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Abstract

In this work, a robust and efficient dual iterative refine-

ment (DIR) method is proposed for dense correspondence

between two nearly isometric shapes. The key idea is to use

dual information, such as spatial and spectral, or local and

global features, in a complementary and effective way, and

extract more accurate information from current iteration to

use for the next iteration. In each DIR iteration, starting

from current correspondence, a zoom-in process at each

point is used to select well matched anchor pairs by a local

mapping distortion criterion. These selected anchor pairs

are then used to align spectral features (or other appropri-

ate global features) whose dimension adaptively matches

the capacity of the selected anchor pairs. Thanks to the

effective combination of complementary information in a

data-adaptive way, DIR is not only efficient but also robust

to render accurate results within a few iterations. By choos-

ing appropriate dual features, DIR has the flexibility to han-

dle patch and partial matching as well. Our comprehensive

experiments on various data sets demonstrate the superior-

ity of DIR over other state-of-the-art methods in terms of

both accuracy and efficiency.

1. Introduction

Nonrigid shape matching is one of the most basic and

important tasks in computer vision and shape analysis, e.g.,

shape registration, comparison, recognition, and retrieval.

Different from 2D images, shapes are usually represented

as 2-dimensional manifolds embedded in R
3. Many chal-

lenges for nonrigid shape matching come from embedding

ambiguities, i.e. shapes sharing the same metric (isometry)

or very similar metrics (nearly isometry) can have drasti-

cally different xyz-coordinates representations in R
3.

To overcome these representation ambiguities, one of

the commonly used strategies is to extract features which

are isometrically invariant and robust to small perturba-

tions. Along with the idea, many successful and popu-

lar approaches are based on spectral geometry [40, 31,

52, 11, 28, 44]. Theoretically, the Laplace-Beltrami (LB)

operator is isometrically invariant. As a generalization of

Fourier basis functions from Euclidean domains to mani-

folds, the eigensystem of LB operator provides complete

intrinsic spectral information of the underlying manifold.

Moreover, from lower eigen-modes to higher eigen-modes,

LB eigenfunctions also provide a multi-scale characteriza-

tion of the underlying manifold from coarse to fine resolu-

tion. Although using spectral geometry removed possible

non-rigid embedding ambiguities, new ambiguities emerge

in the spectral domain due to non-uniqueness of the LB

eigen-system, e.g., sign ambiguity for eigenfunctions, the

ambiguity of choosing a basis for the LB eigen-space cor-

responding to a non-simple LB eigenvalue (due to symme-

try), the ambiguity of ordering for close eigenvalues (due

to small perturbations). To handle these ambiguities and

use spectral features accurately and robustly, a proper linear

transformation (a rigid transformation for exact isometry)

needs to be found to align the spectral modes between two

shapes first. This linear transformation is typically com-

puted through some matching/correlation based on given

(prior) correspondence, e.g., landmarks [35, 2, 29]. More-

over, to resolve fine details and acquire accurate correspon-

dence between two shapes, high eigen-modes need to be

used. However, the use of higher eign-modes will not only

require more computation costs but, more importantly, can

also cause instability with respect to small perturbations.

To tackle the instability issue of using high eigen-modes

directly, one natural multi-scale approach is to start from a

correspondence at a coarse scale using a few low modes

and iteratively refine the correspondence at a finer scale

by adding more higher modes gradually. The main mo-

tivation is that the linear transformation (a small matrix)

on a coarse scale between two truncated spectral func-

tional spaces spanned by a few low eigen-modes can be

determined efficiently and stably from an initial approxi-

mate or limited correspondence. Once low eigen-modes are

aligned well, an improved correspondence, especially be-

tween smooth parts of the two shapes, is likely obtained.

The improved correspondence is then used to determine the
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Figure 1. Top: First row shows examples from SHREC’16 holes,

and second row shows examples from SHREC’16 cuts. We map

the partial shapes in gray to full shapes in blue. Bottom: Geodesic

error on SHREC’16 cuts and holes data set with comparison to

other state-of-the-art methods.

linear transformation for the next iteration which involves

more LB eigen-modes. Such a multi-scale idea for shape

correspondence has been proposed in [29] for multi-scale

registration using rotation-invariant sliced-Wasserstein dis-

tance and in [34] as a Zoom-out process. However, for

the above straightforward multi-scale approach in the spec-

tral domain, there are two key issues. First, in each iter-

ation, the indiscriminate determination of the linear trans-

formation between the truncated spectral embedding of two

shapes using current correspondence of all points, many of

which are incorrect, might be problematic. In Theorem 1,

we show that the linear transformation between two spec-

tral functional spaces determined using all points from an

inaccurate correspondence will most likely lead to errors.

