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Abstract

Most online multi-object trackers perform object detec-

tion stand-alone in a neural net without any input from

tracking. In this paper, we present a new online joint

detection and tracking model, TraDeS (TRAck to DEtect

and Segment), exploiting tracking clues to assist detection

end-to-end. TraDeS infers object tracking offset by a cost

volume, which is used to propagate previous object fea-

tures for improving current object detection and segmen-

tation. Effectiveness and superiority of TraDeS are shown

on 4 datasets, including MOT (2D tracking), nuScenes (3D

tracking), MOTS and Youtube-VIS (instance segmentation

tracking). Project page: https://jialianwu.com/

projects/TraDeS.html.

1. Introduction

Advanced online multi-object tracking methods follow

two major paradigms: tracking-by-detection [5, 38, 27, 52,

30, 49] and joint detection and tracking [26, 63, 1, 29, 45, 25,

43, 44]. The tracking-by-detection (TBD) paradigm treats

detection and tracking as two independent tasks (Fig. 1 (a)).

It usually applies an off-the-shelf object detector to produce

detections and employs another separate network for data

association. The TBD system is inefficient and not optimized

end-to-end due to the two-stage processing. To address this

problem, recent solutions favor a joint detection and tracking

(JDT) paradigm that simultaneously performs detection and

tracking in a single forward-pass (Fig. 1 (b)).

The JDT methods, however, are confronted with two is-

sues: (i) Although in most JDT works [29, 45, 25, 50] the

backbone network is shared, detection is usually performed

standalone without exploring tracking cues. We argue that

detection is the cornerstone for a stable and consistent track-

let, and in turn tracking cues shall help detection, especially

in tough scenarios like partial occlusion and motion blur. (ii)

As studied by [9] and our experiment (Tab. 1b), common re-

ID tracking loss [45, 25, 32, 51] is not that compatible with

detection loss in jointly training a single backbone network,

which could even hurt detection performance to some extent.
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Figure 1. Comparison of different online MOT pipelines. Our

method follows the joint detection and tracking (JDT) paradigm.

Different from most JDT methods, the proposed TraDeS tracker

deeply couples tracking and detection within an end-to-end and uni-

fied framework, where the motion clue from tracking is exploited

to enhance detection or segmentation (omitted in the figure).

The reason is that re-ID focuses on intra-class variance, but

detection aims to enlarge inter-class difference and minimize

intra-class variance.

In this paper, we propose a new online joint detection and

tracking model, coined as TraDeS (TRAck to DEtect and

Segment). In TraDeS, each point on the feature map repre-

sents either an object center or a background region, similar

as in CenterNet [64]. TraDeS addresses the above two is-

sues by tightly incorporating tracking into detection as well

as a dedicatedly designed re-ID learning scheme. Specifi-

cally, we propose a cost volume based association (CVA)

module and a motion-guided feature warper (MFW) module,

respectively. The CVA extracts point-wise re-ID embedding

features by the backbone to construct a cost volume that

stores matching similarities between the embedding pairs in

two frames. Then, we infer the tracking offsets from the cost

volume, which are the spatio-temporal displacements of all

the points, i.e., potential object centers, in two frames. The

tracking offsets together with the embeddings are utilized to

conduct a simple two-round long-term data association. Af-

terwards, the MFW takes the tracking offsets as motion cues

to propagate object features from the previous frames to the

current one. Finally, the propagated feature and the current

feature are aggregated to derive detection and segmentation.

In the CVA module, the cost volume is employed to su-
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pervise the re-ID embedding, where different object classes

and background regions are implicitly taken into account.

This is being said, our re-ID objective involves the inter-class

variance. This way not only learns an effective embedding

as common re-ID loss [45, 25, 32, 51], but also is well com-

patible with the detection loss and does not hurt detection

performance as shown in Tab. 1b. Moreover, because the

tracking offset is predicted based on appearance embedding

similarities, it can match an object with very large motion

or in low frame rate as shown in Fig. 3, or even accurately

track objects in different datasets with unseen large motion

as shown in Fig. 4. Thus, the predicted tracking offset of an

object can serve as a robust motion clue to guide our feature

propagation in the MFW module. The occluded and blurred

objects in the current frame may be legible in early frames,

so the propagated features from previous frames may support

the current feature to recover potentially missed objects by

our MFW module.

In summary, we propose a novel online multi-object

tracker, TraDeS, that deeply integrates tracking cues to assist

detection in an end-to-end framework and in return benefits

tracking as shown in Fig. 1 (c). TraDeS is a general tracker,

which is readily extended to instance segmentation tracking

by adding a simple instance segmentation branch. Exten-

sive experiments are conducted on 4 datasets, i.e., MOT,

nuScenes, MOTS, and Youtube-VIS datasets, across 3 tasks

including 2D object tracking, 3D object tracking, and in-

stance segmentation tracking. TraDeS achieves state-of-the-

art performance with an efficient inference time as shown

in § 5.3. Additionally, thorough ablation studies are per-

formed to demonstrate the effectiveness of our approach as

shown in § 5.2.

