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Abstract

Our world offers a never-ending stream of visual stimuli,

yet today’s vision systems only accurately recognize pat-

terns within a few seconds. These systems understand the

present, but fail to contextualize it in past or future events.

In this paper, we study long-form video understanding.

We introduce a framework for modeling long-form videos

and develop evaluation protocols on large-scale datasets.

We show that existing state-of-the-art short-term models

are limited for long-form tasks. A novel object-centric

transformer-based video recognition architecture performs

significantly better on 7 diverse tasks. It also outperforms

comparable state-of-the-art on the AVA dataset.

1. Introduction

Our world tells an endless story of people, objects, and

their interactions, each person with its own goals, desires,

and intentions. Video recognition aims to understand this

story from a stream of moving pictures. Yet, top-performing

recognition models focus exclusively on short video clips,

and learn primarily about the present — objects, places,

shapes, etc. They fail to capture how this present connects

to the past or future, and only snapshot a very limited ver-

sion of our world’s story. They reason about the ‘what’,

‘who’, and ‘where’ but struggle to connect these elements to

form a full picture. The reasons for this are two fold: First,

short-term models derived from powerful image-based ar-

chitectures benefit from years of progress in static image

recognition [8,72]. Second, many current video recognition

tasks require little long-term temporal reasoning [36,39,61].

In this paper, we take a step towards leveling the playing

field between short-term and long-term models, and study

long-form video understanding problems (Fig. 1). First,

we design a novel object-centric long-term video recog-

nition model. Our model takes full advantage of current

image-based recognition architectures to detect and track

all objects, including people, throughout a video, but ad-

ditionally captures the complex synergies among objects

across time in a transformer-based architecture [74], called

Object Transformers. Tracked instances of arbitrary length

Figure 1. Long-Form Video Understanding aims at understand-

ing the “full picture” of a long-form video. Examples include un-

derstanding the storyline of a movie, the relationships among the

characters, the message conveyed by their creators, the aesthetic

styles, etc. It is in contrast to ‘short-form video understanding’,

which models short-term patterns to infer local properties.

along with their visual features form basic semantic ele-

ments. A transformer architecture then models arbitrary

interactions between these elements. This object-centric

design takes inspiration from early work that builds space-

time instance representations [5,14,22,87], but further con-

siders more complex inter-instance interactions over a long

span of time. The model can be trained directly for a spe-

cific end-task or pre-trained in a self-supervised fashion

similar to models in image recognition [10, 26, 53, 55, 70]

and language understanding [13, 40, 45, 86].

Second, we introduce a large-scale benchmark, which

comprises of 9 diverse tasks on more than 1,000 hours of

video. Tasks range from content analysis to predicting user

engagement and higher-level movie metadata. On these

long-form tasks, current short-term approaches fail to per-

form well, even with strong (Kinetics-600 [6], AVA [25])

pre-training and various aggregation methods.

Our experiments show that Object Transformers outper-

form existing state-of-the-art methods on most of the long-

form tasks, and significantly outperform the current state-

of-the-art on existing datasets, such as AVA 2.2. The videos

we use are publicly available and free.
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2. Related Work

Short-form video understanding has seen tremendous

progress in both efficiency [15, 73, 82, 92] and accuracy [8,

16, 60, 77] in recent years. Most state-of-the-art models are

based on 2D or 3D CNNs operating on short videos of less

than five seconds [8, 15, 16, 60, 73, 77, 82, 91, 92]. A few

works explore long-term patterns for improving local pat-

tern recognition [58, 81], but not long-form understanding.

Long-form video understanding is less explored. It aims

to understand the full picture of a much longer video (e.g.,

minutes or longer). Tapaswi et al. [68] introduce a movie

question answering dataset based on both text and video

data. The benchmark, however, is dominated by language-

only approaches [68], making it less ideal for evaluating

progress of computer vision. Vicol et al. [75], Xiong et

al. [84], and Huang et al. [30] use vision-only movie under-

standing datasets, but their videos are not publicly accessi-

ble due to copyright issues. Bain et al. [3] and Zellers et

al. [88] propose joint vision-language benchmarks for text-

to-video retrieval and question answering, respectively.

In this paper, we introduce a new long-form video un-

derstanding benchmark of 9 vision-only tasks on more than

30K freely accessible videos. Our evaluation is relatively

simple compared to prior work that involves language com-

ponents in evaluation protocols.