These errors could be very significant and can cause either

a failure for later refinement or slow convergence shown in

the supplementary material. The other issue is the lack of

a systematic and data-adaptive way to determine how many

eigen-modes can be aligned accurately and stably by the

current correspondence. Thus, it is hard to decide the ap-

propriate jump in the number of eigen-modes for the next

refinement after each iteration to achieve fast convergence.

Previously, an increment of one mode was typically used in

Zoom-Out [34], while a prefixed sequence of eigenmodes

was proposed in [29] based on the rule of thumb.

In this work, we propose a simple and efficient dual it-

erative refinement strategy. This method combines comple-

mentary information, such as spatial and spectral, or local

and global, to simultaneously refine the correspondence be-

tween approximately isometric shapes in an effective way.

More specifically, spatial matching via local mapping dis-

tortion (see Definition 1) is applied point-wisely to choose

well-matched correspondence – anchor pairs, at the current

stage. Once anchor pairs are selected, they are used to find

1) the maximal dimension of spectral functional space that

can be robustly and accurately determined by these anchor

pairs based on their distribution, and 2) the linear transfor-

mation that aligns the spectral basis at the next scale which

will lead to a more refined correspondence at next stage.

This remarkable simple strategy addresses the aforemen-

tioned two critical issues in previous multi-scale approaches

using only spectral matching and allows one to utilize all

well-matched pairs from the current step to jump to the next

step in an accurate, efficient, stable, and data-adaptive way.

We use extensive numerical experiments to show that our

simple strategy, DIR, outperforms start-of-the-art model-

based methods in terms of both accuracy and efficiency

markedly. By choosing appropriate and application-specific

dual features, DIR enjoys the flexibility to handle differ-

ent scenarios, such as raw point clouds, patch and partial

matching (as illustrated in Figure 1). We defer a detailed

explanation of this Figure in Section 5.

Contributions. We summarize our main contributions:

• By combining spatial matching via local mapping dis-

tortion and spectral matching via the LB eigen-basis,

the proposed DIR goes from coarse to fine resolution

stably and effectively in a data-adaptive way which

overcomes the main challenges in spectral matching.

• By generalizing this dual refinement strategy to other

local and global features such as local mapping distor-

tion and global geodesic distance, DIR handles patch

and partial matching.

The rest of this paper is organized as follows. In Section 2,

we provide a brief review of some related work. Then we

present our proposed method, DIR, in detail followed by a

discussion about a few possible extensions of our method

in Section 3. After that, we conduct extensive experiments

on various benchmark data sets and compare DIR to other

state-of-the-art methods in terms of both accuracy and effi-

ciency in Section 5. We conclude the paper in Section 6.

2. Related work

Designing effective shape descriptors is crucial for shape

registration or correspondence. In general, descriptors can

be categorized as pointwise or pairwise. Extrinsic point-

wise descriptors [49, 21, 15, 41] are easy to compute

but usually not very accurate, especially when a non-rigid

transformation is involved. To handle non-rigid transfor-

mation, different intrinsic descriptors either in spatial do-

main, such as geodesics distance signatures [53], heat ker-

nel signatures [47] and wave kernel signatures [4], or in
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spectral domain using the eigensystem of the LB opera-

tor [31, 52, 11, 28, 35, 29], are proposed. Then various

nearest neighbor searching or linear assignment methods

are used in the descriptor space to find the dense point cor-

respondence. For point-wise descriptors in the spectral do-

main, such as functional map [35], a proper linear trans-

formation is needed to align the spectral basis to remove

ambiguities in the eigensystem of LB operator. The de-

termination of the linear transformation itself is typically

based on some prior knowledge, e.g., given landmarks,

region correspondences, or orientation preserving proper-

ties [39], and can be challenging to achieve good accuracy

especially when the dimension of the spectral embedding is

high, which is needed to resolve fine shape features. On the

other hand, spatial domain pointwise descriptors are usu-

ally defined smoothly on shapes and that makes it difficult

to provide accurate correspondences. Our method aims at

tackling these issues raised in aligning shapes using point-

wise descriptors.