2. Related Work

Tracking-by-Detection. MOT was dominated by the

tracking-by-detection (TBD) paradigm over the past

years [58, 6, 66, 52, 33, 5, 38, 48, 54]. Within this frame-

work, an off-the-shelf object detector [31, 16] is first applied

to generate detection boxes for each frame. Then, a separate

re-ID model [1, 49] is used to extract appearance features for

those detected boxes. To build tracklets, one simple solution

is to directly compute appearance and motion affinities with a

motion model, e.g., Kalman filter, and then solve data associ-

ation by a matching algorithm. Some other efforts [6, 46, 19]

formulate data association as a graph optimization problem

by treating each detection as a graph node. However, TBD

methods conduct detection and tracking separately, hence are

usually computationally expensive. Instead, our approach in-

tegrates tracking cues into detection and efficiently performs

detection and tracking in an end-to-end fashion.

Joint Detection and Tracking. Recently joint detection

and tracking (JDT) paradigm has raised increasing attention

due to its efficient and unified framework. One common

way [63, 45, 25, 1, 62, 61] is to build a tracking-related

branch upon an object detector to predict either object track-

ing offsets or re-ID embeddings for data association. Alter-

natively, transformer is exploited to match tracklets [36, 26].

CTracker [29] constructs tracklets by chaining paired boxes

in every two frames. TubeTK [28] directly predicts a box

tube as a tracklet in an offline manner. Most JDT methods,

however, are confronted with two issues: First, detection

is still separately predicted without the help from tracking.

Second, the re-ID loss has a different objective from that

of detection loss in joint training. In contrast, our TraDeS

tracker addresses these two problems by tightly incorporat-

ing tracking cues into detection and designing a novel re-ID

embedding learning scheme.

Tracking-guided Video Object Detection. In video object

detection, a few attempts [15, 62] exploit tracking results to

reweight the detection scores generated by an initial detector.

Although these works strive to help detection by tracking,

they have two drawbacks: First, tracking is leveraged to help

detection only at the post-processing stage. Detections are

still predicted by a standalone object detector, so detection

and tracking are separately optimized. Thus, the final detec-

tion scores may heavily rely on the tracking quality. Second,

a hand-crafted reweighting scheme requires manual tune-up

for a specific detector and tracker. Our approach differs

from these post-processing methods because our detection is

learned conditioned on tracking results, without a complex

reweighting scheme. Therefore, detection tends to be robust

w.r.t. tracking quality.

Cost Volume. The cost volume technique has been success-

fully applied in depth estimation [11, 55, 18] and optical

flow estimation [35, 10, 53] for associating pixels between

two frames. This motivates us to extend cost volume to a

multi-object tracker, which will be demonstrated to be ef-

fective in learning re-ID embeddings and inferring tracking

offsets in this paper. Our approach may inspire future works

using cost volume in tracking or re-identification.

3. Preliminaries

The proposed TraDeS is built upon the point-based ob-

ject detector CenterNet [64]. CenterNet takes an image I ∈

R
H×W×3 as input and produces the base feature f = φ(I)

via the backbone network φ(·), where f ∈ R
HF×WF×64,

HF = H
4

, and WF = W
4

. A set of head convolutional

branches are then constructed on f to yield a class-wise

center heatmap P ∈ R
HF×WF×Ncls and task-specific pre-

diction maps, such as 2D object size map and 3D object size

map, etc. Ncls is the number of classes. CenterNet detects

objects by their center points (peaks on P ) and the corre-

sponding task-specific predictions from the peak positions.

Similar to [63], we build a baseline tracker by adding
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Figure 2. Overview of TraDeS. TraDeS may propagate features from multiple previous frames for object feature enhancement (i.e., T > 1),

which is not shown in the above figure for simplicity.

an extra head branch on CenterNet that predicts a tracking

offset map OB ∈ R
HF×WF×2 for data association. OB

computes spatio-temporal displacements from all points at

time t to the corresponding points at a previous time t− τ .

4. TraDeS Tracker

Our Idea: Most previous joint detection and tracking meth-

ods perform a standalone detection without explicit input

from tracking. In contrast, our aim is to integrate tracking

cues into detection end-to-end, so as to improve detection for

tough scenarios, which in return benefit tracking. To this end,

we propose a Cost Volume based Association (CVA: § 4.1)

module for learning re-ID embeddings and deriving object

motions, and a Motion-guided Feature Warper (MFW: § 4.2)

module for leveraging tracking cues from the CVA to propa-

gate and enhance object features.

