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Figure 1. Our method takes a single casually captured video as input and learns a space-time neural irradiance field. (Top) Sample frames

from the input video. (Middle) Novel view images rendered from textured meshes constructed from depth maps. (Bottom) Our results

rendered from the proposed space-time neural irradiance field.

Abstract

We present a method that learns a spatiotemporal neural ir-

radiance field for dynamic scenes from a single video. Our

learned representation enables free-viewpoint rendering of

the input video. Our method builds upon recent advances in

implicit representations. Learning a spatiotemporal irradi-

ance field from a single video poses significant challenges

because the video contains only one observation of the

∗ This work was done while Wenqi was an intern at Facebook.

scene at any point in time. The 3D geometry of a scene can

be legitimately represented in numerous ways since varying

geometry (motion) can be explained with varying appear-

ance and vice versa. We address this ambiguity by con-

straining the time-varying geometry of our dynamic scene

representation using the scene depth estimated from video

depth estimation methods, aggregating contents from indi-

vidual frames into a single global representation. We pro-

vide an extensive quantitative evaluation and demonstrate

compelling free-viewpoint rendering results.
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1. Introduction

This paper addresses the problem of rendering a video from

novel viewpoints. Specifically, we learn a globally consis-

tent, dynamic scene representation that can later be rendered

from a novel viewpoint. We learn such a representation

from a casually captured single video from everyday de-

vices such as smartphones, without the assistance of multi-

camera rigs or other dedicated hardware (which are typi-

cally not accessible to casual users).

Free-viewpoint video rendering typically requires a com-

plicated hardware setup consisting of multiple cameras to

capture the scene of interest from different viewpoints [78,

11, 14, 6]. The multi-camera setup in existing methods

is required because conventional 3D reconstruction algo-

rithms (multi-view stereopsis) assume a fully static scene

and thus can perform reconstruction using the multiple cap-

tured viewpoints of a dynamic scene at any time. Most

methods represent the geometric reconstructions as some

form of per-frame representation (e.g., depth maps [78] or

meshes[6]). Rendering from a novel viewpoint can then be

achieved, e.g., by warping available views using their depth

maps to the new viewpoint.

Following the success of single-image depth estimation,

recent monocular video depth estimation methods allow for

the acquisition of consistent per-frame depth estimates from

only a single video [38, 74]. While still at an early stage,

this line of work opens up new possibilities, where monoc-

ular scene depth estimates can be directly used for view

synthesis. However, naïve approaches such as per-frame

depth-based warping would lead to unnatural stretches and

reveal holes in disoccluded regions (even with perfect depth

estimates). One can alleviate this by post-processing the

incomplete rendering [74]. However, such per-frame pro-

cessing methods often lead to temporal flickers. The core

problem lies in the use of a frame-wise representation (e.g.,

depth maps associated with the input images), and therefore

suffer from issues ranging from temporal inconsistency to

high redundancy and thus excessive storage requirements

and data transfer bandwidth.

In this work, we build on recent monocular video depth

estimation methods and aggregate the entire spatiotemporal

aspects of a dynamic scene in a single global representa-

tion. While fusing multiple depth maps into a single, global

representation has a long tradition, most work on volumet-

ric depth integration has focused on static scenes [12, 46]

or geometry alone without textures [45]. These methods

typically use discrete representations such as voxel grids,

meshes, or point clouds. Consequently, these methods often

suffer from premature hard decisions on geometry estima-

tion and limited resolution due to high storage requirements.

In this paper, we, instead, turn to the recent advances

in neural implicit representations, which allow for con-

tinuous representations of a scene without resolution loss.

Recent work has shown that these representations achieve

high-quality view interpolation of complex static scenes

while retaining their advantages over discrete representa-

tions [44, 75, 34]. The current approaches to learn them,

however, require either multiple posed images of a fully

static scene [44, 75, 34] or ground truth 3D representa-

tions [58, 59]. While videos often contain appearances of a

scene seen from multiple viewpoints, they only contain ex-

actly one viewpoint at any given time. Combined with the

dynamic nature of video, this renders it nontrivial to extend

current approaches to learn spatiotemporal representations

from a single video.

