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Abstract

Unsupervised domain adaptation (UDA) aims to im-

prove the classification performance on an unlabeled tar-

get domain by leveraging information from a fully la-

beled source domain. Recent approaches explore domain-

invariant and class-discriminant representations to tack-

le this task. These methods, however, ignore the inter-

action between domain alignment learning and class dis-

crimination learning. As a result, the missing or inade-

quate tradeoff between domain alignment and class dis-

crimination are prone to the problem of negative trans-

fer. In this paper, we propose Dynamic Weighted Learn-

ing (DWL) to avoid the discriminability vanishing problem

caused by excessive alignment learning and domain mis-

alignment problem caused by excessive discriminant learn-

ing. Technically, DWL dynamically weights the learning

losses of alignment and discriminability by introducing the

degree of alignment and discriminability. Besides, the prob-

lem of sample imbalance across domains is first consid-

ered in our work, and we solve the problem by weighing

the samples to guarantee information balance across do-

mains. Extensive experiments demonstrate that DWL has

an excellent performance in several benchmark datasets.

Code is available at https://github.com/NiXiao-

cqu/TransferLearning-dwl-cvpr2021.

1. Introduction

Collecting a large number of labeled samples is a time-

consuming and laborious task. To tackle these problem-

s, many domain adaptation algorithms have been proposed

[18, 42, 28, 30, 17, 36]. Unsupervised/semi-supervised do-

main adaptation applies the model learned in the labeled

source domain to the unlabeled/partially labeled target do-

main by alleviating the domain divergence.

In recent years, many domain adaptation methods com-

bined with deep neural networks have achieved remark-

able performance [23, 8, 2, 26, 19, 37], which explore deep

models to reduce the domain shift between the training set

(source domain) and the testing set (target domain). The

mainstream approaches tend to learn domain-invariant rep-

resentations. While class discriminability is also critical to

domain adaptation. Many domain adaptation methods that

explore the feature discriminability have been proposed re-

cently [5, 16, 3, 43, 28]. Specifically, Li et al. [16] inves-

tigates the discriminability by using a discriminability cri-

terion based on Linear Discriminant Analysis (LDA). Deng

et al. [5] forces the target structure to be discriminative by

introducing a clustering loss. Chen et al. [3] guaranteed

the discriminability by restricting the value of the eigenval-

ue. These methods are helpful to explore the discriminabil-

ity of feature representations. However, they independent-

ly consider the domain alignment and class discriminabil-

ity of feature representations. In fact, excessive alignment

will easily lead to the loss of discriminability, while the ex-

cessive pursuit of discriminability will lead to the domain

misalignment. Moreover, for different cross-domain data

scenarios, the degree of alignment and discriminability is

different. For data scenarios with a small distribution dis-

crepancy between domains, the model should pay more at-

tention to the learning of discriminability, while for tasks

with a large distribution discrepancy, the model should pay

more attention to the alignment of distributions. Further-

more, the previous methods did not consider the problem

of the imbalanced sample size of the two domains. On the

whole, the domain with a large sample size is equivalen-

t to having larger weight in the process of optimizing the

model. Such imbalance easily leads to model bias during

training and leads to poor alignment and discrimination. As

a result, it is easy to cause negative transfer.

To address the above challenges, on the one hand, we

propose dynamically weighted learning between domain

alignment and class discriminability. This dynamic learning

idea is scalable to most previous DA models. On the oth-

er hand, we weight the samples according to the imbalance

degree of the sample number of the two domains. Since the

degree of alignment and discriminability will change with

the iterative learning process, the degree of discriminability

and alignment are monitored in real-time and fed back to the

15242



model during training. Before that, to avoid the model bias

during training, we first measure the degree of imbalance of

the sample size of two domains universally and weight the

samples according to the measurement results. The contri-

butions are summarized as follows:

• In this paper, we propose a dynamic weighted learning

method (DWL) for unsupervised domain adaptation.

By monitoring the degree of alignment and discrim-

inability in real-time, our method dynamically adjusts

the weight of alignment learning and discriminability

learning, so as to avoid excessive alignment or exces-

sive pursuit of discriminability.

