

in a smaller number of considered attributes (25 instead of

31), which we use to evaluate W+ and S as before. Table 1

(right) shows, again, that S scores higher than W+.

To our knowledge, we are the first to perform a quantita-

tive evaluation of latent space disentanglement for a GAN

model trained on real data. Since our analysis indicates

that the style space S is more disentangled than other la-

tent spaces, we proceed to further analyze S below.
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Figure 2. A gradient map with respect to each style channel u,

e.g., (11 286), channel 286 of generator level 11, is thresholded

against a category-specific threshold, chosen such that the result-

ing mask has the same size as the semantic mask Mc. The gradient

mask of (11 286) has large overlap with the mask for hair, and no

overlap with the mouth, while that of (6 202) has large overlap

with the mask for mouth and almost none with the hair.

4. Detecting locally-active style channels

In this section we describe a simple method for detecting

StyleSpace channels that control the visual appearance of

local semantic regions. The intuition behind our approach

is that by examining the gradient maps of generated images

with respect to different channels, and measuring their over-

lap with specific semantic regions, we can identify those

channels that are consistently active in each region. This

is demonstrated in Figure 2 using two gradient maps for

two different channels. If the overlap is consistent over a

large number of images, these channels will be identified as

locally-active for the overlapped semantic regions.

Specifically, for each image generated with style code

s ∈ S , we apply back-propagation to compute the gradient

map of the image with respect to each channel of s. To save

computation, the gradient maps are computed at a reduced

spatial resolution r × r (r = 32 in our experiments). Next,

a pretrained image segmentation network is used to obtain

the semantic map Ms of the generated image. The map is

resized to r × r by using the most abundant semantic cate-

gory inside each bin as its semantic label. For each semantic

category c and each channel u, we measure the overlap be-

tween the semantic region Ms
c and the gradient map Gs

u:

OCs
u,c =

|(Gs
u > tsu,c) ∩Ms

c |

|Ms
c |

d
. (1)

Here tsu,c is a threshold chosen such that gradient mask

(Gs
u > tsu,c) has the same size as Ms

c (see Figure 2). The

correction factor d gives more weight to small areas, since

a large overlap between two small masks indicates precise

localization. In practice, d = 2 gives us good balance be-

tween large and small areas.

To ensure consistency across a variety of images, we

sample 1K different style codes, and compute for each code

s and each channel u the semantic category with the highest

overlap coefficient: c∗s,u = argmaxOCs
u,c. Our goal is to

detect channels for which the highest overlap category is the

same for the majority of the sampled images. Furthermore,

we require that the overlap with the second most commonly

affected category is twice as rare.

4.1. Experiments

We analyze StyleGAN2 [18] pretrained on FFHQ

1024x1024, LSUN Car 512x384, and LSUN Bedroom

128x128 [36]. To obtain semantic maps, we use a BiSeNet

model [35] pretrained on CelebAMask-HQ [19], and a uni-

fied parsing network [32] pretrained on Broden+ [4].

As explained in Section 3 and supp. Section 9, 3040

channels of S are used to control the tRGB blocks. None of

these channels were found to have a localized effect. Rather,

these channels have a global effect on the generated image,

as shown in supp. Figure 10.

Among the remaining 6048 channels, 1871 were found

to be locally-active (in the model trained on FFHQ). Most of

the detected channels control clothes (34.9%) or hair (21%).

For the model trained on LSUN bedroom, we found 421

locally-active channels, most of which control the bed re-

gion (27.6%). For StyleGAN2 pretrained on LSUN car, we

found 913 locally-active channels, most of which control

window (33.1%) and wheel (27.3%) regions. Most of the

detected channels are spread among several middle layers,

with barely any channels found in early or late layers. A de-

tailed summary of the detected locally-active channels and

their breakdown by different semantic regions is included

in supp. Section 11.