Specifically, we learn neural irradiance fields as a func-

tion of both space and time for each video. We do not model

view dependency, hence we use the term irradiance. Us-

ing supervision from only color frames of the input video

as in [44] is futile, since the variations between frames can

be explained with either a change of appearance or geom-

etry, or a combination of both. We resolve this ambiguity

using the per-frame scene depth estimated from monocular

video depth estimation. Our depth supervision constrains

the scene’s geometry at any moment and disambiguates it

from appearance variations. While this enables us to encode

physically correct appearance and geometry in a global rep-

resentation, it fails to fill the holes that could be seen at

other time steps in the video. We address this by encourag-

ing the color and volume density to propagate across time

whenever spatial locations are not supervised otherwise.

The resulting representation allows us to render the video

from novel viewpoints and time: our implicit model can be

queried at any spatiotemporal location and rendered using

standard volume rendering†.

Our technical contributions include the following:

• We aggregate frame-wise 2.5D representations into a

globally consistent spatiotemporal representation from

a single monocular video.

• We address the inherent motion–appearance ambiguity

using video depth supervision and constrain the disoc-

cluded contents by propagating the color and volume

density across time.

• We demonstrate a compelling free-viewpoint video

rendering experience on various casual videos shot

from smartphones, preserving motion and texture de-

tails while conveying a vivid sense of 3D.

2. Related Work

View synthesis for images. Creating novel views from

multiple images is a long-standing problem in computer vi-

†Note that our method can render arbitrary viewpoints at all the ob-

served time steps. We do not extrapolate or interpolate the time steps.
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sion and computer graphics. Existing image-based render-

ing techniques first extract approximated geometric proxy

and create novel target views by warping and blending the

corresponding contents from multiple source frames [28,

55, 22, 57]. Multi-plane images (MPIs) have been popu-

lar in the past few years as a geometric representation [76,

43, 17, 32], allowing for compelling novel view synthesis

quality. Many recent works further push the requirement

of the number of input images to a narrow-baseline stereo

pair [76, 65, 10] or a single image [77, 69, 50, 70, 30, 61].

Recently, neural implicit representation has shown high-

quality view synthesis results by implicitly modeling the

volume density and color of the scene using the weights

of a multi-layer perceptron [44, 75, 34]. Our work uses

NeRF [44] as our base scene representation for view syn-

thesis. Unlike NeRF that only models static scenes, our fo-

cus is on creating new views from arbitrary viewpoint and

time for dynamic scenes.

View synthesis for videos. Compared to images, view

synthesis for video poses significant challenges due to the

need to handle time-varying scene geometry and appear-

ances. Consequently, most of the existing methods typi-

cal require laborious multi-camera setup [78, 11, 52, 13, 6],

special hardware [1], or synchronous video captures from

multiple viewpoints [3, 4]. Several methods can reduce the

required number of input views by focusing on specific do-

mains such as performance capture [8, 14, 21] and video

re-animation [29, 34, 35, 62, 9]. In contrast, our work aims

to enable view synthesis of a complex dynamic scene at

any given viewpoints and time from a single video. Very

recently, Yoon et al. [74] also explore the same problem

setup. In contrast to [74] that processes each novel view

independently (by warping blending multiple images), we

can render an interpolation video with temporally smooth

transitions across viewpoints. Our method does not assume

a simple two-layer (foreground-background) model of the

scene and can handle more generic scenes.

Neural implicit representation. Implicit representa-

tion has emerged as a powerful tool to overcome conven-

tional limitations of discrete 3D representations such as

voxel grids or meshes. The core idea is to use a mul-

tilayer perceptron (MLPs) to implicitly model the occu-

pancy [41, 42], signed distance functions [53, 2], object ap-

pearance [51], volumetric density [16, 36, 63, 67, 64, 44]

in the 3D space. Differentiable rendering techniques enable

training these models without accessing ground truth data

for direct 3D supervision [39, 48, 44, 34]. However, ex-

tending the above methods to handle scene dynamics is not

trivial due to the motion–appearance ambiguity. Occupancy

flow [47] achieves 4D reconstruction (3D shape + 1D time)

by learning continuous motion fields. Our work builds upon

the recent advances in neural implicit representation but fo-

cuses on representing a dynamic video. Compared to 4D

reconstruction in [47], our method differs in the following

two aspects. First, our method does not require direct 3D

ground truth training data. Second, in addition to model the

time-varying 3D geometry, we also model the appearance

of complex scenes.