Intrinsic pairwise descriptors, such as pairwise geodesic

distance [7, 10, 55] and kernel functions [32, 46, 54] have

also been proposed for non-rigid shape correspondence

problems. Although the matching of pairwise descriptors

is stricter and may be more robust and accurate, it requires

to solve a quadratic assignment problem (QAP) which is

NP-hard. Various methods have been proposed to solve

the QAP approximately in a more computational tractable

way e.g sub-sampling [48], coarse-to-fine [56], geodesic

distance sparsity enforcement methods [19] and various

relaxation approaches [1, 8, 25, 30, 13, 16]. One pop-

ular approach is to relax the nonconvex permutation ma-

trix (representing pointwise correspondence) constraint in

the QAP to a doubly stochastic matrix (convex) constraint

[1, 13]. However, both the pairwise descriptors and the dou-

bly stochastic matrix are dense matrices, which make the

relaxed QAP still challenging to solve even for a modest

size problem. Recently, a novel local pairwise descriptor

and a simple, effective iterative method to solve the result-

ing quadratic assignment through sparsity control was pro-

posed in [57] for shape correspondence between two ap-

proximately isometric surfaces.

3. Dual Iterative Refinement Method

3.1. Functional map

Spectral geometry is widely used in shape analysis [40,

31, 52, 11, 28, 35, 29, 45, 22]. Leveraging the spectral rep-

resentation, functional map formalism is introduced in [35]

to solve non-rigid shape correspondence problem. It im-

proves earlier point-based spectral methods [23, 24, 33, 36]

which directly match the spectral embeddings of shapes.

We provide a brief introduction to the concept of functional

maps which is used in our multi-scale DIR process.

Given (M1, g1) as a closed 2-dimensional Riemannian

manifold, the LB operator uniquely determines the under-

lying manifold up to isometry [6]. Eigen-functions of LB

operator form an orthonormal basis on the underlying man-

ifold and can be used as intrinsic and multi-scale descriptors

for shapes. In discrete setting, the manifold M1 is usually

represented as a triangulated mesh with vertices {xi}
n
i=1.

The LB matrix is given by LM1
= A−1

1 W1 [37], where A1

is the diagonal element area matrix of M1 and W1 is the

standard cotangent weight matrix. The discrete truncated

k-dimensional spectral embedding of M1 can be expressed

as a matrix Φk
M1

∈ R
n×k whose rows are the first k LB

eigen-functions evaluated at each point. Similarly, we can

define the first k LB eigen-embedding for M2 as Φk
M2

.

The key idea of functional map is to lift a shape cor-

respondence T : M1 → M2 to a linear functional map,

between the function spaces C(M1) and C(M2). The func-

tional map for a given correspondence T can be repre-

sented as a linear transformation between two given bases

of C(M1) and C(M2), which becomes a matrix when the

shapes are discretized and the bases are truncated. In prac-

tice, LB eigen-functions are commonly used as the basis

for the function space. For example, given a permutation

matrix Π representing a point-to-point map T from M1 to

M2, the functional map C is defined as:

C = argmin
C

‖ΦM1
C −ΠΦM2

‖2F (1)

Theoretically, if M1 and M2 are isometric, then the cor-

responding LB eigen-functions are the same up to possible

ambiguities caused by sign switch and non-simple eigen-

values, which belong to an orthonormal group. This moti-

vates the following constrained functional map [29]

min
C∈R

‖ΦM1
C −ΠΦM2

‖2F = ProjR(Φ⊤
M1

ΠΦM2
) (2)

where R = {C | C⊤C = Id} denotes the set of or-

thonormal matrices and the projection to R is provided as

ProjR(A) = UV ⊤ with the singular value decomposition

(SVD) of A = UΣV ⊤. Since this paper aims at tack-

ling nearly isometric shape matching problem, we adopt (2)

which is equivalent to (1) for the isometric case.

Typically, the functional map is obtained via a least

square optimization with various constraints and regular-

izations, such as preservation of given landmarks, commu-

tativity with LB operator, and sparsity [46, 39]. Once the

optimized functional map C is computed, for any p ∈ M,

the correspondence T (p) can be obtained by solving the fol-

lowing spectral matching problem:

T (p) = argmin
q∈M2

‖ΦM1
(p)C − ΦM2

(q)‖2F (3)

However, the determination of an accurate functional

map C can be difficult when limited prior knowledge or a
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poor correspondence is used. On the one hand, it becomes

harder when more eigen-modes are involved since the de-

grees of freedom of the functional map grow quadratically

in terms of the eigen-modes involved and, moreover, high

eigen-modes are less computationally stable with respect

to perturbations or noises. On the other hand, confining to

low eigen-modes limits resolution of the spectral represen-

tation and hence the accuracy of shape correspondence. A

natural multi-scale idea is to start the functional map from

a coarse resolution involving a few low eigen-modes and

construct a coarse correspondence T . Then the coarse cor-

respondence is used to help determining the functional map

at a finer scale and hence a more refined correspondence.