Figures 3 and 4 demonstrate some of the localized ma-

nipulations obtained by modifying the values of the chan-

nels we detected. Surprisingly, each channel appears to only

control a single attribute, and even channels affecting the

same local region are well disentangled, as demonstrated in

Figure 1 and supp. Figure 12. Unlike most controls detected

by previous methods, these SpaceStyle channels provide an

extremely fine-grained level of control. For example, the

four channels for the ear region (last row of Figure 3), pro-

vide separate controls for the visibility of the ear, its shape,

and the presence of an earring. A variety of fine-grained

controls are also detected in the Car and Bedroom models

(Figure 4). It should be noted that finding such interpretable

disentangled local controls is very easy with our method:

out of the top 10 most localized channels for each seman-

tic area, we observe that 4–10 dimensions control (subjec-

tively) meaningful visual attributes. A detailed breakdown

by semantic category is reported in supp. Table 4.

In contrast, individual channels of W or W+ space are

usually entangled, with each channel affecting multiple at-

tributes, as predicted by the DCI-based analysis from the

previous section. We attribute this to the fact that each chan-

nel of W+ affects the style parameters of an entire gener-

ation layer (via an affine transformation), rather than those

of a single feature map channel.
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Figure 3. Examples of manipulations, each controlled by a single style channel. Each pair of images shows the result of manipulation by

decreasing (-) and increasing (+) the value of the style parameter (the original image is omitted). The layer index, channel index, and the

direction of change is overlayed in the bottom left corner.

5. Detecting attribute-specific channels

In this section we propose a method for identifying

StyleSpace channels which control a specific target at-

tribute, specified by a set of examples. For example, given a

collection of portraits of grey-haired persons, our goal is to

find individual channels that control hair greyness. In con-

trast to InterFaceGAN [29], where around 10K positive and

10K negative examples are required, our approach typically

requires only 10–30 positive exemplars. This is an impor-

tant advantage, since for many attributes, negative examples

can be highly varied. For example, while it is easy to find

positive examples for blond hair, negative examples should

ideally include all non-blond hair colors.

Our approach is based on the simple idea that the differ-

ences between the mean style vector of the positive exam-

ples (exemplar mean) and that of the entire generated dis-

tribution (population mean) reveal which channels are the

most relevant for the target attribute.

Specifically, let µp and σp denote the mean and the stan-

dard deviation of the style vectors over the generated distri-

bution. Given the style vector se of a specific positive ex-

ample, we compute its normalized difference from the pop-

ulation mean: δe = se−µp

σp . Next, let µe and σe denote the

mean and the standard deviation of the differences δe over

the exemplar set. For each style channel u, the magnitude

of the corresponding component µe
u indicates the extent to

which u deviates from the population mean. Thus, we mea-

sure the relevance of u with respect to the target attribute as
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Figure 4. Examples of manipulations, each controlled by a single style dimension. Each pair of images shows the result of manipulation

by decreasing (-) and increasing (+) the value of the style parameter (the original image is omitted). The layer index, channel index, and

the direction of change is overlayed in the bottom left corner.

the ratio θu =
|µe

u|
σe
u

. Due to the high disentanglement of S

(Section 3), a style channel u with a high θu value may be

assumed to control the target attribute.

5.1. Experiments

We first use a large number (1K) of positive examples to

verify that the simple method described above is indeed able

to identify a set of attribute-specific control channels. Next,

we demonstrate that as few as 10–30 positive examples are

sufficient to detect most of these channels.

We first use the set of pretrained classifiers that were

used in Section 3, to identify 1K highly positive examples

for each of selected 26 attributes (see supp. Section 12 and

Table 5). For each attribute, we rank all the style channels

(except the 3040 tRGB ones) by their relevance θu, and

manually examine the top 30 channels to verify that they

indeed control the target attribute.

Our examination reveals that 16 out of the 26 attributes

may be controlled by at least one single style channel (see

supp. Table 5). The channels detected for each attribute and

their ranks are reported in supp. Table 6. Interestingly, for

well-defined visual attributes, such as gender, black hair, or

gray hair, our method was able to find only one controlling

channel. In contrast, for less specific attributes, especially

those related to hair styles (bangs, receding hairline), we

identified multiple controlling channels. We observe that

these controls are not redundant, each controlling a unique

hair style. The remaining 10 attributes are typically entan-

gled (e.g., high cheekbones, young, or chubby), and thus

no single control channels were detected for them. See

supp. Section 12 for further discussion.

Most of the detected attribute-specific control channels

were highly ranked by our proposed importance score θu.