4.1. Cost Volume based Association

Cost Volume: Given two base features f t and f t−τ from It

and It−τ , we extract their re-ID embedding features by the

embedding network σ(·), i.e., et = σ(f t) ∈ R
HF×WF×128,

where σ(·) consists of three convolution layers. We utilize

the extracted embeddings to construct a cost volume which

stores dense matching similarities between one point and its

corresponding point in two frames. To efficiently compute

the cost volume, we first downsample the embeddings by a

factor of 2 and obtain e′ ∈ R
HC×WC×128, where HC = HF

2

and WC = WF

2
. Let us denote by C ∈ R

HC×WC×HC×WC

the 4-dimensional cost volume for It and It−τ , which is

computed by a single matrix multiplication of e′t and e′t−τ .

Specifically, each element of C is calculated as:

Ci,j,k,l = e′ti,je
′t−τ⊤
k,l , (1)

where Ci,j,k,l represents the embedding similarity between

point (i, j) at time t and point (k, l) at time t − τ . Here, a

point refers to an entry on the feature map f or e′.

Tracking Offset: Based on the cost volume C, we calculate

a tracking offset matrix O ∈ R
HC×WC×2, which stores the

spatio-temporal displacements for all points at time t to their

corresponding points at time t− τ . For illustration, we show

the estimation procedure for Oi,j ∈ R
2 below.

As shown in Fig. 2, for an object x centered at point

(i, j) at time t, we can fetch from C its corresponding two-

dimensional cost volume map Ci,j ∈ R
HC×WC . Ci,j stores

the matching similarities among object x and all points at

time t − τ . Using Ci,j , Oi,j ∈ R
2 is estimated by two

steps: Step (i) Ci,j is first max pooled by HC × 1 and

1 × WC kernels, respectively, and then normalized by a

softmax function1, which results in CW
i,j ∈ [0, 1]1×WC and

CH
i,j ∈ [0, 1]HC×1. CW

i,j and CH
i,j consists of the likelihoods

that object x appears on specified horizontal and vertical po-

sitions at time t− τ , respectively. For example, CW
i,j,l is the

likelihood that object x appears at the position (∗, l) at time

t− τ . Step (ii) Since CW
i,j and CH

i,j have provided the likeli-

hoods that object x appears on specified positions at t− τ .

To obtain the final offsets, we predefine two offset templates

for horizontal and vertical directions, respectively, indicating

the actual offset values when x appears on those positions.

Let Mi,j ∈ R
1×WC and Vi,j ∈ R

HC×1 denote the horizon-

tal and vertical offset templates for object x, respectively,

which are computed by:
{

Mi,j,l = (l − j)× s 1 ≤ l ≤ WC

Vi,j,k = (k − i)× s 1 ≤ k ≤ HC

, (2)

1We add a temperature of 5 into the softmax, such that the softmax

output values are more discriminative.
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where s is the feature stride of e′ w.r.t. the input image,

which is 8 in our case. Mi,j,l refers to the horizontal offset

when object x appears at the position (∗, l) at time t − τ .

The final tracking offset can be inferred by the dot product

between the likelihoods and actual offset values as:

Oi,j = [CH⊤

i,j Vi,j ,C
W
i,jM

⊤

i,j ]
⊤. (3)

Because O is of HC ×WC , we upsample it with a factor of

2 and obtain OC ∈ R
HF×WF×2 that serves as motion cues

for the MFW and is used for our data association.

Training: Since σ(·) is the only learnable part in the CVA

module, the training objective of CVA is to learn an effective

re-ID embedding e. To supervise e, we enforce the supervi-

sion on the cost volume rather than directly on e like other

common re-ID losses. Let us first denote Yijkl = 1 when an

object at location (i, j) at current time t appears at location

(k, l) at previous time t− τ ; otherwise Yijkl = 0. Then, the

training loss for CVA is calculated by the logistic regression

in the form of the focal loss [22] as:

LCV A=
−1

∑

ijkl Yijkl

∑

ijkl











α1 log(C
W
i,j,l)

+α2 log(C
H
i,j,k)

if Yijkl = 1

0 otherwise

,

(4)

where α1 = (1− CW
i,j,l)

β and α2 = (1− CH
i,j,k)

β . β is the

focal loss hyper-parameter. Since CW
i,j,l and CH

i,j,k are com-

puted by softmax, they involve the embedding similarities

not only between points (i, j) and (k, l) but also among point

(i, j) and all other points in the previous frame. This is being

said, while CW
i,j,l and CH

i,j,k being optimized to approach 1, it

enforces an object to not only approach itself in the previous

frame, but also repel other objects and background regions.

The CVA Characteristics: (i) Common re-ID loss only

emphasizes intra-class variance, which may degrade detec-

tion performance. In contrast, our LCV A in Eq. 4 not only

emphasizes intra-class variance but also forces inter-class

difference when learning embedding. We find such a treat-

ment is more compatible with detection loss and learns ef-

fective embedding without hurting detection as evidenced in

Tab. 1b. (ii) Because the tracking offset is predicted based

on appearance embedding similarities, it can track objects

under a wide range of motion and low frame rate as shown in

Fig. 3 and Fig. 6, or even accurately track objects in different

datasets with unseen large motion in training set as shown

in Fig. 4. The predicted tracking offset can therefore serve

as a robust motion cue to guide our feature propagation as

in Tab. 1c. (iii) Compared to [45, 25] and CenterTrack [63]

that only predict either embedding or tracking offset for data

association, the CVA produces both embedding and tracking

offset that are used for long-term data association (§ 4.3) and

serve as motion cues for the MFW (§ 4.2).