Some studies propose efficient architectures [31, 35, 91]

or pooling-based methods [17, 19, 76] that may operate on

long-form videos. These methods primarily focus on the

interactions between adjacent frames, while our model cap-

tures the long-range interactions between tracked objects.

Representing instances as space-time trajectory has a

long history in computer vision [14, 21, 22, 56]. Our work

takes inspiration from these concepts, but further considers

inter-instance relationships in our methods.

Interaction modeling for images is widely studied for im-

proving, e.g., object detection [11], human action recogni-

tion [20], or 3D recognition [89]. For videos, a growing

line of work models interactions among objects or features

for improving short-term recognition [4, 18, 33, 47, 48, 50,

69, 78, 90]. They mainly leverage spatial but not temporal

structures of a video.

Self-supervised learning drives the success of natural lan-

guage processing models [13, 40, 45], visual pattern learn-

ing [10, 23, 26, 32, 49, 53, 55, 79], and image-language joint

representation learning [12, 42, 46, 62, 66]. Some of these

methods are video-based like ours, but aim at learning ro-

bust spatial rather than temporal features [23, 32, 49, 79].

For example, Jabri et al. [32] track spatial features across

frames to learn viewpoint-, scale-, or occlusion-invariant

features for each instance. Instead, our goal is to learn

long-term and high-level interaction patterns. Several other

Figure 2. We lever-

age short-term de-

tection and tracking

to form instance rep-

resentations.

papers leverage multiple modalities for learning joint con-

cepts [2, 38, 51, 62, 63]. Our method requires only visual

data. Sun et al. [64] recently propose a joint language-

vision model for learning long-term concepts on cooking

videos. It shares a similar goal to our approach. The main

difference is that they use a ‘frame-as-word’, ‘video-as-

sentence’ analogy, while we build object-centric represen-

tations. Our model captures interactions between objects,

while a ‘frame-as-word’ approach captures the interactions

between adjacent video frames. We will show the signifi-

cance of this design in experiments.

3. Preliminaries

Existing short-term models parse many aspects of a

video. They detect objects, track boxes, etc. This local

understanding forms a useful building block for our Ob-

ject Transformers. Instead of “re-learning” these short-term

concept from scratch, our method builds on these short-term

recognition modules. We briefly review these methods and

introduce notations below.

Action and Object Detection. The states and properties of

humans and objects take a central role in the story told by

the visual world. In this paper, we use an action detection

model [16] to recognize the atomic actions [25] of humans,

and an object detector [57] to find objects with their cate-

gories. We denote the bounding box of a detected person or

object i at frame t by st,i ∈ R
4, and the associated feature

representation by zt,i.

Tracking. An instance often appear in multiple frames.

Tracking algorithms track these appearances over time and

associate them to their identity [52, 71]. We use τt,i to de-

note the associated instance index of detection i at time t.1

Shot Transition Detection. Shot transitions or “cuts” seg-

ment a video into shots. They form natural semantic bound-

aries. A rule-based thresholding strategy typically suffices

for shot transition detection [9]. cu denotes the shot an in-

stance u is in.

The methods above parse local properties of a video but

do not connect them to form a more complete picture of the

whole video. We tackle this issue next.

1In instance segmentation literature [27], the term ‘instance’ often

refers to one appearance in one frame. We extend the definition and use

‘instance’ to refer to one appearance in a space-time region, which may

comprise multiple frames.
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(a) Long-Form Understanding (b) Masked-Instance Pre-Training (c) Compatibility Pre-Training

Figure 3. Long-Form Video Understanding with Object Transformers. Object Transformers take in instance-level representations and

model the synergy among them for long-form video tasks (3a). To address the sparsity in supervising signals, we pre-train the model to

predict the semantic representations of randomly masked instances (3b) and/or predict “compatibility” between two videos (3c). Both

pre-training tasks encourage Object Transformers to learn long-term semantics, commonsense, or human social behaviors.

4. Long-Form Video Understanding

We propose Object Transformers for long-form video

understanding. It builds on two key ideas: 1) An object-

centric design, and 2) a self-supervised learning approach.

4.1. Object­Centric Design

Instead of modeling videos as width×height×time vol-

ume of pixels, we take a more structured approach and

model how each instance evolves in space and time and the

synergy between the instances.