Video depth estimation. Estimating dense depth from a

dynamic video is a challenging task. Existing multi-view

stereo (MVS) methods (either geometric-based [60, 18] or

learning-based [24, 72, 20, 37]) assume static scene and

thus not suitable for dynamic videos as it often produces

erroneous depth for moving objects or untextured regions.

Several monocular video depth estimation methods pre-

dict depth using the cost volume computed from nearby

frames [66, 33]. Similar to MVS algorithms, these video-to-

depth methods have difficulties in handling dynamic scenes

well. Very recently, hybrid methods that combine MVS and

single-image depth estimation models have been proposed

[38, 74]. Our work leverages the estimated depth from

[38] to help resolve the ambiguity when learning the spa-

tiotemporal neural radiance fields using a single video. Our

approach renders photorealistic views with correctly filled

dis-occluded contents compared to view synthesis with per-

frame depth-based warping.

Video completion. State-of-the-art video completion

methods achieve temporally consistent completion by prop-

agating known contents to missing regions along flow tra-

jectories [25, 23, 71, 19]. One may first render a free-

viewpoint video according to each frame’s estimated depth,

followed by filling the missing pixels (disoccluded regions

due to view changes) using video completion algorithms.

Our method also produces completed novel views (i.e., with

no missing pixels from disocclusion). However, unlike

video completion algorithms that inpaint the dis-occluded

pixels in the screen space, our approach fills in the dis-

occluded content implicitly in the 3D space. Our exper-

iments validate that our approach produces significantly

fewer artifacts than the baseline method using video com-

pletion.

Depth map fusion. A line of research work focuses on

fusing a sequence of RGB-Depth images in a video into a

global with voxel-, point-based, signed distance field-based

representation [80]. Examples include 3D reconstruction

for static scenes [49, 27] or dynamic objects from a sin-

gle [45, 26] or RGB-D cameras [14, 5, 26, 45, 73, 79].

Our work differs from prior 3D reconstruction methods in

two aspects. First, we do not assume a fixed, canonical 3D

model as in existing dynamic 3D reconstruction methods

and, therefore, can naturally handle an entire dynamic scene

(as opposed to only individual objects). Second, our ap-

proach with neural implicit representations jointly models

time-varying geometry and appearance.
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Concurrent works. Several concurrent works on extend-

ing NeRF [44] to dynamic scenes from monocular video

have been proposed [54, 56, 31, 68, 15]. These methods

either learn a static canonical radiance field with deforma-

tion [54, 56, 68] or a dynamic radiance field directly con-

ditioned on time [31, 15]. Our work belongs to the latter;

while the other two works [31, 15] regularize the training

primarily with flow information, ours does so with dynamic

scene depth. We refer the readers to these papers for a com-

plete picture.

3. Background

Our representation builds on the neural radiance field, or

NeRF [44], which we recap in this section. NeRF represents

the radiance c=(r,g,b) and differential volume density σ at

a 3D location x = (x,y,z) of a scene observed from a view-

ing direction d = (θ ,φ) as a continuous multi-variate func-

tion using a multi-layer perceptron (MLP): FNeRF : (x,d)→
(c,σ).

The color of a pixel can be rendered by integrating the

radiance modulated by the volume density along the camera

ray r(s) = o+ sd, shot from the camera center through the

center of the pixel:

C(r) =
∫ sf

sn

T (s)σ
(

r(s)
)

c
(

r(s), d
)

ds, (1)

where

T (s) = exp

(

−
∫ s

sn

σ(r(p))dp

)

(2)

is the accumulated transmittance along the ray r up to s.

One can train the MLP using multiple posed images,

capturing a static scene from different viewpoints. Specif-

ically, we minimize the photometric loss that compares the

rendering through a ray r with the corresponding ground

truth color from an input image:

LNeRF = ∑
r∈R

∥

∥Ĉ(r)−C(r)
∥

∥

2

2
, (3)

where R denotes a set of rays, and C(r) and Ĉ(r) the ground

truth and the estimated color, respectively.

In the implementation, the continuous volume rendering

of (1) is approximated by numerical quadrature, i.e., com-

puting the color using a finite number of sampled 3D points

along a ray and calculate the summation of the radiances,

weighted by the discrete transmittance. As this weighted

summation process is differentiable, the gradient can prop-

agate backward for optimizing the MLP. We perform the

sampling in two steps. First, a ray is sampled uniformly

in s, and then, it is sampled with respect to the approxi-

mate transmittance so that more samples are used around

surfaces in the scene. The two groups of samples are evalu-

ated in separate coarse and fine networks, and both are used

to measure the loss (3).