• We put forward a sample weighting method to avoid

the model bias during training caused by the imbal-

anced sample size of the two domains.

• Through the dynamic weighting mechanism, our

method can be more universal and applicable to cross-

domain data scenarios with various feature types and

sample sizes.

2. Related Work

Conventional domain adaptation methods [34, 20, 42, 6,

35, 44, 7] have achieved success to minimize the discrep-

ancy across domains. With the development of deep net-

works, many deep methods show strong competitiveness in

recognition accuracy. DDC [33] adopts a pre-trained deep

network and introduces an adaptive layer based on the Max-

imum Mean Discrepancy (MMD). DANN [9] is inspired by

the generative adversarial network (GAN) [12] and propos-

es an adversarial learning method. ADDA [32] proposes a

general adversarial adaptation framework, which includes

the base model, weights constraint, adversarial objective,

and other factors. These methods achieve good perfor-

mance in domain alignment learning. However, class dis-

criminability is not considered sufficiently.

For discriminability, TPN [24] proposes to align three

corresponding score distributions of each class from differ-

ent domains. BSP [3] guaranteed discriminability by re-

stricting the eigenvalue. ETD [15] exploits attention-aware

transport distance and entropy-based regularization for dis-

criminant information. The alignment and discriminability

of features are considered in these methods. However, they

ignore the interaction between domain alignment and class

discriminability, and the weights of alignment learning and

discriminability learning are not well controlled. Such an

imbalance between alignment learning and discriminability

learning tends to generate feature representations with ex-

cessive alignment or discriminability, and hard or false-easy

feature representations.

3. Imbalance Between Alignment and Discrim-

ination

(a) DANN (b) MCD
Figure 1. Imbalance in alignment and discrimination of the two

baselines DANN [9] and MCD [28]. The left vertical axis of the

red curve represents the MMD distance, which is used to mea-

sure the degree of alignment across domains. The smaller value

of MMD distance implies better alignment. The right vertical axis

corresponding to the blue curve represents the degree of discrim-

inability based on LDA. It is the ratio of the between-class scatter

matrix to the within-class scatter matrix. The larger max J(W)
implies the better discriminability.

DANN is a classic UDA method for domain alignment

based on adversarial learning, which can make the distribu-

tion of the two domains aligned well. However, from the

analysis results on task USPS→MNIST in Digits dataset

as shown in Fig. 1 (a), with the training of the model,

the domain alignment become better (red curve) while the

class discriminability become worse (blue curve). Com-

pared with DANN, as shown in Fig. 1 (b), MCD maintain-

s the discriminability better. However, by observing Fig.

1 (b), we can find that the degree of class discriminabili-

ty (blue curve) also shows a downward trend from epoch

25 although the MMD distance continues to decrease. This

means that with the domain alignment learning, the class

discriminability cannot be always promoted and even worse

once excessive alignment (negative transfer) happens from

epoch 25. However, both the domain alignment and class

discrimination can affect the final classification accuracy.

Therefore, it is important to propose a reasonable tradeof-

f between alignment learning and discriminability learning

with dynamic control, that is, none of them can cause the

other to be worse in their learning process.

4. Theoretical Insight

In the UDA task, ns labeled samples {(xs
i , y

s
i )}ns

i=1 from

source domain Ds and nt unlabeled samples {xt
j}ns+nt

j=ns+1

from target domain Dt are given under the assumption that

they are subject to different marginal and conditional dis-

tributions. The theory proposed by Ben-David et al. [1]

provides an upper bound of the expected error on the tar-

get samples with regard to the classifier trained on labeled

source data. The upper bound of the expected error on the

target samples is mainly relative to three terms: (i) the ex-
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pected error on the source domain ǫS(h); (ii) the H∆H-

divergence term between two domains dH∆H(Ds,Dt); (iii)

the combined error λ of the ideal joint hypothesis h∗. It is

defined as follows,

ǫT (h) ≤ ǫS(h) +
1

2
dH∆H (Ds,Dt) + λ (1)

where the definition of H∆H-divergence in the hypothesis

space H is:

dH∆H(Ds,Dt)

= 2 sup
h,h′∈H

|Prx∼Ds (h(x) �= h
∗(x))− Prx∼Dt (h(x) �= h

∗(x)) |

(2)

and the combined error λ of the ideal joint hypothesis is

λ = ǫS (h∗) + ǫT (h∗) (3)

where h∗ = argmin
h∈H

ǫS(h) + ǫT (h).