Consider a set of instances U (people, tables, cars, . . . )

found and tracked by short-term models (§3). Each in-

stance u ∈ U is associated with features in space-time

{(t, st,i, zt,i) | τt,i = u, ∀t, i} (Fig. 2), where t, st,i, zt,i,

and τt,i denote the time stamp, spatial locations, short-term

features, and the tracked identity, respectively.

We build a transformer-based architecture [74] to model

both how each instance u ∈ U evolves and interacts with

other instances. The transformer takes a set of representa-

tion vectors as input. In our case, each vector correspond

to a box-level representation together with its position, link

and shot information. Namely, for each (t′, s′, z′) associ-

ated with u, we construct one input vector

y′ :=W(feat)z′ +W(spatial)s′ +E
(temporal)
t′

+E(instance)
u +E(shot)

cu
+ b, (1)

where the matrices W(feat) and W(spatial) project z′ and s′

into a shared 768-dimensional vector space, and b is a bias

term. E(temporal) and E(shot) are position embeddings [13]

indexed by ‘time stamp’ and ‘shot index’, respectively. We

additionally add a learned instance-level embedding vector

E(instance) so that the model knows what inputs belong to

the same instance. However, learning instance-specific em-

beddings cannot generalize to new videos with unseen in-

stances. We thus randomly assign instance indices at each

forward pass. This encourages the model to leverage only

“instance distinctiveness” rather than memorizing instance-

specific information. The exact model specification is given

in the Supplementary Material.

We use a learned vector E[CLS] to be the first token

of each example (similar to the “[CLS]” special token in

Devlin et al. [13]), and use the output vector correspond-

ing to that position, v[CLS], as the video-level representa-

tion. We use a linear output head h(task)(v[CLS]) to perform

each video-level end-task. Fig. 3a illustrates our model. In

§4.2, we will introduce additional output heads, h(mask) and

h(compat) along with the associated loss functions ℓ(mask)

and ℓ(compat) for pre-training object transformers in a self-

supervised manner.

Discussion: Object-Centric vs. Frame-Centric vs. Pixel-

Volume. Most existing methods either view a video as a

list of 2D images (e.g., [35, 64]) or a width×height×time

pixel volume (e.g., [8, 16, 72]). While these views are con-

venient, we argue that they are unnatural ways to look at

the signals, possibly leading to difficulties in learning. Af-

ter all, a video frame is simply a projection of (constantly

changing) objects and scenes in a 3D world snapshotted at

a particular point of time. Modeling videos through model-

ing the interactions among a list of 2D images likely suffers

from model misspecification, because the projected 2D im-

ages do not interact with each other — It is the objects in our

3D world that interact with each other. Object Transformers

directly model these interactions.

Modeling a video as a width×height×time pixel vol-

ume [72] amplifies the problem even more, especially for

long videos, because the pixel volume is simply a stack of

the 2D projections, with arbitrary camera positions. The se-

mantic of the viewed world is however, invariant to these

artifacts introduced by observers. The pixel-volume view

ignores this invariance, and thus likely hurts data efficiency,

let alone the prohibitive cost to scale 3D CNNs to long-form

videos. Object Transformers leverage tracking and avoid

these issues. In §6, we will empirically demonstrate the ad-

vantage of the object-centric design over existing frame-list

or pixel-volume designs.
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4.2. Self­Supervision

Long-form video understanding also brings challenges

in supervision. Intuitively, long-form videos could en-

joy less ‘supervising signal’ per pixel, given its potentially

larger number of pixels per annotation. In §6, we will see

that a long-form video model trained from scratch indeed

suffers generalization challenges in many tasks. One way to

alleviate the supervision issue is to first pre-train our model

in a self-supervised fashion on unlabeled videos, before

fine-tuning on the end-tasks.2 We present two pre-training

strategies below.