For example, for 14 out of 16 attributes, the top-ranked
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Figure 5. Top-5 detection accuracy for attribute-specific controls

(for three target attributes) using 10, 20, or 30 positive examples.

channel was verified to indeed control the attribute (see

supp. Table 6 for the ranks of all the attribute-specific chan-

nels that we detected). This suggests that a small number of

positive examples provided by a user might be sufficient for

identifying such channels.

To verify the above conjecture, we randomly select sets

of 10, 20, and 30 positive examples for each of three at-

tributes (sideburns, smile, gray hair) and identify the top 5

channels for each of these small exemplar sets. If the top 5

channels include any of the verified control channels (deter-

mined using 1K images), this is considered a success. The

results are reported in Figure 5.

As shown in Figure 5, increasing the number of positive

examples improves the detection accuracy. The accuracy

may be further improved by only considering locally-active

channels (found as described in Section 4) in areas related

to the target attribute. For example, if smile is the target

attribute, considering only channels that are active in the

mouth area, greatly improves the chances of detection. As

shown by the orange bars in Figure 5, the top-5 detection

rate exceeds 92% using as few as 20 examples, if the search

is restricted to channels locally-active in the target area.

In summary, our approach requires only 10–30 positive

examples, and detects single StyleSpace control channels.

In contrast, GANSpace [12] identifies manipulation con-

trols via a manual examination of a large number of differ-

ent manipulation directions, which typically involve all of

the channels of one or several layers. InterFaceGAN [29]

requires more than 10K positive and 10K negative exam-

ples for each manipulation direction, which is defined in W
space, and thus affects all layers. Furthermore, the controls

detected by these two approaches are more entangled that

our control channels, as shown in the next section.

6. Disentangled attribute manipulation

In this section we compare the ability of our ap-

proach to achieve disentangled manipulation of visual at-

tributes to that of two state-of-the-art methods, specifically

GANSpace [12] and InterFaceGAN [29]. Comparisons to

additional methods are included in supplementary material.

Figure 6 and supp. Figure 15 show a qualitative com-

parison between the three methods, showing the manipula-

tion of three attributes for which the direction of manipu-
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Figure 6. Comparison with state-of-the-art methods using the same

amount of manipulation ∆lt = 1.5σ(lt).

lation is identified by all three approaches: Gender, Gray

hair, and Lipstick. The step size along the manipulation di-

rection is chosen such that it induces the same amount of

change in the logit value lt of the corresponding classifiers

(pretrained on CelebA). Note that InterFaceGAN manipu-

lations sometimes significantly change the identity of the

person (esp. in the Lipstick manipulation), and some other

attributes as well (added wrinkles in the Gray hair manipu-

lation). GANSpace manipulations also exhibit some entan-

glement (Lipstick affects face lightness, Gray hair ages the

rest of the face). In contrast, our approach appears to affect

only the target attribute. Our Gender manipulation, for ex-

ample, does not affect the hair style, and minimally changes

the face, yet the gender unmistakably changes.

To perform a more comprehensive and quantitative com-

parison between the three methods, we propose a general

disentanglement metric for real images, which we refer to

as Attribute Dependency (AD). Attribute Dependency mea-

sures the degree to which manipulation along a certain di-

rection induces changes in other attributes, as measured by

classifiers for those attributes (see supp. Section 13 for ad-

ditional details). The use of classifiers here is necessary in

order to cope with real images, where the exact factors of

variation are not known, and we have no means to measure

them. Intuitively, disentangled manipulations should induce

smaller changes in other attributes.

To perform the comparison, we sample a set of images

without the target attribute t (e.g., without gray hair), and

manipulate them towards the target attribute, by a certain

amount measured by the change in the logit outcome ∆lt of

a classifier pretrained to detect attribute t. Next, we measure

the change of logit ∆li between the original images and the

manipulated ones for other attributes ∀i ∈ A\t, where A is

the set of all attributes. Each change is normalized by σ(li),
the standard deviation of the logit value for attribute i over

a large set of generated images. We measure mean-AD, de-
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Figure 7. Manipulation of real images using encoder-based inversion. Original images are from FFHQ, and were not part of the encoder’s

training set. More results can be found in supplementary Figure 19.
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Figure 8. Mean-AD vs. the degree of target attribute manipulation

(∆lt/σ(lt)). Lower mean-AD indicates better disentanglement.

fined as E( 1
k

∑
i∈A\t(

∆li
σ(li)

)), where k = |A|−1. Similarly,

we measure max-AD, defined as E(maxi∈A\t(
∆li
σ(li)

)).