In Inequality. (1), the first term, ǫS(h), is expected to

be small because reliable labels are owned in the source do-

main. As for the second term, several domain adaptation

methods [8, 29, 11, 21, 31] can make the domain discrepan-

cy dH∆H(Ds,Dt) small by alignment learning. The third

term, λ, is considered sufficiently small in most adversarial

domain adaptation methods.

Potential problem. The goal of the UDA model is to

limit the upper bound of the expected error on the target

samples to a small value. To achieve this goal, the designed

model needs to keep all three terms of the above to a small

value. In other words, if one of the three terms goes down

and another term goes up, then this model can not effec-

tively reduce the upper bound of ǫT (h). When there is an

excessive alignment, dH∆H(Ds,Dt) can be enabled to be s-

maller, however, the discriminability will be easily reduced

and the data will become inseparable, which will make λ to

be larger. Therefore, the value of λ is closely related with

the class discriminability.

Rationality of dynamic balance. In our work, by

the dynamic weighting of domain alignment learning and

class discrimination learning, we make dH∆H(Ds,Dt) and

λ decrease synchronously. That is, in our method, the

dH∆H(Ds,Dt) is further reduced under the premise that

this operation does not increase λ, and similarly, λ is fur-

ther reduced under the premise that this operation does not

increase dH∆H(Ds,Dt). For achieving that, we first pro-

pose a dynamically mutual interaction idea between H∆H-

divergence and the combined error λ, rather than only inde-

pendent training in previous models. In this way, the upper

bound of ǫT (h) can be effectively reduced in our work.

5. Approach

In this section, we provide the details of the proposed D-

WL. The overall architecture of DWL is depicted in Fig. 2.

We first weight the samples of the two domains to avoid the

model bias during training caused by the imbalanced sam-

ple size of the two domains. Finally, the dynamic weighted

learning with a balance factor τ between domain alignmen-

t and class discrimination is presented. The balance factor

is estimated according to the naturally designed degree of

alignment and discriminability.

5.1. Sample Weighting

In the problem of UDA, when the sample size of one do-

main is greatly larger than another domain, on the whole,

the domain with large sample size is equivalent to having

larger weight during training. Such imbalance easily lead-

s to model bias during training and leads to poor alignment

and discrimination, which tends to produce a negative trans-

fer. To avoid the imbalance problem of sample sizes of two

domains, we propose to intuitively weight the samples of

the two domains in our method. The weights of the samples

in each domain are inversely proportional to their propor-

tion in the total sample size of the two domains. Specifical-

ly, we weight the samples of each domain as follows:

x̂s
i = a

(

1 +
nt

ns

)

xs
i , i = 1, 2, . . . , ns (4)

x̂t
j = a

(

1 +
ns

nt

)

xt
j , j = 1, 2, . . . , nt (5)

where a ∈ (0,1] is a hyper-parameter that controls the de-

gree of sample weighting.

5.2. Domain Alignment Learning and Class Dis-
crimination Learning

Adversarial learning has been successfully introduced to

domain alignment by learning domain-invariant feature rep-

resentations. In order to obtain domain-invariant feature

representations, the input weighted samples x̂s and x̂t are

embedded by feature generator G. The parameters θg of

G and the parameters θd of domain discriminator D are

trained by optimizing the following standard minimax do-

main alignment loss:

min
θg

max
θd

Lda (θg, θd) = Exs
i
∼Ds

log [D (G (x̂s
i ))]

+ Ext
j
∼Dt

log
[

1−D
(

G
(

x̂t
j

))]

(6)

Adversarial learning is effective to achieve domain align-

ment. However, class discriminability can not be en-

sured. In order to obtain the feature representations which

have good discriminability, we are inspired by MCD [28]

which maximizes the discrepancy of two classifiers to ob-

tain strong discriminant features. We propose to optimize
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1