This process can be iterated until a fine enough resolution

is achieved. The main motivation is that the functional map

at a coarse scale – a small matrix, can be determined ef-

ficiently and stably from an initial approximate or limited

correspondence, which is then used to improve the corre-

spondence at the next iteration. This strategy leads to it-

eratively computing (2) and (3), or (1) and (3), which is

the key idea proposed in [29] using rotation-invariant sliced

Wasserstein distance and in the Zoom-out process [34]. As

a crucial component of these iterative refinement methods,

the new functional map C is obtained from the current cor-

respondence of all points. Since intermediate correspon-

dence, especially at the beginning, can be quite inaccurate,

this naive strategy may lead to significant errors.

Next, we provide both theoretical evidences on the effect

of correspondence error of C in (2). This can be problem-

atic for any iterative refinement procedure based on spectral

geometry. Assume we have two perfectly isometric man-

ifolds M1,M2 and their corresponding discrete truncated

spectral embeddings ΦM1
, ΦM2

. Without loss of gener-

ality, we assume Id is the ground truth correspondence be-

tween M1 and M2 (otherwise, we can shuffle row vectors

of ΦM2
according to the ground truth correspondence). The

ground truth functional map is an orthonormal matrix CT ∈
R, i.e. ΦM2

= ΦM1
CT and CT = ProjR(Φ⊤

M1
ΦM2

).

Theorem 1 Given ΦM2
= ΦM1

CT with CT ∈ R, let

us assume a one-to-one correspondence Π is an inaccu-

rate correspondence which maps a portion of ΦM1
accu-

rately to the corresponding part of ΦM2
, while the remain-

ing part of Π is inaccurate. Without loss of generality, we

write ΦM1
=

(

X1

X2

)

and ΦM2
=

(

Y1

Y2

)

where X1, Y1 ∈

R
n1×k, X2, Y2 ∈ R

n2×k and n1 + n2 = n. We let

ΠΦM2
=

(

Y1

σY2

)

for a permutation matrix σ ∈ R
n2×n2 .

Let Ca = argminC∈R ‖ΦM1
C − ΠΦM2

‖2F . Then the

spectral norm ‖Ca − CT ‖2 > 0 with probability at least

1− η with η =

⌊n2/2⌋
∑

j=0

1

2jj!(n2 − 2j)!
.

Notice that η decreases rapidly as n2 grows. For example,

when n2 = 25, η ≈ 10−12. We provide a detailed proof of

this theorem in the supplementary material where we also

numerically verify that using points from an inaccurate cor-

respondence may lead to significant errors in the functional

map. This can cause failure for iterative refinement.

Another critical issue for multi-scale approach in the

spectral domain is how to iteratively increase the resolution,

i.e., the dimension of spectral embedding, in an accurate,

stable and data-adaptive way. Most approaches [54, 29, 34]

just adopt an empirical or prefixed increasing sequence.

Motivated from the above difficulties and limitations of

iterative refinement approaches in the spectral domain, we

propose a dual iterative refinement method that iteratively

updates on the spatial and spectral domains. The first key

idea is to choose well-matched pairs using local spatial

matching from current correspondence, called anchor pairs,

and only use them to determine the functional map which

helps to construct a much more improved correspondence

for the next iteration. In order to choose high-quality an-

chor pairs from a given correspondence, we zoom in at each

corresponding pair and measure local mapping distortion.

This step integrates local spatial information in the spectral

refinement process. The second key idea is to find the max-

imal dimension of spectral embedding that can be robustly

and accurately determined by these anchor pairs according

to their distribution in the spectral domain using singular

value analysis on their correlation matrix.

3.2. Local mapping distortion

In order to choose well-matched anchor pairs, or to filter

out bad correspondences, to compute the functional map C
more accurately, we use the following local mapping dis-

tortion (LMD) introduced in [57] to measure the match-

ing quality of a given correspondence pair and choose those

pairs with small LMD. Without relying on any information

of the ground truth correspondence, this distortion provides

a quantitative measurement to check the accuracy of the

map through its continuity and local distance preservation.