4. Space-time Neural Irradiance Fields

We represent a 4D space-time irradiance field as a func-

tion that maps a spatiotemporal location (x, t) to the emit-

ted color and volume density, F : (x, t) → (c,σ). Our in-

put video is represented as a stream of RGB-D images,

It : u → (c,d) at discrete time steps t ∈ T = {1,2, ...,Nf},

where u = (u,v) is 2D pixel coordinates, and their associ-

ated camera calibrations Pt .

A ray r at time t can be determined by a pixel location u

and the camera calibration Pt : it marches from the camera

center through the center of pixel denoted by u. Addition-

ally, we parameterize a ray such that the parameter s denotes

the scene depth. This is achieved by setting the directional

vector d such that its projection onto the principal ray has a

unit norm in the camera space.

Color reconstruction loss. To learn the implicit function

F from the input video I, first and foremost, we constrain

our representation F such that it reproduces the original

video I when rendered from the original viewpoint for each

frame. Specifically, we penalize the difference between the

volume-rendered image at each time t and the correspond-

ing input image It . This amounts to the reconstruction loss

of the original NeRF [44]:

Lcolor = ∑
(r, t)∈R

∥

∥Ĉ(r, t)−C(r, t)
∥

∥

2

2
, (4)

where R is a batch of rays, each associated with a time t.

Unlike NeRF, for dynamic scenes, we have to reconstruct

the time-varying scene geometry at every time t. However,

a single video contains only one observation of the scene at

any point in time, rendering the estimation of scene geom-

etry severely under-constrained. That is, the 3D geometry

of a scene can be legitimately represented in numerous (in-

finitely possible) ways since varying geometry can be ex-

plained with the varying appearance and vice versa. For

example, any input video can be reconstructed with a “a

flat TV” solution (with a planar geometry with each frame

texture-mapped).

Thus, the color reconstruction loss provides the ground

for accurate reconstruction only when the learned represen-

tation is rendered from the same camera trajectory of the

input, lacking any machinery that drives learning correct ge-

ometry. Incorrect geometry would lead to artifacts as soon

as we start deviating from the original video’s camera tra-

jectory, as shown in Figure 2a.

Depth reconstruction loss. We resolve this motion–

appearance ambiguity by constraining the time-varying ge-

ometry of our dynamic scene representation using the per-
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(a) w/o depth loss (b) w/ depth loss

Figure 2. Depth loss. (a) A model trained without our depth loss

can reconstruct the image from the original viewpoint well (first).

However, with a slight viewpoint change, the synthesized image

(second) suffers from strong visual artifacts due to incorrect ge-

ometry (third). (b) A trained with the proposed depth loss render

the novel viewpoint without clearly visible artifacts.

frame scene depth of the input video (estimated from video

depth estimation methods). We estimate the scene depth

from the learned volume density of the scene, and measure

its difference from the input depth dt . It is a non-trivial

question on how to define the scene depth of a ray. One

possibility is to measure the distance where the accumu-

lated transmittance T becomes less than a certain threshold.

Such an approach, however, involves heuristics and hard de-

cisions. Instead, we accumulate depth values along the ray

modulated both with the transmittance and volume density,

similarly to the depth composition in layered scene repre-

sentations [69].

Our depth reconstruction loss is of the form:

Ldepth = ∑
(r, t)∈R

∥

∥

∥

∥

1

D̂(r, t)
−

1

D(r, t)

∥

∥

∥

∥

2

2

, (5)

where

D̂(r, t) =
∫ sf

sn

T (s, t)σ(r(s), t)sds, (6)

is the integrated sample depth values along the ray and

D(r).