Figure 8 plots the mean-AD of the three methods

(GANSpace, InterFaceGAN, and ours) for a range of ma-

niplations of the Gender, Gray hair, and Lipstick attributes.

It may be seen that our method (in red) exhibits a smaller

mean-AD, compared to the other two methods, for each

of these three attributes and across the entire manipulation

range. This is consistent with our qualitative visual ob-

servations, as demonstrated in Figure 6. Our method also

achieves lower max-AD scores, as reported in the supple-

mentary material.

7. Manipulation of Real Images

To manipulate real images, it is necessary to first invert

them into latent codes. This may be done via latent opti-

mization [1, 2] or by training an encoder [39, 38] based on

reconstruction loss (LPIPS [37] or L2). We adapt the la-

tent optimization algorithm of Karras et al. [18] to invert

real images into W , W+, and S separately. Latent opti-

mization in W+ and S spaces has more flexibility than in

W , enabling a closer reconstruction of the input image. In-

deed, we find that the visual accuracy of the reconstruction

is the highest when optimizing in S , followed by W+, and

is the lowest for W (see supp. Figure 17). Unfortunately,

the extra flexibility may result in latent codes that do not

lie on the generated image manifold, and attempting to ma-

nipulate such codes typically results in unnatural artifacts.

Thus, conversely to reconstruction accuracy, we find that

manipulation naturalness is best when the latent optimiza-

tion is done in W , followed by W+, and the worst for S
(see supp. Figure 18).

In order to achieve a satisfactory compromise between

reconstruction accuracy and artifact-free manipulation, we

train an encoder to S space following the training strat-

egy of [38] using only reconstruction loss (LPIPS). The en-

coder’s structure follows that of StyleALAE [24]. Due to

limited computational resources, the encoder is trained on

real images from FFHQ whose resolution was reduced to

128 × 128. The reconstructed images bear good similarity

to the input images, but exhibit some compression artifacts.

The encoder’s result serves as the starting point for latent

optimization [18] in S space, which proceeds for a small

number of iterations (50 rather than a few thousands). We

find that this process can efficiently remove compression ar-

tifacts, and the resulting inversions enable artifact-free ma-

nipulation, as demonstrated in Figure 7. We believe this is

because the encoder learns to embed the input real images

closer to the generated image manifold, and the few opti-

mization iterations only fine-tune the embedding.

8. Conclusion

We have shown that StyleSpace is highly disentangled,

and proposed simple methods for detecting meaningful ma-

nipulation controls in this space. Future work should focus

on finding meaningful control directions that involve multi-

ple style channels. We also plan to develop inversion tech-

niques that can deliver both high reconstruction accuracy

and manipulability.

Acknowledgments We thank the anonymous reviewers for

their comments. This work was supported by a gift from Adobe

and by the Israel Science Foundation (grant no. 2492/20).

12870



References

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent

space? In Proc. ICCV, pages 4432–4441, 2019.

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan++: How to edit the embedded images? In

Proc. CVPR, pages 8296–8305, 2020.

[3] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff,

Bolei Zhou, Jun Yan Zhu, and Antonio Torralba. Seman-

tic photo manipulation with a generative image prior. ACM

Trans. Graph., 38(4), 2019.

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and

Antonio Torralba. Network Dissection: quantifying inter-

pretability of deep visual representations. In Proc. CVPR,

pages 6541–6549, 2017.

[5] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,

Joshua B. Tenenbaum, William T. Freeman, and Antonio

Torralba. GAN Dissection: visualizing and understanding

generative adversarial networks. In Proc. ICLR, 2019.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

arXiv preprint arXiv:1809.11096, 2018.

[7] Edo Collins, Raja Bala, Bob Price, and Sabine Susstrunk.

Editing in style: Uncovering the local semantics of GANs.

In Proc. CVPR, pages 5771–5780, 2020.

[8] Cian Eastwood and Christopher KI Williams. A framework

for the quantitative evaluation of disentangled representa-

tions, 2018. In Proc. ICLR, volume 5, page 8, 2018.