G: feature generator

D: domain discriminator

C1, C2: two auxiliary classifiers

C: main classifier

Figure 2. The overall structure of the proposed DWL. We separate the network into three modules: feature generator (G), domain discrim-

inator (D), classifiers (C1, C2, C) and with associated parameters θg , θd, (θc1 ,θc2 , θc). τ is a balance factor constructed from two metrics,

i.e., MMD(Ds,Dt) and max J(W). MMD(Ds,Dt) is used to measure the degree of domain alignment and max J(W) is used to

measure the degree of discrimination. MM̃D(Ds,Dt) and J̃(W) represents normalized MMD(Ds,Dt) and max J(W), resp.

the following class discrimination loss :

min
θg,θc

max
θc1 ,θc2

Lcd (θg, θc, θc1 , θc2)

= Ext
j
∼Dt

∥

∥C1

(

G
(

x̂t
j

))

− C2

(

G
(

x̂t
j

))
∥

∥

1

+
∥

∥C
(

G
(

x̂t
j

))

− C1

(

G
(

x̂t
j

))
∥

∥

1

+
∥

∥C
(

G
(

x̂t
j

))

− C2

(

G
(

x̂t
j

))
∥

∥

1

(7)

where C, C1, and C2 are three classifiers which are pre-

trained by supervised learning in the source domain. By

maximizing the discrepancy between C1 and C2 in the tar-

get domain (fix G and C), C1 and C2 can detect the target

samples excluded by the support vectors of the source. Then

by training the G to minimize the discrepancy (fix C1 and

C2), the obtained target features can have strong discrim-

inability. Different from [28], we added a main classifier C,

whose decision hyperplane is between C1 and C2, to make

the distance between the support vectors and the decision

boundary larger. θc1 /θc2 /θc denotes the parameters of the

auxiliary classifiers C1/C2/C, resp.

5.3. Dynamic Weighted Learning

In order to avoid the excessive pursuit of alignment or

discriminability independently, and make both improved si-

multaneously towards a good direction, we propose to mea-

sure the degree of alignment and discriminability in each

iteration in real-time and then construct a dynamic balance

factor to control the weight of domain alignment loss and

class discriminability loss. Maximum Mean Discrepancy

(MMD) and Linear Discriminant Analysis (LDA) are re-

spectively used to measure the degree of alignment and dis-

criminability of the current feature representations across

domains. MMD is a popular estimator to calculate the de-

gree of alignment of data distribution between two domains,

and it is defined as follows,

MMD(Ds,Dt) =
∥

∥

∥
Exs

i
∼Ds

G (x̂s
i )− Ext

j
∼Dt

G
(

x̂t
j

)

∥

∥

∥

2

(8)

The discriminability estimator max J(W) based on LDA is

defined as follows,

max
W

J(W) =
tr
(

W
⊤
SbW

)

tr (W⊤SwW)
(9)

where Sb is the between-class scatter matrix and Sw is

the within-class scatter matrix [3]. Clearly, the larger max

J(W) implies better discriminability.

Since the estimated values of the two evaluation crite-

rias are usually not in the same order of magnitude, we fur-

ther normalize the estimated values. To normalize the two

evaluation values more reasonably and apply them to con-

struct the dynamic balancing factor, we apply min-max s-

caling to linearly transform the evaluation values and map

the results to the range of [0,1]. We define MM̃D(Ds,Dt)
and J̃(W) to represent the normalized MMD(Ds,Dt) and

max J(W), resp.

MM̃D (Ds,Dt)

=
MMD (Ds,Dt)−MMD (Ds,Dt)min

MMD (Ds,Dt)max
−MMD (Ds,Dt)min

(10)
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J̃(W) =
J(W)− J(W)min

J(W)max − J(W)min

(11)

According to the normalized estimators MM̃D(Ds,Dt)
∈ [0, 1] and J̃(W) ∈ [0, 1] on domain alignment and class

discriminability in Eq. (10) and Eq. (11), we construct a

dynamic balance factor as follows:

τ =
MM̃D (Ds,Dt)

MM̃D (Ds,Dt) + (1− J̃(W))
(12)