Empty-space loss. Constraining the depth predicted by

our model using the estimated scene depth is not sufficient

to capture accurate scene geometry. This is because the pre-

dicted depth is, in essence, a weighted sum of depth values

along the ray. Consequently, we sometimes see haze-like

visual artifacts when rendering at novel views. We pro-

pose to encourage empty space between the camera and the

first visible scene surface to address this issue. A similar

idea has been used in volumetric depth integration [12]. To

this end, we penalize non-zero volume densities measures

along each ray up to the point no closer than a small margin

ε = 0.05 · (sf − sn) to the scene depth for each ray:

Lempty = ∑
(r, t)∈R

∫ dt (u)−ε

sn

σ(r(s), t)ds, (7)

where u denotes the pixel coordinates where r intersects

with the image plane at t, dt(u) denote the scene depth for

the pixel u at time t.

The empty-space loss combined with the depth recon-

struction loss provides geometric constraints for our repre-

sentation up to and around visible scene surfaces at each

frame. The learned representations can thus produce geo-

metrically correct novel view synthesis, as shown in Fig-

ure 2b.

Static scene loss. A large portion of spaces that is hid-

den from the input frame’s viewpoint at any given time is

still not constrained, i.e., the MLP has not seen the 3D po-

sitions and time as input queries during training. As a re-

sult, when these unconstrained spaces are disoccluded due

to viewpoint changes, they are prone to artifacts (see Fig-

ure 4 for an example). However, there is a high chance

that a portion of disoccluded spaces is observed from a dif-

ferent viewpoint at another time. Our idea is to constrain

the MLP by propagating these partially observed contents

across time. However, instead of explicitly correlating sur-

faces over time, e.g, using the scene flow, we choose to con-

strain the spaces surrounding the surface regions. This al-

lows us to avoid misalignment of scene surfaces due to unre-

liable geometry estimates or other image aberrations com-

monly seen in captured videos such as exposure or color

variations.

We make a simple assumption on unobserved spaces:

every part of the world should stay static unless observed

not as such. Enforcing this assumption prevents the part

of spaces that are not observed from going entirely uncon-

strained. Our static scene constraint encourages the shared

color and volume density at the same spatial location x be-

tween two distinct times t and t ′:

Lstatic = ∑
(x, t)∈X

∥

∥F(x, t)−F(x, t ′)
∥

∥

2

2
, (8)

where both (x, t) and (x, t ′) are not close to any visible sur-

faces, and X denotes a set of sampling locations where the

loss is measured.

Scene sampling. While we have locations for the color,

depth, and free-space supervisions explicitly dictated by

quadrature used by volume rendering [44], we are free to

choose where we apply the static constraints. A straightfor-

ward approach would be to use the same sampling locations

that are used for other losses. We can then randomly draw

another time t ′ that is distinct from the current time t and en-

force the MLP to produce similar appearances and volume

densities at these two spatiotemporal locations.

However, this still leaves a large part of the scene un-

constrained when the camera motion is large. Uniformly

sampling in the scene bounding volume would also not be

ideal since sampling would be highly inefficient because of

9425



𝑑𝑡 𝐮𝐮 ∈ 𝑅2Pixel coordinate

Scene depth

𝐫(s) ∈ 𝑅33D position

Margin 2𝜖

Figure 3. Scene sampling. We measure the Empty-space loss on

3D positions until hitting the estimated scene depth (green). We

use all the samples along the ray (green and yellow) to compute the

Depth and Color reconstruction loss. For Static loss, we sample

the scene from the union of the space spanned by all camera rays

(within the range of s ∈ [zn,zf]) of all input frames. We exclude

any samples that are close to any surface than ε .

perspective projection (except for special cases like a cam-

era circling some bounded volume).

As a simple solution to meet both the sampling efficiency

and the sample coverage, we propose to take the union of all

sampling locations along all rays of all frames to form our

sample pool X . We exclude all points that are closer to any

observed surfaces than a threshold ε (see Figure 3). We ran-

domly draw a fixed number of sampling locations from this

pool at each training iteration and add small random jitters

to each sampling location. At time t ′ the static scene loss is

measured against is also randomly chosen for each sample

location x, while ensuring the resulting location (x, t ′) is not

close to any scene surfaces.

Total loss. Our total loss for training the space-time irra-

diance fields is a linear combination of all losses presented

above:

L= Lcolor +αLdepth +βLempty + γLstatic. (9)

We validate the effectiveness of these losses in Section 5.

Implementation details. We used the same MLP architec-

ture as in NeRF [44], except that we use 1024 activations for

the first 8 layers instead of 256. We calculate all the losses

except the static scene loss on a batch of Nr = 1024 rays that

are randomly drawn from an input frame It without replace-

ment. We normalize the time t such that T = [−1,1] and ap-

ply the positional encoding with 4 frequency bands. We use

the hierarchical volume sampling as in the original NeRF

and simultaneously train both the coarse and fine networks.