Definition 1 (Local mapping distortion) Let T : M1 →
M2 be a map between two manifolds. For any point x ∈
M1, consider its γ-geodesic ball in M1 as Bγ(x) = {y ∈
M1 | dM1

(x,y) ≤ γ}. LMD of T at x is defined as:

Dγ(T )(x) =
1

|Bγ(x)|

∫

y∈Bγ(x)

DET (x,y)dy (4)

where DET (x,y) = |dM1
(x,y) − dM2

(T (x), T (y))|/γ
and |Bγ | is the volume of Bγ .

Based on the definition of LMD, it is straightforward to

check if T is an isometric map, then Dγ(T )(x) = 0, ∀x ∈
M1, γ > 0. Conversely, if Dγ(T )(x) = 0, ∀x ∈ M1 for
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some γ > 0, then T is isometric. Numerically, equation (4)

can be approximated by:

Dγ(T )(xi) ≈

∑

xj∈Bγ(xi)
A1(j)DET (xi,xj)

(

∑

xj∈Bγ(xi)
A1(j)

) (5)

where A1 is the area element of the mesh representing M1.

By normalizing the distance with respect to γ, LMD is ro-

Figure 2. LMD on ground truth correspondence.

bust to global scaling as well as local sampling variation.

Figure 2 shows that, for the ground truth correspondence,

LMD is very small almost everywhere except in regions

where non-isometric distortion is large. Hence the proposed

LMD also serves as a good unsupervised error metric when

ground truth is not available.

3.3. Our Method

We first precompute K leading LB eigenfunctions for

each shape. Here K can be determined by computation cost

limitation, the noise level in the data, or desired accuracy of

the correspondence. In any case, it should not exceed what

the mesh resolution can support for the discretized shape,

i.e., a few mesh points are needed in each nodal domain.

Our method can start with an initial correspondence pro-

vided by SHOT [49] based on extrinsic point-wise features,

or a few given landmarks used as initial anchor pairs which

can be fixed or updated in later refinement, or by any other

(fast but not necessarily very accurate) methods. Then we

start DIR which includes the following three simple steps:

1© Choose anchor pairs from current correspondence using

LMD criterion; 2© Determine the spectral dimension and

the corresponding functional map based on the selected an-

chor pairs; 3© Update the correspondence using the current

functional map. In addition, we enforce two stopping crite-

ria, the total number of iterations and the spectral dimension

supported by anchor pairs reaches K, whichever is satisfied

first. Here are more detailed descriptions of each step.

Step 1: Selecting anchor pairs. By setting a proper LMD

threshold ǫ, the set of pairs {(xℓ, T (xℓ))|Dγ(T )(xℓ) < ǫ}
are selected as anchor pairs from the current correspon-

dence which will be used to guide the next refinements. It

is important to note that both the threshold ǫ and anchor

pairs are updated in later refinement. By decreasing ǫ with

iterations, the quality of anchor pairs is also improved.

Step 2: There are two components described as follows.

(1) Determining the proper spectral dimension based on

anchor pairs. Given a set of anchor pairs, an important

question is to find a proper spectral dimension that can be

determined accurately and stably according to the distribu-

tion of the anchor pairs in the spectral embedding. Due to

possible degeneracy of the distribution, the dimension can

be quite smaller than the number of anchor pairs. We use

singular value decomposition (SVD) [50], a.k.a principal

component analysis, to find the dimension well expanded

by a set of anchor pairs in spectral domain.

UΣV ⊤ = ΦK
M1

({xℓ}
m
ℓ=1)

⊤ΦK
M2

({T (xℓ)}
m
ℓ=1). (6)

We threshold the singular values to determine the proper di-

mension. One can use a simple thresholding strategy. In

our implementation, we adopt a normalization strategy to

make the threshold adaptive to the data and noise level. Af-

ter normalizing all singular values by the mean of 10 largest

singular values, the dimension cut is set at where the sum of

ten consecutive normalized singular values is smaller than a

threshold (0.1 for all our tests).

(2) Computing functional map based on anchor pairs.

Once the proper spectral dimension, k, is determined by

the selected anchor pairs {(xℓ, T (xℓ) | ℓ = 1, · · · ,m}, we

compute the functional map for k dimensional spectral em-

bedding only based on the anchor pairs as follows:

C = argmin
C∈R

m
∑

ℓ=1

‖ Φk
M1

(xℓ)C − Φk
M2

(T (xℓ))‖
2
F

= ProjR

(

(

Φk
M1

({xℓ}ℓ)
)⊤

Φk
M2

({T (xℓ)}ℓ)
)

(7)

This restricted version to compute a functional map mini-

mizes possible corruption from inaccurate correspondence

and leads to a more accurate estimation of the functional

map as discussed in the Section 3.1 and supplementary ma-

terial. Meanwhile, it also reduces the computation cost.