In Eq. (12), smaller MM̃D(Ds,Dt) indicates better do-

main alignment and smaller 1 − J̃(W) indicates bet-

ter class discriminability. When the degree of domain

alignment is far better than the class discriminability, the

MM̃D(Ds,Dt) approaches 0, the 1− J̃(W) approaches 1,

and the τ approaches 0. When the degree of domain align-

ment is far worse than the degree of class discrimination, the

MM̃D(Ds,Dt) approaches 1, the 1− J̃(W) approaches 0,

and the τ approaches 1. Notably, the τ approximates to 0.5

when the degree of domain alignment is equal to the degree

of class discriminability. Based on the above good proper-

ties of τ, we adopt τ as the weight of the domain alignment

loss and 1−τ as the weight of the class discrimination loss.

Therefore, the dynamic weighting model of domain align-

ment and class discrimination is obtained as follows:

min
θg,θc

max
θd,θc1 ,θc2

τ · Lda (θg, θd)+

(1− τ) · Lcd (θg, θc, θc1 , θc2)
(13)

Physically, based on the good properties of τ, when the ef-

fectiveness of domain alignment learning is far worse than

that of class discrimination learning, the model increases

the weight of domain alignment learning. On the contrary,

when the learning effect of class discrimination learning is

far worse than that of domain alignment learning, the model

increases the weight of class discrimination learning. Under

this dynamic weighted learning mechanism, our model can

maintain the consistency between domain alignment learn-

ing and class discrimination learning, thus avoiding exces-

sive domain alignment or class discriminability.

5.4. Overall Training Objective

The overall training objective of our DWL integrates

sample weighting, domain alignment learning, class dis-

crimination learning, and the dynamic weighting learning.

Besides, we also need to minimize the expected source error

ǫS(h) for the labeled source samples. Hence, we propose to

solve the following ultimate minimax objective:

min
θg,θc

max
θd,θc1 ,θc2

ns
∑

i=1

Lce (C (G (xs
i ; θg) ; θc) , y

s
i )

+ τ · Lda (θg, θd) + (1− τ) · Lcd (θg, θc, θc1 , θc2)

(14)

where Lce is the standard cross-entropy loss. Through the

dynamic weighted learning in Eq. (14), it is natural and

effective to avoid discriminability vanishing caused by ex-

cessive alignment or domain misalignment caused by ex-

cessive discriminability pursuit. Additionally, the sample

weighting can alleviate the model bias towards the domain

of large sample size.

6. Experiments

6.1. Datasets

VisDA-2017 [25] is a synthetic-to-real image dataset

with two domains: synthetic images and real images. we

take the synthetic images as the source domain and the real

images as the target domain.

Digits Datasets. We construct the adaptation tasks of

digits among three datasets MNIST [39], USPS, and SVH-

N [41]. The MNIST (M) and USPS (U) image datasets

are both handwritten digits datasets containing 10 classes

of digits. The SVHN (S) is a real-world digits dataset of

house numbers in google street view images. We conduct

experiments in 3 directions: M → U, U → M, and S→ M.

Office-31 [27] contains 4,652 images across 31 classes

from three domains: Amazon (A), DSLR (D), and Webcam

(W). We conduct experiments in all 6 transfer tasks.

ImageCLEF-DA [21] contains 12 common classes

shared by 3 domains: Caltech256 (C), ImageNet ILSVR-

C 2012 (I), and Pascal VOC 2012 (P). We conduct experi-

ments in all 6 transfer tasks.

6.2. Implementation Details

We compare our method with the following state-of-

the-art domain adaptation methods: DAN (Deep Adap-

tation Networks) [18], DANN (Domain-adversarial Neu-

ral Networks) [9], DRCN (Deep Reconstruction Classifi-

cation Networks) [10], GoGAN (Coupled Generative Ad-

versarial Networks) [22], ADDA (Adversarial Discrimina-

tive Domain Adaptation) [32], CyCADA (Cycle-Consistent

Adversarial Domain Adaptation) [14], CDAN (Condition-

al Adversarial Adaptation Networks) [19], MCD (Maxi-

mum Classifier Discrepancy) [28], CAT (Cluster Align-

ment with a Teacher) [5], HAFN (Hard Adaptive Feature

Norm) [38], TPN (Transferrable Prototypical Networks)

[24], JAN (Joint Adaptation Networks) [21], BSP (Batch

Spectral Penalization) [3], LWC (Light-weight Calibrator)

[40], and ETD (Enhanced Transport Distance) [15].