We train the MLP for 800k iterations. It takes about 48

hours to train a network with about 100 video frames at the

(a) Input frame (b) w/o static loss (c) w/ static loss

Figure 4. Static scene loss. Our static scene loss addresses the

regions that are not constrained by the color and depth reconstruc-

tion loss, which handles only visible surfaces in the input frames

(a). We render two frames at t1 = 9 and t2 = 90 from the viewpoint

of t = 40. The camera has panned in the top row and zoomed out

in the bottom row. When these frames are rendered from this novel

viewpoint, previously hidden regions become disoccluded. They

are, without the static scene loss, completely unconstrained and

prone to ghosting or haze artifacts, as shown in (b). Our static loss

alleviate these artifacts.

960×540 resolution with 4 NVIDIA V100 GPUs. Please

refer to the supplementary document for more details.

5. Experimental Results

We first compare our method with baseline approaches us-

ing the videos of dynamic scenes. Note that we always

render new views at one of the observed times. That is,

we do not evaluate our method’s capability of temporal in-

terpolation/extrapolation since our method is not designed

to address it. We then provide extensive quantitative ab-

lation studies with the variants of our model where each

loss is added one at a time. We urge the readers to watch

our supplementary videos in our project webpage (https:

//video-nerf.github.io), where we provide free-

viewpoint rendering of our learned representations.

Datasets. We use the videos of dynamic scenes from

the recent consistent video estimation method of Xuan et

al. [38] along with the camera calibration and the per-frame

depth maps provided together. ‡ Their dataset (denoted by

‡We also intended to use the dataset and video depth of Yoon et

al. [74], but were unable to obtain the depth maps used in their results.
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(a) Input (b) Mesh (c) Inpainted (d) NeRF-T (e) Ours

Figure 5. Comparisons on novel view synthesis. We compare our results with three baselines. (a) shows an input image and (b–d)

show view synthesis results. (b) shows rendered mesh representation; (c) inpainted version of (b); (d) NeRF with an additional temporal

parameter; (e) our method. The green areas represent disocclusion. Notice how the baselines are unable to recover the realistic appearance

that respects an accurate geometry of the background scene. Results are best appreciated in the supplementary videos.
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Table 1. Ablation study. We trained our model on the synthetic “Sintel” dataset with varying combinations of our losses and measure the

view synthesis quality using three metrics: (1) “PSNR (All)” the PSNR on all pixels, (2) “PSNR (Occ.)” the PSNR on disoccluded pixels

only, and (3) “SSIM” the structural similarity. With all metrics, the higher the better. Bold faces mean the best score, and the underlined

mean the second best.

Model Time Ldepth

(5)

Lempty

(7)

Lstatic

(8)

Lflow View

dir.

“Bandage 1” “Bandage 2” “Sleeping 1” “Sleeping 2” “Alley 1” “Bamboo 1”

PSNR

(All)

PSNR

(Occ.)

SSIM

(All)

PSNR

(All)

PSNR

(Occ.)

SSIM

(All)

PSNR

(All)

PSNR

(Occ.)

SSIM

(All)

PSNR

(All)

PSNR

(Occ.)

SSIM

(All)

PSNR

(All)

PSNR

(Occ.)

SSIM

(All)

PSNR

(All)

PSNR

(Occ.)

SSIM

(All)

NeRF - - - - - - 11.65 11.32 0.638 13.41 12.19 0.499 14.67 16.03 0.641 20.49 20.32 0.818 10.93 10.93 0.641 17.28 17.52 0.792

NeRF-T X - - - - - 11.81 11.27 0.658 13.84 12.26 0.462 15.45 15.81 0.663 13.83 22.08 0.480 11.50 12.50 0.665 15.59 15.32 0.732

1 X X - - - - 14.82 12.87 0.796 18.61 18.81 0.807 21.85 21.43 0.830 31.01 32.93 0.965 24.67 25.28 0.930 28.35 26.34 0.966

2 X X X - - - 14.62 13.06 0.791 22.26 23.64 0.877 21.70 21.19 0.841 35.06 32.61 0.965 26.75 26.40 0.941 25.69 23.83 0.965