1) Masked-Instance Prediction. One natural choice of the

pretext task is a masked instance prediction task, similar to

Context Encoders [55] or BERT [13]. Namely, we mask

out features of randomly selected instances M ⊂ U , and

train our Object Transformers to predict the “semantics”

(e.g., object categories, person actions) of the masked in-

stances. Note that we mask out only the feature vector z,

but retain time stamp t, spatial position s, instance embed-

ding E(instance), and shot embedding E(shot) for specify-

ing ‘where in a video’ to predict. Following standard prac-

tice [13], masked feature z is replaced by a learned embed-

ding z(mask) with 80% probability, replaced by a randomly

sampled feature with 10% probability, and stays unchanged

with the remaining 10% probability. At each output po-

sition corresponding to the masked inputs, we use a out-

put head h(mask) to predict a probability vector p̂ ∈ ∆d−1

that regresses the pseudo-label3 p ∈ ∆d−1 using distillation

loss [29] (with temperature T = 1),

ℓ(mask) (p, p̂) :=

d−1
∑

k=0

−pk log (p̂k) . (2)

Fig. 3b presents a visual illustration. Intuitively, this task

asks ‘What object might it be?’ or ‘What a person might

be doing?’ in the masked regions, given the context. We

humans can perform this task very well, given our social

knowledge and commonsense. We train Object Transform-

ers to do the same.

Discussion: Masked-Instance Prediction vs. Masked-

Frame Prediction. Our method share similar spirits with

Sun et al. [64]’s ‘Masked-Frame Prediction’ pretext task

(if removing their language components), but with impor-

tant distinctions. ‘Masked-Frame Prediction’ is in fact quite

easy, as linear interpolation using the 2 adjacent frames al-

ready provides a strong solution in most cases due to conti-

nuity of physics. This observation is consistent with the ob-

servations in Sun et al. [64] that such pre-training method is

2These pre-training methods are self-supervised, because they do not

require additional annotations to perform. Our full approach is not self-

supervised, because the short-term features are learned from labeled data.
3We infer pseudo-labels using the same short-term model that is used

to compute the feature vector z.

data hungry and that their ‘visual-only’ variant (without us-

ing language) is not effective. Masked-Instance Prediction,

on the other hand, does not suffer from the trivial solution. It

directly models how objects interact with each other, rather

than learning to interpolate in the projected 2D space.

Discussion: Masked-Instance Prediction vs. Spatial-

Feature Learning Methods. Also note that our goal of

pre-training is different from the goal of most prior work on

self-supervised method on videos [2,23,32,38,49,79]. They

typically involve tracking an object or an interest point over

time to learn (e.g., view-point, scale, occlusion, lighting)

invariance on one instance. Their goal is learning robust

spatial representations. In this paper, we aim at learning

longer-term patterns in videos.

2) Span Compatibility Prediction. The second pre-

training pretext task we use is to classify whether two spans

of video are “compatible”. For example, we may define

two spans to be compatible when they come from the same

scene or happen one after another. To solve this task, the

model is encouraged to learn high-level semantics concepts,

e.g., ‘wedding ceremony’ should be more compatible with

‘party’ and ‘dinner’ than ‘camping’ or ‘wrestling’. Fig. 3c

illustrates this method. We use an output head h(compat)

to obtain v = h(compat)
(

v[CLS]
)

and use the InfoNCE

loss [54] for compatibility training:

ℓ(compat)
(

v,v+,v−
)

= − log
e(v·v

+)

e(v·v+) +
∑N−1

n=0 e(v·v
−
n )

,

(3)

where v+ and v−

n correspond to the spans compatible and

incompatible with v, respectively.

Discussion: Comparison to Next-Sentence Prediction.

Compatibility prediction is a modified version of the “next-

sentence prediction” task commonly used in NLP [13].

One distinction is that while languages typically have strict

grammar and rich structures, videos are more flexible in

structure. For example, an event of ‘dinner’ can take place

with arbitrary number of people for arbitrarily long and po-

tentially presented in multiple shots in a video. We thus re-

lax the requirement of predicting immediate adjacency, and

enforce a more relaxed “compatibility” objective. We will

describe our exact instantiation in §4.3.

4.3. Implementation Details

Instance Representations. We use a Faster R-CNN [57]

with ResNet-101 [28] backbone and FPN [43] pre-trained

on COCO [44] to find objects other than humans. The

model obtains 42.0 box AP on COCO. We use the

RoIAlign [27] pooled feature vector and the end of the

Faster-RCNN as feature vector z. For person action detec-

tion, we adopt a Faster-R-CNN-based person detector [57]
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wife & husband

friends
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(a) Relationship

confront

explain

discuss

(b) Way of Speaking
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(c) Scene/Place
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Quentin Tarantino

Ron Howard

Peter Jackson

(f) Director

romance

horror

comedy

(g) Genre

John Hughes

Stephen King

David Koepp

(h) Writer

1950s

1980s

2010s

(i) Year

Figure 4. The Long-Form Video Understanding (LVU) Benchmark. Here we present three examples with their annotations for each

task. LVU contains a wide range of tasks for probing different aspects of video understanding research and model design. The full list of

classes for each task, more details, and more examples are available in Supplementary Material.