4.2. Motionguided Feature Warper

The MFW aims to take the predicted tracking offset OC

as motion clues to warp and propagate f t−τ to the current

time so as to compensate and enhance f t. To achieve this

goal, we perform an efficient temporal propagation via a

single deformable convolution [12], which has been used

for temporally aligning features in previous works [4, 3, 13].

Then, we enhance f t by aggregating the propagated feature.

Temporal Propagation: To propagate feature maps, the

deformable convolution (DCN) takes a spatio-temporal off-

set map and a previous feature as input and outputs a

propagated feature, in which we estimate the input offset

based on the OC from the CVA module. Let us denote

OD ∈ R
HF×WF×2K2

as the input two-directional offset for

DCN, where K = 3 is the kernel width or height of DCN. To

generate OD, we pass OC through a 3× 3 convolution γ(·).
We optionally incorporate the residual feature of f t − f t−τ

as the input of γ(·) to provide more motion clues. Since

our detection and segmentation are mainly based on object

center features, instead of directly warping f t−τ , we prop-

agate a center attentive feature f̄ t−τ ∈ R
HF×WF×64 from

previous time. f̄ t−τ is computed as:

f̄ t−τ
q = f t−τ

q ◦ P t−τ
agn , q = 1, 2, ..., 64, (5)

where q is the channel index, ◦ is the Hadamard product, and

P t−τ
agn ∈ R

HF×WF×1 is the class agnostic center heatmap

fetched from the P t−τ (as defined in § 3). Then, given OD

and f̄ t−τ , the propagated feature is computed via a DCN as

f̂ t−τ = DCN(OD, f̄ t−τ ) ∈ R
HF×WF×64.

Feature Enhancement: When occlusion or motion blur

occurs, objects could be missed by the detector. We propose

to enhance f t by aggregating the propagated feature f̂ t−τ ,

on which the occluded and blurred objects may be visually

legible. We denote the enhanced feature as f̃ t−τ , which is

calculated by weighted summation as:

f̃ t
q = wt ◦ f t

q +

T
∑

τ=1

wt−τ ◦ f̂ t−τ
q , q = 1, 2, ..., 64, (6)

where wt ∈ R
HF×WF×1 is the adaptive weight at time t

and
∑T

τ=0
wt−τ

i,j = 1. T is the number of previous features

used for aggregation. Similar to [24], w is predicted by

two convolution layers followed by softmax function. We

find that in experiment the weighted summation is slightly

better than average summation. The enhanced feature f̃ t is

then fed into the head networks to produce detection boxes

and masks in the current frame. This can potentially recover

missed objects and reduce false negatives, enabling complete

tracklets and higher MOTA and IDF1 as in Tab. 1a.

4.3. Tracklet Generation

The overall architecture of TraDeS is shown in Fig. 2.

Based on the enhanced feature f̃ t, TraDeS produces 2D
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and 3D boxes and instance masks by three different head

networks. Afterwards, the generated detection and masks

are connected to previous tracklets by our data association.

Head Networks: Each head network consists of several

light-weight convolutions for yielding task-specific predic-

tions. For 2D and 3D detection, we utilize the same head

networks as in CenterNet [64]. For instance segmentation,

we refer to the head network in CondInst [39], which is an

instance segmentation method also based on center points.

Data Association: Given an enhanced detection or mask

d centered at location (i, j), we perform a two-round data

association as: DA-Round (i) We first associate it with the

closest unmatched tracklet at time t− 1 within the area cen-

tered at (i, j)+OC
i,j with radius r, where r is the geometrical

average of width and height of the detected box. Here, OC
i,j

only indicates the object tracking offsets between It and

It−1. DA-Round (ii) If d does not match any targets in the

first round, we compute cosine similarities of its embedding

eti,j with all unmatched or history tracklet embeddings. d

will be assigned to a tracklet if their similarity is the highest

and larger than a threshold, e.g., 0.3. DA-Round (ii) is capa-

ble of long-term associating. In case d fails to associate with

any tacklets in the above two rounds, d starts a new tracklet.

TraDeS Loss: The overall loss function of TraDeS is defined

as L = LCV A + Ldet + Lmask, where Ldet is the 2D and

3D detection losses as in [64] and Lmask is the instance

segmentation loss as in [39].