Step 3: Construct the new correspondence. Using the

functional map computed from selected anchor pairs in the

properly enlarged spectral embedding space, a refined cor-

respondence is constructed by solving the assignment prob-

lem (3), where a KNN search method is applied.

We summarize the full procedure in Algorithm 1.

Computation complexity The complexity for computing

K leading eigen-vectors of a n × n sparse matrix corre-

sponding to the discretized LB operator is O(Kn log n).
The complexity for checking LMD is O(n) since geodesic

distance is only computed in a fixed neighborhood, e.g., first

ring or second ring, at each point. To compute the func-

tional map, the complexity of matrix multiplication is at

most O(nK2) and SVD decomposition is at most O(K3)
since the number of anchor pairs is at most n and the spec-

tral dimension k is at most K which is prefixed and far less

than n. KNN search used to solve Equation (3) has a com-

plexity of O(n log(n)) [51]. Hence, our method is of com-

plexity O(n log(n)) altogether. It is still O(n log(n)) using
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Algorithm 1: Dual Iterative Refinement (DIR)

input An initial correspondence, ΦK
M1

and ΦK
M2

(e.g. K leading LB eigenfunctions), LMD error

{ǫi}
N
i=1 thresholds and the maximum iteration N .

while i ≤ N , or ki ≤ K do
1. Find anchor pairs

{(xℓ, T (xℓ)) | Dγ(T )(xℓ) < ǫi}
mi

ℓ=1 via LMD

criterion from current correspondence T .

2. Find spectral dimension ki from SVD of

ΦK
M1

({xℓ}ℓ)
⊤ΦK

M2
(T ({xℓ}ℓ)).

3. Update the functional map C =

ProjR

(

(

Φki

M1
({xℓ}ℓ)

)⊤

Φki

M2
({T (xℓ)}ℓ)

)

4. Update the correspondence (for all p ∈ M1)

T (p) = argmin
q

‖Φki

M1
(p, :)C − Φki

M2
(q, :)‖2.

end

other global features such as geodesic distance to anchor

points since we limit the maximal number of anchor points

(as the number of LB eigen-functions). The complexity of

computing geodesic distance and solving the resulting as-

signment problem is still O(n log(n)).

4. Discussion

In this section, we discuss other possible extensions of

our approach and a few specific applications.

Combination of local and global features. For shape

correspondence problems, an efficient and robust approach

should use both local and global features. So far we have

mainly talked about using spatial and spectral features,

which are perfectly complementary in the sense of local

and global information. Anchor pair selection by the LMD

criterion is based on local spatial features while the spec-

tral features are global. We would like to point out that

the proposed strategy of DIR process can be extended to

other combinations of appropriate local and global features

in different applications. For examples, one may alterna-

tively use Heat Kernel Signature [12], Wave Kernel Sig-

nature [4] or Geodesic Distance Signature (GDS) [53] as

global features. For shapes with holes and boundaries, we

choose GDS which is less sensitive to local mesh distortions

and boundaries for most interior points. However, if accu-

rate spectral information is available, taking advantage of

the multi-scale representation in spectral embedding leads

to better accuracy and efficiency according to our tests.

DIR with limited initial landmarks. In our previous dis-

cussion, the first collection of anchor pairs is selected from a

given initial correspondence such as the one obtained from

comparing SHOT features. Our method does enjoy the flex-

ibility to incorporate given landmarks. This is applauded

in applications like shape matching in morphological stud-

ies in medical imaging where landmarks could be annotated

based on specific tasks [20]. Once a few human-annotated

and required landmarks are given, which are taken as the

initial anchor pairs and fixed in later iterations, DIR will

converge to a stable solution. The fewer landmarks are pro-

vided, the more iterations are usually needed. The final

convergence performance of our numerical tests, as shown

in Figure 6, indicates that DIR can provide accurate cor-

respondence based on only four landmarks and it is stable

with respect to different initialization.

Matching of point clouds without mesh. In real appli-

cations, point clouds with well-constructed global triangu-

lation are usually hard to obtain. For point clouds with-

out global mesh, we use the local mesh method to compute

the LB eigenvalues and LMD [27, 57]. DIR works well on

matching raw point clouds as shown in section 5.