(∼93.9 AP@50) commonly used in prior work [16, 81]

to detect people first, and use a ResNet-101 [28] Slow-

Fast network [16] with non-local blocks [77] to compute

RoIAlign [27] pooled features as z for each person box. The

model is pre-trained on AVA [25] and achieves 29.4% mAP

on the AVA validation set. We represent si,j as the posi-

tions of the four corners
(

s
(top)
i,j , s

(bottom)
i,j , s

(left)
i,j , s

(right)
i,j

)

,

where each of the values are normalized in [0, 1]. For track-

ing, we adopt the algorithm described in Gu et al. [25]. We

use PySceneDetect [9] for shot transition detection.

Compatibility Prediction. The MovieClips dataset [1] we

use contain (typically one-to-three-minute-long) segments

of movies. In this paper, we define two spans to be compat-

ible if they come from the same segment.

When training with compatibility prediction, each mini-

batch of size n comprises n/2 pairs of positive examples

(v,v+). Each pair uses all other examples in the same mini-

batch as negative examples v−.

Output Heads. Following prior work [13], h(mask) is a 2-

layer MLP. h(compat) and all end tasks use dropout with

rate 0.1 followed by a linear layer.

5. The Long-Form Video Understanding

(LVU) Benchmark

We introduce a new benchmark that contains 9 tasks

for evaluating long-form video understanding. The bench-

mark is constructed on the publicly available MovieClips

dataset [1], which contains ∼30K videos from ∼3K

movies.4 We resize all videos such that their height is 480

pixels. Each video is typically one-to-three-minute long.

Tasks. Our tasks cover a wide range of aspects of long-

form videos, including content understanding (‘rela-

tionship’, ‘speaking style’, ‘scene/place’), user engage-

ment prediction (‘YouTube like ratio’, ‘YouTube popular-

ity’), and movie metadata prediction (‘director’, ‘genre’,

‘writer’, ‘movie release year’). Fig. 4 presents examples

of each task. For content understanding tasks, we parse

the description associated with each video and use the most

common discovered categories (e.g., ‘friends’, ‘wife & hus-

band’, etc.) to form a task (e.g., ‘relationship’ prediction).

4Videos are accessed on February 26, 2020. Animations are excluded.

Outros are removed for all videos.

1888



average content user engagement metadata

rank relation (↑) speak (↑) scene (↑) like (↓) views (↓) director (↑) genre (↑) writer (↑) year (↑)

R101-SlowFast+NL [16, 28, 77] 2.44 52.4±0.0 35.8±0.0 54.7±0.0 0.386±0.000 3.77±0.00 44.9±0.0 53.0±0.0 36.3±0.0 52.5±0.0

VideoBERT [64] 2.22 52.8±1.0 37.9±0.9 54.9±1.0 0.320±0.016 4.46±0.07 47.3±1.7 51.9±0.6 38.5±1.1 36.1±1.4

Object Transformer 1.33 53.1±1.4 39.4±1.2 56.9±1.0 0.230±0.005 3.55±0.05 51.2±0.8 54.6±0.6 34.5±0.9 39.1±1.2

Table 1. Comparison to Prior Work. Our Object Transformer outperforms both baselines by a clear margin in terms of the overall ranking.

The results support that modeling the synergy across people and objects is important for understanding a long-form video. Interestingly,

short-term models suffice to work well for year prediction, which matches our expectation, since the year can often be recognized through

solely the picture resolution/quality (Fig. 4i). We report the average over 5 runs with standard error for VideoBERT and Object Transformer.

We use YouTube statistics for user engagement prediction

tasks. For metadata prediction tasks, we obtain the meta-

data from the corresponding IMDb entries5. Task construc-

tion details, statistics, and more examples are available in

Supplementary Material.

Evaluation Protocol. Content understanding and metadata

prediction tasks are single-label classification tasks, eval-

uated by top-1 classification accuracy. User engagement

prediction tasks are single-valued regression tasks, evalu-

ated by mean-squared-error (MSE). Compared to existing

tasks [3,88] on this dataset, the output space and evaluation

protocol of LVU is relatively simple. We hope this choice

makes result interpretation easier. Each task is split into

70% for training, 15% for validation, and 15% for testing.