3 X X - X - - 15.48 13.15 0.812 20.41 22.11 0.860 21.85 21.59 0.841 35.79 34.79 0.982 25.34 21.42 0.937 27.20 23.59 0.957

4 (“Ours”) X X X X - - 16.34 15.54 0.844 20.25 21.99 0.855 22.53 21.65 0.844 35.01 33.91 0.981 26.56 26.75 0.931 27.87 25.28 0.964

5 X X - X X - 17.24 16.84 0.826 18.67 16.75 0.820 21.96 21.19 0.837 28.43 27.21 0.957 25.37 25.24 0.940 25.45 22.97 0.924

6 X X X - X - 17.24 14.50 0.832 17.07 16.59 0.772 22.37 21.57 0.841 28.60 26.20 0.957 21.65 22.60 0.920 21.30 18.62 0.895

7 X X X X X X 18.14 14.02 0.855 18.77 18.32 0.810 18.36 18.95 0.808 28.26 26.71 0.944 20.05 24.05 0.899 20.70 18.08 0.885

“CVD”) consists of short videos of moving subjects cap-

tured by a smartphone.

For quantitative evaluation, we use the synthetic stereo

videos from the MPI Sintel dataset [7]. We select 6 videos

that show a variety of characteristics in terms of scene mo-

tion, camera motion, and the size of moving subjects. We

use the left video to train our models and render them from

the right video’s viewpoints for ground truth comparisons.

Baselines. We compare our method against several base-

line methods: (“Mesh”) textured mesh representations di-

rectly reconstructed from the input depth maps as demon-

strated by Xuan et al. [38]; (“Inpainted”) its inpainted

version, where disoccluded empty pixels in the 2D ren-

dered images are inpainted using a recent video inpainting

method [19]; and (“NeRF-T”) a version of NeRF with an

extra time parameter, which is our model trained with only

the color reconstruction loss (4). Note that we do not use

the viewing directions for the NeRF baseline.

Qualitative comparisons. Figure 5 presents the compar-

isons of our model against the baselines using the “CVD”

dataset, where we show view synthesis results from novel

viewpoints. We used our full method with all losses pre-

sented in Section 4 to create these results. Please refer to

our project webpage for the full video results.

Ablation studies. We trained our model with the dif-

ferent combinations of losses and measured the view syn-

thesis quality in three metrics, PSNR on the entire image,

PSNR on the disoccluded regions only, and SSIM on the

entire image. Table 1 summarizes the results. In addition to

the four losses presented in Section 4, we test an addition

loss, Lflow, which measures the consistency of the color and

the volume density between two corresponding spatiotem-

poral locations via scene flow. We obtain the scene flow

from the 2D optical flow raised to 3D using the per-frame

scene depth. Our motivation is to further encourage tempo-

ral smoothness and disocclusion handling. Since we are ef-

fectively gather view-dependent appearances with the scene

flow loss, we tested both models with and without the view-

ing directions used.

For quantitative evaluation, we train our models using

the Sintel dataset. The left videos are used to train the

models rendered from the right videos’ viewpoints and then

compared to the ground truth right videos. All metrics ag-

gregate the scores over all frames. Our model always works

better when trained with the depth loss. While varying de-

pending on scene types, the static loss and empty space loss

help improve the results as well. However, we find that

the scene flow loss does not help improve quality. We sus-

pect that this is because casual videos often include strong

image-space aberration such as exposure or color changes

and monocular depth estimates does not provide as accurate

scene depth as stereo-based methods do. For example, this

could be addressed by a latent code factoring out such vari-

ations, similarly done in NeRF-W [40]. While our “Model-

2” works slightly better than our full model (“Model-4”)

quantitatively, we have found that our full model works usu-

ally the best for real data.

6. Conclusions

We have presented a simple yet effective algorithm for

learning space-time irradiance fields from single casually

captured videos. Our core technical contributions are

(1) leveraging monocular video depth estimation to con-

strain the time-varying geometry of our learned neural im-

plicit functions and (2) designing a static scene loss and a

sampling strategy to propagate scene contents across time.

We extensively validate and justify our design choices both

visually and quantitatively on the Sintel dataset. We show-

case free-viewpoint video rendering of several challenging

dynamic scenes captured with hand-held cellphone cam-

eras.
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