5. Experiments

5.1. Datasets and Implementation Details

MOT: We conduct 2D object tracking experiments on the

MOT16 and MOT17 datasets [27], which have the same 7

training sequences and 7 test sequences but slightly different

annotations. Frames are labeled at 25-30 FPS. For abla-

tion study, we split the MOT17 training sequences into two

halves and use one for training and the other for validation as

in [63]. Metrics: We use common 2D MOT evaluation met-

rics [2]: Multiple-Object Tracking Accuracy (MOTA), ID

F1 Score (IDF1), the number of False Negatives (FN), False

Positives (FP), times a trajectory is Fragmented (Frag), Iden-

tity Switches (IDS), and the percentage of Mostly Tracked

Trajectories (MT) and Mostly Lost Trajectories (ML).

nuScenes: We conduct 3D object tracking experiments on

the newly released nuScenes [7], containing 7 classes, 700

training sequences, 150 validation sequences, and 150 test

sequences. Videos are captured by 6 cameras of a moving

car in a panoramic view and labeled at 2 FPS. Our TraDeS

is a monocular tracker. Metrics: nuScenes designs more

robust metrics, AMOTA and AMOTP, which are computed

by weighted averages of MOTA and MOTP across score

thresholds from 0 to 1. For fair comparison, we also report

IDSA that averages IDS in the same way.

MOTS: MOTS [41], an instance segmentation tracking

dataset, is derived from the MOT dataset. MOTS has 4 train-

ing sequences and 4 test sequences. Metrics: The evaluation

metrics are similar to those on MOT, which however are

based on masks. Moreover, the MOTS adopts a Mask-based

Soft Multi-Object Tracking Accuracy (sMOTSA).

YouTube-VIS: We also conduct instance segmentation track-

ing on YouTube-VIS [56], which contains 2,883 videos la-

beled at 6 FPS, 131K instance masks, and 40 object classes.

Metrics: The YouTube-VIS adopts a mask tracklets based

average precision (AP) for evaluation.

Compared to MOT and MOTS, nuScenes and YouTube-

VIS are of low frame rate and large motion, because only

key frames are labeled and cameras are moving. In our

experiments, only labeled frames are used as input.

Implementation Details: We adopt the same experimental

settings as CenterTrack [63], such as backbone, image sizes,

pretraining, score thresholds, etc. Specifically, we adopt the

DLA-34 [60] as the backbone network φ(·). Our method is

optimized with 32 batches and learning rate (lr) 1.25e − 4
dropping by a factor of 10. For MOT and MOTS, TraDeS

is trained for 70 epochs where lr drops at epoch 60 with

image size of 544× 960. For nuScenes, TraDeS is trained

for 35 epochs where lr drops at epoch 30 with image size of

448× 800. For YouTube-VIS, TraDeS is first pretrained on

COCO instance segmentation [23] following the static image

training scheme in [63] and then finetuned on YouTube-VIS

for 16 epochs where lr drops at epoch 9. Image size is of

352× 640. We test the runtime on a 2080Ti GPU. In Eq. 6,

we set T = 2 by default for MOT and MOTS. We set T = 1
for nuScenes and YouTube-VIS due to their low frame rate

characteristic mentioned above. In training, we randomly

select T frames out of nearby Rt frames, where Rt is 10

for MOT and MOTS and 5 for nuScenes and YouTube-VIS.

During inference, only previous T consecutive frames are

used. Ablation experiments are conducted on the MOT17

dataset. In ablations, all variants without the CVA module

perform the DA-Round (i) by predicting a tracking offset

OB as in the baseline tracker (§ 3).

5.2. Ablation Studies

Effectiveness of TraDeS: As shown in Tab. 1a, we compare

our proposed CVA (§ 4.1), MFW (§ 4.2), and TraDeS (§ 4)

with our baseline tracker (§ 3) and CenterTrack [63]. CVA:

Compared to the baseline, the CVA achieves better tracking

by reducing 60% IDS and improving 7.2 IDF1, validating

the effect of our tracking offset, re-ID embedding, and the

two-round data association. MFW: For ablation, we directly

add the MFW to the baseline tracker. Since the tracking off-

set OC is unavailable in the baseline, we only use f t−f t−τ
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Scheme MOTA↑ IDF1↑ IDS↓ FN↓ FP↓

CenterTrack[63] 66.1 64.2 528 28.4% 4.5%

Baseline 64.8 59.5 1055 31.0% 2.3 %

Baseline+CVA 66.5 66.7 415 30.6% 2.2%

Baseline+MFW 66.3 65.7 606 29.5% 3.0%

TraDeS 68.2 71.7 285 27.8% 3.5%

(a) Effectiveness of each proposed module: we evaluate the

proposed CVA (§ 4.1), MFW (§ 4.2), and overall TraDeS (§ 4).

“Baseline+CVA+MFW” is represented by “TraDeS”.