Patch/partial matching. Patch/partial matching often

comes with difficulties due to artificial boundaries, different

sizes and topological perturbations. Spectral information is

either unavailable or unreliable to use. However, LMD is

not affected by the above difficulties at interior points. By

replacing spectral features with geodesic distance to anchor

points, which is global and less sensitive to the above diffi-

culties for most interior points, DIR can handle patch or par-

tial matching well as shown in our numerical experiments.

5. Experiments

In this section, we conduct comprehensive experiments

to evaluate the performance of our method on various

benchmark data sets. In all experiments, no pre-processing,

such as obtaining a low resolution model or pre-computing

the geodesic distance matrix, is required in our algorithm.

Raw point clouds (with or without meshes) are directly

used. In our comparisons, all geodesic errors from exist-

ing methods are obtained from the associated error curve

data appeared in the papers. Computation using ZoomOut

is produced from the code on GitHub shared by the authors

[34]. All experiments using our methods are conducted in

Matlab with 16GB RAM and Intel i7-6800k CPU.1

Error Metric. Suppose the constructed correspondence

maps x ∈ M1 to y ∈ M2 while the true correspondence

maps x to y
∗. We measure the quality of our results by

computing the geodesic error defined as e(x) =
dM2

(y,y∗)

diam(M2)
,

where diam(M2) is the geodesic diameter of M2.

Hyperparameters. We use the second ring neigh-

borhood for LMD criterion; maximum itera-

tion number is 10 with the LMD threshold as

[0.26, 0.22, 0.18, 0.14, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]. The

initial correspondence is given by the KNN search result

based on SHOT features [49]. These hyperparameters,

1Code is available at https://github.com/ruixiang440/

Dual_Iterative_Refinement_Method
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especially the LMD threshold, are not sensitive to different

data sets. We use the same hyperparameters on TOSCA

and SCAPE data sets. For SHREC’16 and patch matching,

a maximum of 800 anchor pairs serve as reference points

for computing geodesic features.

TOSCA [9], SCAPE [3]. TOSCA data set consists of 76

shapes in 8 different categories ( human and animal shapes)

with vertex numbers ranging from 4k to 50k. We present the

results of our method using mesh structures with the max-

imal spectral dimension as 1000 and 500 respectively. We

also apply our method using only point clouds (no mesh)

with the maximal spectral dimension as 1000 (using local

mesh method [27]). We perform the same experiments on

SCAPE data set which has 72 shapes (12,500 vertices for

each) of the same person with different poses.

In Figure 3, we compare our method with the follow-

ing methods: Blended [26], Best Conformal [26], Smooth

Shells [18], Kernel Marching [54], SEQA [57], RSWD

[29], ZoomOut [34], Divergence-Free Shape Interpolation

[17], SRFM [38] and BCICP [39]. Our method with 1000

spectral basis outperforms all methods, our method with

500 spectral basis outperforms almost all methods, and our

method on purely point cloud inputs still achieves good per-

formance. Moreover, the run time of our method DIR is also

significantly less than other methods (see Table 1).

Table 1 indicates the computation efficiency of our meth-

ods by showing the average run time on several examples

from TOSCA including shapes with vertices ranging from

4k to 50k. The reported time of our method counts in all

steps including the computation of LB eigenfunctions. As

discussed in Section 3.3, the complexity of our method is

O(n log(n)). But in practice, when computing shapes with

more than 20,000 vertices, our computer suffers a computa-

tion speed slow-down from the vast RAM usage because of

our limited RAM capacity. Hence, for Cat and David shape

from TOSCA, the run time is higher than expected. Most

state-of-the-art approaches have a computation complexity

of O(n2) and do not report run time for shapes over 10,000

vertices. Our method is very efficient compared with state-

of-the-art methods which report computation time.

Model Wolf Centaur Horse Cat David

Number of Vertices 4344 15768 19248 27894 52565

SEQA (s) 59 531 801 929 1681

Kernel Matching (s) 60 NA NA NA NA

ZoomOut(3-150 spectral basis) (s) 25 277 449 1267 4312

Consistent Shape Matching (s) 483 NA 2118 3299 NA

Our Method with

1000 spectral basis (s)
36 144 191 474 1774

Our Method with

500 spectral basis (s)
19 106 131 330 1301

Table 1. Average run time for shapes from TOSCA comparing with

SEQA [57], ZoomOut [34], Consistent Shape Matching [5] (with-

out including precomputation time for the geodesic distance ma-

trix) and Kernel Matching [54].