Since we predict “movie” specific metadata for metadata

prediction tasks, we make sure the three splits contain mu-

tually exclusive sets of movies. We select hyperparameters

based on validation results, and report all results on test sets.

6. Experiments

Pre-Training Details. We pre-train our models on the

MovieClip videos for 308,000 iterations with a batch size

of 16 (2 epochs of all possible, overlapping spans) using

Adam [37], with a weight decay of 0.01 and a base learning

rate of 10−4. We use linear learning rate decay and lin-

ear warm-up [24, 28] for the first 10% of the schedule, fol-

lowing prior work [45]. We sample 60-second video spans

for training our models.6 Since each example contains a

different number of instances of different lengths, we per-

form attention masking as typically implemented in stan-

dard frameworks [80].

End-Task Fine-Tuning Details. Following prior

work [45], we perform grid search on training epochs

and batch size ∈ {16, 32} on validation sets. Detailed

training schedule selected for each task is in Supplementary

Material. We report the average performance over 5 runs in

§6.1. We use a base learning rate of 2e-5 (the same as what

is used in BERT [13]), which we find to work well for all

tasks. Other hyperparameters are the same as pre-training.

5https://www.imdb.com/
6In preliminary experiments, we do not see advantages with a longer

training schedule or using spans longer than 60 seconds.

6.1. Main Results

We start with evaluating different state-of-the-art exist-

ing methods on long-form tasks, and comparing them with

the proposed Object Transformers.

Compared Methods. The most prominent class of video

understanding methods today is probably 3D CNNs with

late fusion [8, 16, 72, 73, 77, 82], which has been widely

used for a wide range of tasks [36, 39, 59, 61]. To compare

with this category of methods, we use a large state-of-the-

art model, a ResNet-101 [28] SlowFast network [16] with

non-local blocks [77] running on 128 frames, pre-trained

on Kinetics-600 [6] and AVA [25] as a baseline method.

We train the network using SGD with cosine learning rate

schedule, linear warmup [24], and a weight decay of 10−4,

following standard practice [16]. We select the base learn-

ing rate and the number of training epochs on validation set

for each task; More details are in Supplementary Material.

Another promising baseline we compare to is the

recently proposed frame-based long-term models,

VideoBERT [64]. We compare with its vision-only

variant, since language is beyond the scope of this paper.7

Results. Tab. 1 shows that our Object Transformer outper-

forms both baselines by a clear margin in terms of the over-

all ranking. The short-term model (‘R101-SlowFast+NL’),

is not able to perform well even with a large backbone and

strong pre-training (Kinetics-600 [6] and AVA [25]). This

validates the importance of long-term modeling. We also

observe that object-centric modeling (Object Transform-

ers) is advantageous compared with frame-centric modeling

(‘VideoBERT’ [64]). Interestingly, short-term models suf-

fice to work well for year prediction. This should not come

as a surprise, since local statistics such as image quality or

color style already capture a lot about the ‘year’ of a video

(e.g., as shown in Fig. 4i). VideoBERT [64] works well for

writer prediction, suggesting that this task might not require

too much detailed interaction modeling.

In short, a long-term and object-centric design is impor-

tant for a wide range of LVU tasks.

7We reached out to the authors of VideoBERT [64], but they were not

able to share the code with us. We thus present results based on our re-

implementation. We select hyperparameters for VideoBERT [64] with the

same grid-search protocol as our method for fair comparison. More imple-

mentation details are in Supplementary Material.
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pre-train relation speak scene like↓ views↓ director genre writer year

None 46.9 39.8 53.8 0.262 3.44 43.0 55.8 34.5 35.0

Mask 54.7 40.3 58.0 0.238 3.71 53.3 56.1 35.1 40.6

Mask+Compat 50.0 32.8 60.0 0.234 3.37 58.9 49.3 32.7 39.9

∆ (+7.8) (+0.5) (+6.2) (-.028) (-.07) (+15.9) (+0.3) (+0.6) (+5.6)