[9] Aviv Gabbay and Yedid Hoshen. Style generator inver-

sion for image enhancement and animation. arXiv preprint

arXiv:1906.11880, 2019.

[10] Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip

Isola. GANalyze: toward visual definitions of cognitive im-

age properties. In Proc. ICCV, pages 5744–5753, 2019.

[11] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing

using multi-code GAN prior. In Proc. CVPR, pages 3012–

3021, 2020.

[12] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and

Sylvain Paris. GANSpace: discovering interpretable GAN

controls. arXiv preprint arXiv:2004.02546, 2020.

[13] Xun Huang and Serge Belongie. Arbitrary style trans-

fer in real-time with adaptive instance normalization. In

Proc. ICCV, pages 1501–1510, 2017.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[15] Ali Jahanian, Lucy Chai, and Phillip Isola. On the “steer-

ability” of generative adversarial networks. arXiv preprint

arXiv:1907.07171, 2019.

[16] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of GANs for improved quality, stability,

and variation. arXiv preprint arXiv:1710.10196, 2017.

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

Proc. CVPR, pages 4401–4410, 2019.

[18] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,

Jaakko Lehtinen, and Timo Aila. Analyzing and improving

the image quality of StyleGAN. In Proc. CVPR, pages 8110–

8119, 2020.

[19] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.

Maskgan: Towards diverse and interactive facial image ma-

nipulation. In Proc. CVPR, pages 5549–5558, 2020.

[20] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[21] Yotam Nitzan, Amit Bermano, Yangyan Li, and Daniel

Cohen-Or. Disentangling in latent space by harnessing a pre-

trained generator. arXiv preprint arXiv:2005.07728, 2020.

[22] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin,

Chen Change Loy, and Ping Luo. Exploiting deep genera-

tive prior for versatile image restoration and manipulation.

arXiv preprint arXiv:2003.13659, 2020.

[23] William Peebles, John Peebles, Jun-Yan Zhu, Alexei Efros,

and Antonio Torralba. The hessian penalty: A weak

prior for unsupervised disentanglement. arXiv preprint

arXiv:2008.10599, 2020.

[24] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco

Doretto. Adversarial latent autoencoders. In Proc. CVPR,

pages 14104–14113, 2020.

[25] Alec Radford, Luke Metz, and Soumith Chintala. Un-

supervised representation learning with deep convolu-

tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[26] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,

Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding

in style: a stylegan encoder for image-to-image translation.

arXiv preprint arXiv:2008.00951, 2020.

[27] Karl Ridgeway and Michael C Mozer. Learning deep dis-

entangled embeddings with the f-statistic loss. In Advances

in Neural Information Processing Systems, pages 185–194,

2018.

[28] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-

preting the latent space of GANs for semantic face editing.

In Proc. CVPR, pages 9243–9252, 2020.

[29] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou.

InterFaceGAN: interpreting the disentangled face represen-

tation learned by GANs. arXiv:2005.09635, 2020.

[30] Yujun Shen and Bolei Zhou. Closed-form factorization of

latent semantics in GANs. arXiv:2007.06600, 2020.

[31] Andrey Voynov and Artem Babenko. Unsupervised discov-

ery of interpretable directions in the GAN latent space. In

Proc. ICML, pages 9786–9796, 2020.

[32] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and

Jian Sun. Unified perceptual parsing for scene understand-

ing. In Proc. ECCV, pages 418–434, 2018.

[33] Yinghao Xu, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, and

Bolei Zhou. Generative hierarchical features from synthe-

sizing images. arXiv preprint arXiv:2007.10379, 2020.

[34] Ceyuan Yang, Yujun Shen, and Bolei Zhou. Semantic hier-

archy emerges in deep generative representations for scene

synthesis. arXiv preprint arXiv:1911.09267, 2019.

[35] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmen-

12871



tation network for real-time semantic segmentation. In

Proc. ECCV, pages 325–341, 2018.

[36] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas

Funkhouser, and Jianxiong Xiao. Lsun: Construction of a

large-scale image dataset using deep learning with humans

in the loop. arXiv preprint arXiv:1506.03365, 2015.

[37] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In Proc. CVPR, pages 586–

595, 2018.

[38] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-

domain GAN inversion for real image editing. arXiv preprint

arXiv:2004.00049, 2020.

[39] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
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