Scheme MOTA↑ IDF1↑ IDS↓ FN↓ FP↓

Baseline 64.8 59.5 1055 31.0% 2.3%

w/o DA-Round (ii)
+CE embedding 63.7 59.6 1099 32.1% 2.2%

+CVA 65.5 60.9 936 30.6% 2.2%

w/ DA-Round (ii)
+CE embedding 64.5 64.3 671 32.1% 2.2%

+CVA 66.5 66.7 415 30.6% 2.2%

(b) CVA vs. Common embedding: Common embedding loss LCEembed may down-

grade detection performance, while our CVA learns an effective embedding without

hurting detection. As “Baseline” does not have embedding, it only performs DA-Round(i).

Scheme MOTA↑ IDF1↑ IDS↓ FN↓ FP↓

Baseline+CVA 66.5 66.7 415 30.6% 2.2%

TraDeS w/
f t − f t−τ only 67.1 68.8 273 29.9% 2.5%

f t − f t−τ & OC 68.2 71.7 285 27.8% 3.5%

(c) Motion cues: In MFW, we evaluate different motion cues as the input of γ(·)
to predict the DCN input offset OD . Ablations are based on baseline with CVA.

Scheme MOTA↑ IDF1↑ IDS↓ FN↓ FP↓ Time(ms)↓

T = 1 67.8 69.0 350 28.2% 3.4% 46

T = 2 68.2 71.7 285 27.8% 3.5% 57

T = 3 67.5 69.9 283 29.2% 2.8% 70

(d) Number of previous features: We evaluate the MFW when

aggregating different numbers of previous features.

Table 1. Ablation studies on the MOT17 validation set. MOTA and IDF1 reflect the comprehensive tracking performance, while FN and FP

reflect the detection performance. Lower FN means more missed objects are recovered. ↓ denotes lower is better. ↑ denotes higher is better.
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Figure 3. CVA workflow visualization: the cost volume map C and tracking offset OC under low frame rate (left) and large motion (right).

as motion cues to predict the DCN offset OD. Compared to

the baseline, the MFW achieves better detection by reducing

1.5% FN, i.e., recovering more missed objects, though FP is

slightly increased. Moreover, we observe that the MFW also

reduces 43% IDS and improves 6.2 IDF1. It validates that

detection is the cornerstone for tracking performance, where

improved detection can yield more stable and consistent

tracklets. TraDeS: With the help of CVA, TraDeS reduces

IDS from 606 to 285. Moreover, in TraDeS, the robust track-

ing offsets OC from CVA guides the feature propagation

in MFW, which significantly decreases FN from 29.5% to

27.8%. Better IDS and missed object recovery (↓FN) to-

gether improve our comprehensive tracking performance,

achieving 68.2 MOTA and 71.7 IDF1. TraDeS also achieves

better results than the recent JDT method CenterTrack [63].

Effectiveness of the CVA Module: We study the two major

characteristics of the proposed CVA module as mentioned in

§ 4.1. (i): First, we add the re-ID embedding network σ(·)
into the baseline tracker, which is supervised by a common

re-ID loss, e.g., the cross-entropy loss LCEembed as in [45,

61]. We denote the learned embedding as CE embedding,

which is used to perform our two-round data association.

As shown in Tab. 1b, with DA-Round (ii), CE embedding

helps baseline improve IDF1 and reduce IDS, as long-term

data association is enabled by using the re-ID embedding

to match history tracklets. However, we observe that CE

embedding cannot improve MOTA as detection performance

is degraded (+1.1% FN). Next, we still add σ(·) into the

baseline tracker, which however is supervised by our CVA

module. Tab. 1b shows that our CVA module not only learns

an effective re-ID embedding as CE embedding but also

slightly improves detection performance, which clearly leads

to a higher MOTA. We argue that this is because common re-

ID loss only emphasizes intra-class variance, which may not

be compatible with detection loss in joint training as indicted

in [9]. In contrast, our proposed LCV A in Eq. 4 supervises

the re-ID embedding via the cost volume and considers both

intra-class and inter-class difference. (ii): We visualize the

predicted cost volume map C and tracking offset OC in

Fig. 3. The CVA accurately predicts the tracking offset for an

object under low frame rate or large motion. Moreover, OC

even accurately tracks objects in a new dataset with unseen

large motion in training as shown in Fig. 4. Visualization of

OC on more samples are shown in Fig. 6. These examples

indicate the CVA is able to predict tracking offsets for objects

with a wide range of motion and provide robust motion cues.