SHREC’16 [14] SHREC’16 Partial Correspondence

Figure 3. Geodesic error on the TOSCA and SCAPE data sets with

comparison to other methods.

benchmark data set consists of 8 types of isometric human

or animal shapes in different poses with regular ‘cuts’ and

irregular ‘holes’. We test our method by matching each par-

tial shape to the corresponding full shape. Since spectral ba-

sis is sensitive to mesh ’cuts’ and ’holes’, we use geodesic

distance to anchor points as global features. We still use

SHOT for the initialization. In Figure 1, we compare our

method with ZoomOut [34], Partial Functional Maps [42]

and Random Forests [43]. The results show that our method

is quite flexible and robust to handle shape matching in dif-

ferent scenarios. It significantly outperforms other state-of-

the-art methods and achieves the highest accuracy on this

data set.

Patch Matching. Since there is no standard data set

for patch matching, we report several experiments using

patches cut from TOSCA data set. The first case con-

tains two examples with boundaries, different sizes (partial

patching) and topological changes simultaneously. In the

first example, we take a portion of an arm (finger tips also

removed) from one of two nearly isometric centaur shapes,

and then map the partial arm onto the other entire centaur.

In the second example, we map a body patch onto the whole

shape. The original centaur is a closed surface with no

holes, while the arm and the body patch are not closed and

have holes and boundaries. Our method performs very well
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even for this challenging example as shown in Figure 4.

The second case is matching two patches containing both

overlap and non-overlap parts. We match an arm without

the hand to a portion of an arm with the hand, where the

forearm is the common part. Since there is no correspon-

dence between the non-overlap parts, a post LMD test is

added to prune out those points. The result is shown in Fig-

ure 5. Again our method performs quite well. These experi-

ments indicate that our method is robust to size differences,

artificial boundaries and topological changes.

Figure 4. Partial matching between body parts in the second col-

umn and the entire body. The first column: the entire centaurs

with the ground truth color map (non-blue area). Extra points are

colored in blue. Removed finger tips are highlighted by red cir-

cles. The third and fourth columns: the color map of a result using

SHOT and our method, respectively.

Figure 5. Patch matching. From left to right: the source patch

(with the ground truth color map in the non-blue area and ex-

tra points colored in blue), the target patch, mapping result us-

ing SHOT and mapping result using our method. Blue colored

regions in columns three and four indicate points not passing the

post LMD test.

Experiments Using Limited Landmarks. We select 4

pairs of centaur shapes from TOSCA, initialize our method

with different numbers of randomly chosen landmark pairs

(without using SHOT for initialization) and then plot the av-

erage geodesic error curve. These landmark pairs are fixed

and always belong to our selected anchors pairs in later it-

erations. After different number of iterations, the final per-

formance is illustrated in Figure 6. Even with four initial

random landmarks, the performance is excellent although

more iterations are needed. It shows stability and robust-

ness of our method with respect to initial correspondences.

Growth of Anchor Pairs and Spectral Dimensions. One

key feature of our method is the selection of well matched

pairs used to determine spectral dimension and the corre-

sponding functional map at next iteration in an automatic

Figure 6. Average performance of our method on several pairs of

centaur shapes from TOSCA (blue centaur map to gray centaurs),

given different numbers of initial random annotated landmarks.

and data-adaptive way. A steady growth and improvement

(by decreasing the mapping distortion threshold with iter-

ations) of anchor pairs (updated in each iteration) means a

steady growth of the spectral dimension and increase of res-

olution which leads to an effective and fast refinement of the

correspondence. The left image in Figure 7 shows the aver-

age spectral dimensions for several classes of shapes from

TOSCA or SPACE data set. The right image in Figure 7

shows the growth pattern of anchor pairs. These indicate

that our method can extract anchor pairs and increase spec-

tral resolution in a steady and efficient way.

Figure 7. Left plot: The average spectral dimension (with a maxi-

mal number of LB eigenfunctions set to 1000) for cat, horse, cen-

taur class from TOSCA and human from SCAPE at each iteration.

Right figure: Selected anchor pairs (color-coded in red) during it-

erations of finding the correspondence between the gray centaur

and the blue one. The anchor pairs detected at iteration 1 are di-

rectly from matching SHOT descriptors.

6. Conclusion

We propose a simple and efficient iterative refinement

strategy utilizing dual features, spatial and spectral or local

and global. By only relying on selected well-matched pairs

to guide the next refinement, our proposed method com-

bines complementary information in an optimal and data-

adaptive way. Our method shows superior performance on

extensive tests compared to other state-of-the-arts methods

in terms of accuracy, efficiency and stability.
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