(a) Pre-training

relation speak scene like↓ views↓ director genre writer year

Short-term 50.0 40.3 52.9 0.366 3.57 54.2 52.9 28.6 37.8

Avg pool 37.5 36.8 57.1 0.496 3.82 40.2 54.4 37.5 32.9

Max pool 50.0 37.8 58.8 0.284 3.78 52.3 55.8 32.7 34.3

Transformer 54.7 40.3 60.0 0.234 3.37 58.9 56.1 35.1 40.6

(b) Long-term module

relation speak scene like↓ views↓ director genre writer year

Person 54.7 40.3 60.0 0.234 3.37 58.9 56.1 35.1 40.6

Person+Obj. 54.7 37.8 58.8 0.223 3.67 48.6 55.8 36.3 42.0

(c) Modality

relation speak scene like↓ views↓ director genre writer year

10k 50.0 40.8 58.0 0.230 3.42 53.3 53.2 32.7 37.8

30k (all) 54.7 40.3 60.0 0.234 3.37 58.9 56.1 35.1 40.6

(d) Number of pre-training videos

Table 2. Ablation Experiments. Our results validate that self-supervised pre-training brings consistent gains across tasks (2a). We also

observe that simpler pooling methods are not as effective as transformer, supporting that object-level interaction modeling is beneficial

(2b). Modeling non-person objects is beneficial for a few tasks, but modeling humans along is already strong is most of the tasks (2c).

Finally, pre-training on more data helps in most cases (2d), suggesting promising future work using even larger datasets. (↓: lower is better)

6.2. Ablation Experiments

Pre-Training. We first evaluate the impact of the proposed

pre-training methods. Tab. 2a shows that on all tasks we

evaluate, pre-training is beneficial.8 In particular, Masked

Instance Pre-Training alone works well in almost all tasks,

while adding Compatibility Pre-Training helps in 4 out of

the 9 tasks. Interestingly, our results are similar to ob-

servations in NLP research, where the ‘masked-language

model’ alone works well on some tasks (e.g., [34]), while

additionally using ‘next-sentence-prediction’ helps on oth-

ers (e.g., [13]). In other parts of this paper, we use the best

performing pre-training method (selected based on valida-

tion results) as the default for each task.

Long-Term Module. Most existing methods perform ei-

ther pooling-based aggregation [76] or no aggregation at all

(late fusion only) [16,77] when it comes to long-term mod-

eling. Tab. 2b compares our Object Transformer with these

approaches. All methods in Tab. 2b build on the same input

features. The only difference is the module built on top of

these features. Object Transformer works better on 8 out of

the 9 tasks, showing that for long-form video understand-

ing, a more powerful object-level interaction modeling is

advantageous. Interestingly, for ‘movie writer’ prediction,

a transformer does not outperform even average pooling.

We conjecture that writer prediction might require a higher

level of cognition or abstraction ability, that is beyond what

transformers can do. We think studying this task is interest-

ing future work.

Modality. While humans are arguably the most central el-

ements for understanding a video, we study the benefit of

including other objects. Tab. 2c shows that adding objects

brings only mild improvement on three tasks. This suggests

that human behavior understanding plays an crucial role in

most long-form tasks.

8In ablation experiments, we report the results without averaging over 5

runs due to computation resource constraints. Thus the results are slightly

different from the results reported in Tab. 1.

Action Detection Object Detection Transformer

params (M) 59.2 60.6 27.0

FLOPs (G) 242.0 88.6 1.8

Table 3. Inference Complexity Breakdown. Object Transformer

is small and efficient — taking only 0.7% of the FLOPs and being

2.2× smaller compared to Action Detection.

Number of Pre-Training Videos. A great advantage of

our pre-training methods is that they are self-supervised,

not requiring any human annotations. It is thus relatively

easy to pre-train on large-scale datasets. Tab. 2d shows that

on most tasks, pre-training on more data helps, suggesting

promising future research that leverages even more data.

Model Complexity. Tab. 3 presents a breakdown analysis

for complexity in terms of both model size and FLOPs. We

see that our Object Transformer is small and efficient. It is

2.2× smaller and takes only 0.7% of the FLOPs compared

to short-term action detection. We thus expect future re-

search on long-form video understanding to be accessible.

Example Predictions of Masked Instance Prediction. Fi-

nally, we present case study to understand what the model

learns with Masked Instance Prediction. Fig. 5 presents

three examples from a hold-out dataset of AVA [25] along

with the model outputs. We see that our model leverages

the context, some of them not on the same frame, and make

sensible predictions without seeing the actual content. This

validates that long-term human interactions can indeed be

learned in a self-supervised way.