Effectiveness of the MFW Module: DCN: In Tab. 1c, we

use different motion clues to predict the DCN input offset

OD. We find that the tracking offset OC is the key to reduce

FN and recover more missed objects. It validates that the

proposed OC is a robust tracking cue for guiding feature

propagation and assisting detection. Moreover, we visualize

the predicted OD in Fig. 5. The DCN successfully samples

the center features at the previous frames even if the car in

the middle image has dramatic displacements. Number of

Previous Features: As in Eq. 6, the MFW aggregates the

current feature with T previous features. We evaluate the

MFW with different T as shown in Tab. 1d, and find that we
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MOT16 Test Set

Method Publication Year Joint MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ Frag↓ IDS↓ Time(ms)↓

SORT[5]Online ICIP 2016 59.8 53.8 25.4% 22.7% 8,698 63,245 1,835 1,423 17+D

MCMOT-HDM[21]Offline ECCV 2016 62.4 51.6 31.5% 24.2% 9,855 57,257 1,318 1,394 27+D

POI[59]Online ECCVW 2016 66.1 65.1 34.0% 20.8% 5,061 55,914 3,093 805 101+D

DeepSORT[49]Online ICIP 2017 61.4 62.2 32.8% 18.2% 12,852 56,668 2,008 781 25+D

VMaxx[42]Online ICIP 2018 62.6 49.2 32.7% 21.1% 10,604 56,182 1,534 1,389 154+D

RAN[14]Online WACV 2018 63.0 63.8 39.9% 22.1% 13,663 53,248 1,251 482 625+D

TAP[65]Online ICPR 2018 64.8 73.5 38.5% 21.6% 12,980 50,635 1,048 571 55+D

TubeTK[28]Offline CVPR 2020 ! 64.0 59.4 33.5% 19.4 % 10,962 53,626 1,366 1,117 1000

JDE[45]Online ECCV 2020 ! 64.4 55.8 35.4% 20.0% - - - 1,544 45

CTrackerOnline ECCV 2020 ! 67.6 57.2 32.9% 23.1% 8,934 48,305 3,112 1,897 29

TraDeS (Ours)Online CVPR 2021 ! 70.1 64.7 37.3 % 20.0 % 8,091 45,210 1,575 1,144 57

MOT17 Test Set

CenterTrack⋆[63]Online ECCV 2020 ! 67.8 64.7 34.6% 24.6% 18,498 160,332 6,102 3,039 57

TraDeS⋆ (Ours)Online CVPR 2021 ! 68.9 67.2 35.0% 22.7% 19,701 152,622 6,033 3,147 57

DAN[37]Online TPAMI 2019 52.4 49.5 21.4% 30.7% 25,423 234,592 14,797 8,431 159+D

Tracktor+CTdet[1]Online ICCV 2019 54.4 56.1 25.7% 29.8% 44,109 210,774 - 2,574 -

TubeTK[28]Offline CVPR 2020 ! 63.0 58.6 31.2% 19.9% 27,060 177,483 5,727 4,137 333

CTracker[29]Online ECCV 2020 ! 66.6 57.4 32.2% 24.2% 22,284 160,491 9,114 5,529 29

CenterTrack[63]Online ECCV 2020 ! 67.3 59.9 34.9% 24.8% 23,031 158,676 - 2,898 57

TraDeS (Ours)Online CVPR 2021 ! 69.1 63.9 36.4 % 21.5 % 20,892 150,060 4,833 3,555 57

Table 2. Results of 2D object tracking on the MOT test set under the private detection protocol. “Joint” indicates joint detection and

tracking in a single model, i.e., no external detections. “⋆” indicates that Track Re-birth [63] is used. The top two results in the “Joint”

manner without Track Re-birth are highlighted in red and blue, respectively. +D indicates the additional detection time [31].

Baseline CenterTrack TraDeS Baseline CenterTrack TraDeS

𝒕 − 𝟏 𝒕 − 𝟏𝒕 𝒕 𝒕 𝒕 𝒕 𝒕
Previous Center

Tracking Offset
𝑶𝑪

Figure 4. Visualized O
C on nuScenes. All models are only trained on MOT but tested on nuScenes, where nuScenes has much larger object

motions than MOT. TraDeS successfully tracks objects with unseen large motion in training dataset, but baseline and CenterTrack fail.

Youtube-VIS nuScenes MOT

DCN Position 𝑶𝐷: Input Offset for DCN DCN Sampling Location

𝑰𝑡−1 𝑰𝑡−1 𝑰𝑡−2

𝑰𝑡𝑰𝑡𝑰𝑡

Figure 5. Visualization of DCN input offset OD . The DCN kernel

at is translated by and samples the previous feature at .

For clear visualization, we only show the sampling center of the

DCN kernel as depicted by in I
t−τ . The previous image is

highlighted by the previous class agnostic heatmap P
t−τ
agn .

achieve the best speed-accuracy trade-off when T = 2.

5.3. Benchmark Evaluations

MOT: As shown in Tab. 2, we compare the proposed TraDeS

tracker with the state-of-the-art 2D trackers on the MOT16

and MOT17 test sets. Our TraDeS tracker outperforms the

second best tracker by 2.5 MOTA and 1.8 MOTA on MOT16

and MOT17, respectively, running at 15 FPS. Compared to

joint detection and tracking algorithms, we achieve the best

results on most metrics, e.g., MOTA, IDF1, MT, FN, etc.

nuScenes: As shown in Tab. 3, we compare TraDeS with the

state-of-the-art monocular 3D trackers on nuScenes. There

exists extreme class imbalance in nuScenes dataset, e.g., car

and pedestrian has over 82% data. Since class imbalance is

not our focus, we mainly evaluate on major classes: car and

pedestrian. Tab. 3 shows that the TraDeS tracker outperforms

other monocular trackers by a large margin on all metrics.

MOTS: As shown in Tab. 4, we compare TraDeS with the

recent instance segmentation tracker TrackR-CNN on the

MOTS test set. TrackR-CNN is based on Mask R-CNN [17]

and also temporally enhances object features. The TraDeS

tracker outperforms TrackR-CNN by a large margin in terms

of both accuracy and speed.

YouTube-VIS: As shown in Tab. 5, TraDeS notably im-

proves AP by 6.2 over the baseline. TraDeS achieves compet-
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Classes Car (57% 58,317GTs ) Pedestrian (25% 25,423GTs ) All (100% 101,897GTs )

nuScenes Val set AMOTA↑ AMOTP↓ IDSA ↓ AMOTA↑ AMOTP↓ IDSA ↓ AMOTA↑ AMOTP↓ IDSA ↓ Time

Our Baseline 11.1 1.39 6,985 0.0 1.73 4,336 4.3 1.65 1,792 37ms

CenterTrack[63] 26.1 1.11 3,217 5.9 1.50 1,970 6.8 1.54 813 45ms

TraDeS (Ours) 29.6 0.98 3,035 10.6 1.42 1,434 11.8 1.48 699 39ms

Classes Car (57% 68,518GTs ) Pedestrian (28% 34,010GTs ) All (100% 119,565GTs )

nuScenes Test set AMOTA↑ AMOTP↓ IDSA ↓ AMOTA↑ AMOTP↓ IDSA ↓ AMOTA↑ AMOTP↓ IDSA ↓ Time

Our Baseline 6.2 1.47 9,450 0.0 1.70 5,191 1.0 1.66 2,252 37ms

Mapillary[34]+AB3D[47] 12.5 1.61 - 0.0 1.87 - 1.8 1.80 - -

PointPillars[20]+AB3D[47] 9.4 1.40 - 3.9 1.68 - 2.9 1.70 - -

CenterTrack[63] 20.2 1.19 - 3.0 1.50 - 4.6 1.54 - 45ms

TraDeS (Ours) 23.2 1.07 4,293 9.9 1.38 1,979 5.9 1.49 964 39ms

Table 3. Results of 3D object tracking on the nuScenes dataset. We compare with the state-of-the-art monocular 3D tracking methods.

We mainly assess the major classes: car and pedestrian. We also list “All” for reference, which is the average among all the 7 classes.

Method Publication Year sMOTSA ↑ IDF1 ↑ MOTSA ↑ MOTSP ↑ MODSA ↑ MT↑ ML↓ FP↓ FN↓ IDS ↓ Time

TrackR-CNN [41] CVPR 2019 40.6 42.4 55.2 76.1 56.9 38.7% 21.6% 1,261 12,641 567 500ms

TraDeS (Ours) CVPR 2021 50.8 58.7 65.5 79.5 67.0 49.4% 18.3% 1,474 9,169 492 87ms

Table 4. Results of instance segmentation tracking on the MOTS test set.
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Figure 6. Visualization that TraDeS tracks objects on three tasks. Red arrow is the tracking offset OC w.r.t. the previous frame I
t−1.

Method Publication AP AP50 AP75

OSMN(mask propagation)[57] CVPR’18 23.4 36.5 25.7

FEELVOS[40] CVPR’19 26.9 42.0 29.7

OSMN(track-by-detect)[57] CVPR’18 27.5 45.1 29.1

MaskTrack R-CNN[56] ICCV’19 30.3 51.1 32.6

SipMask[8] ECCV’20 32.5 53.0 33.3

Our Baseline 26.4 43.2 26.8

TraDeS (Ours) CVPR’21 32.6 52.6 32.8

Table 5. Results of instance segmentation tracking on the

YouTube-VIS validation set.

itive performance compared to other state-of-the-art instance

segmentation trackers. We observe that TraDeS outperforms

the baseline tracker by a large margin on both nuScenes and

YouTube-VIS. We argue that this is because the baseline can-

not well predict the tracking offset OB with a single image

in case these datasets are of low frame rate and large motion.

6. Conclusion

This work presents a novel online joint detection and

tracking model, TraDeS, focusing on exploiting tracking

cues to help detection and in return benefit tracking. TraDeS

is equipped with two proposed modules, CVA and MFW.

The CVA learns a dedicatedly designed re-ID embedding

and models object motions via a 4d cost volume. While the

MFW takes the motions from CVA as the cues to propagate

previous object features to enhance the current detection or

segmentation. Exhaustive experiments and ablations on 2D

tracking, 3D tracking and instance segmentation tracking

validate both effectiveness and superiority of our approach.
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