6.3. Experiments on AVA

So far we have evaluated Object Transformers on long-

form video tasks. We next evaluate its ability of improving

“short-form” recognitions through incorporating long-term

context. Here evaluate our method on AVA [25] V2.2 for

spatial-temporal action detection. Performance is measured

by mAP, following standard practice [25].
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Predictions: stand (99.2%), answer phone (97.8%)

Predictions: hand clap (79.1%), stand (71.5%), watch (a person) (69.4%)

Predictions: play musical instrument (90.1%), sit (56.9%)

Figure 5. Masked Instance Prediction Examples. Here we present three examples along with their masked instances, and the actions of

these instances predicted by our model.† Without seeing the actual content, our model leverages long-term context and makes plausible

predictions. Some of these (e.g., the top example) are not possible without modeling longer-term context. (Best viewed on screen.)
†: Here we list predictions with ≥50% probabilities. We present only 7 frames for each example at 0.5 FPS due to the space constraint; See Supplementary

Material for the full examples.

input pre-train mAP FLOPs

AVA V2.1

AVA [25] V+F K400 15.6 -

ACRN [65] V+F K400 17.4 -

STEP [85] V K400 18.6 -

Zhang et al. [90] V K400 22.2 -

RTPR [41] V+F ImageNet 22.3 -

Girdhar et al. [18] V K400 25.0 -

LFB [81] V K400 27.7 -

AVSlowFast [83] V+A K400 27.8 -

AVA V2.2

AVSlowFast [83] V+A K400 28.6 -

AIA [67] V K700 32.3 -

X3D-XL [15] V K600 27.4 -

SlowFast R101 [16] V K600 29.4 1.000×

Object Transformer (masked) V K600 29.3 1.007×

Object Transformer V K600 31.0 1.007×

Table 4. Action Recognition Results on AVA. Object Trans-

former outperforms prior work, which use only short-term infor-

mation. Our results suggest that long-term interaction and context

are beneficial for short-form tasks as well. (V: Visual; A: Audio;

F: Flow; K400: [36]; K600: [6]; K700: [7].)

Adaptation to AVA. Note that directly fine-tuning Object

Transformers to predict the box-level AVA outputs would

lead to a “short-cut” solution, where the model directly

looks at the corresponding input feature z without long-term

modeling. We thus mask out the input features z for the

target instances (similar to masked-instance pre-training)

when fine-tuning the AVA model. This, however, would put

our model at a disadvantage, since prediction given only

context is much harder than the original task. We thus take

a simple approach of late fusing the short-term prediction,

and fine-tuning only the final linear layer (for 2000 itera-

tions using a base learning rate of 10−4). This procedure is

efficient, as no updating of the attention layers are involved.

Results. We evaluate and compare our Object Transformer

with prior work in Tab. 4. We see that without using

optical-flow [25, 41, 65], audio [83], or task-specific engi-

neering, our Object Transformer outperforms state-of-the-

art short-term models that use comparable (K600 [6]) fea-

ture pre-training by 1.6% absolute (29.4% → 31.0%). This

shows that even for short-form tasks, it is beneficial to

consider long-term context to supplement or disambiguate

cases where local patterns are insufficient. Note that this im-

provement comes almost “for free”, as it only uses 0.7% of

additional FLOPs and fine-tuning of a linear layer. Interest-

ingly, a “masked” Object Transformer without late fusion

(denoted ‘Object Transformers (masked)’ in Tab. 4), still

achieves 29.3, demonstrating that “given context only”, our

model is able to leverage context and predict the semantics

of the masked parts of a video with state-of-the-art quality

(also see Fig. 5 for qualitative results).

In short, plugging a Object Transformer into a short-

form task is easy, and it leads to a clear improvement.

7. Conclusion

In this paper, we take a step towards understanding long-

form videos. We build a new benchmark with 9 tasks on

publicly available large datasets to evaluate a wide range

of aspects of the problem. We observe that existing short-

term models or frame-based long-term models are limited in

most of these tasks. The proposed Object Transformers that

model the synergy among people and objects work signifi-

cantly better. We hope this is a step towards deeper, more

detailed, and more insightful understanding of our endlessly

evolving visual world, with computer vision.
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