Following the standard protocols for unsupervised do-

main adaptation, all labeled source samples and unlabeled

target samples participate in the training stage. For the Dig-

its tasks, we follow the protocol in [28]. We use 2k images

from MNIST and 1.8k images from USPS in the transfer be-

tween MNIST and USPS and use the whole training sets for

the adaptation from SVHN to MNIST. In this experiment,
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Table 1. Accuracy (%) on VisDA-2017 for unsupervised domain adaptation (ResNet-101).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

ResNet101 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DAN [18] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [9] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MCD [28] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

BSP [3] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9

Ours 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1

the CNN architecture is a modified version of [28]. For op-

timization, the network weights are trained by ADAM with

0.0005 weight decay. The learning rate is set as 0.0002 and

the mini-batch size is 128. We stop training after 200 e-

pochs and adopt the classification accuracy on the target

domain as an evaluation metric. For other image dataset-

s, we use PyTorch to implement our method. we adop-

t ResNet [13] pre-trained on ImageNet [4] to generate the

original feature representations with parameters fine-tuned

by our method. The classifiers we adopted in the experi-

ment are two-layer network (2048× 1024×#classes), and

the domain discriminator consists of two layers with ReLU

and Dropout (0.5) in all the layers. Specifically, we use the

mini-batch SGD with momentum 0.9 and the mini-batch

size is 8. The learning rate is set as 0.001.

6.3. Experimental Results

In this section, we conduct extensive experiments to e-

valuate the DWL. All baseline results are taken from related

literature. Our algorithm outperforms many SOTA methods

on different datasets, which shows the efficiency and uni-

versality of our method.

Results on VisDA-2017 are reported in Table 1. The av-

erage accuracy of our model achieves 77.1%, which is high-

er than 75.9% of the BSP. Notably, BSP guaranteed discrim-

inability by restricting the value of the eigenvalue. Howev-

er, BSP treats transferability and discriminability to be e-

qually important, which is not always right. In our method,

we estimate the transferability and discriminability of the

current cross-domain tasks in the iterative process in real-

time and dynamically weight the two learning functions to

keep them within the effective learning state (i.e., both are

promoted towards a good direction). Therefore, our method

can be integrated into BSP to enhance its universality and

improve recognition accuracy.

Results on Digits are reported in Table 2. Our model

achieves 97.3% and 97.4% on tasks of MNIST→USPS and

USPS→MNIST, resp., which outperforms the state-of-the-

arts. Our proposed method focuses on the balance of do-

main alignment learning and class discrimination learning,

which outperforms CAT and MCD paying more attention to

discriminability.

Results on Office-31 are reported in Table 3. On the d-

Table 2. Acc (%) on Digits for unsupervised domain adaptation.

Method M→U U→M S→M Average

DAN [18] 80.3 77.8 73.5 77.2

DRCN [10] 91.8 73.7 82.0 82.5

CoGAN [22] 91.2 89.1 - -

ADDA [32] 89.4 90.1 76.0 85.2

CyCADA [14] 95.6 96.5 90.4 94.2

CDAN [19] 93.9 96.9 88.5 93.1

MCD [28] 94.2 94.1 96.2 94.8

CAT [5] 90.6 80.9 98.1 89.9

TPN [24] 92.1 94.1 93.0 93.1

LWC [40] 95.6 97.1 97.1 96.6

ETD[15] 96.4 96.3 97.9 96.9

Ours 97.3 97.4 98.1 97.6

ifficult tasks D→A and W→A where the source domain is

small and the domain shift is large, resp., our model can still

achieve 73.1% and 69.8% which are higher than 71.0% and

67.8% of the optimal transport model ETD. Notably, ET-

D exploits attention-aware transport distance and entropy-

based regularization for domain alignment and discriminant

information, resp. The final classification accuracy of ETD

depends more on the initial distribution state of two domain-

s. Compared with ETD, by using sample weighting and

real-time state estimation of sample distribution, our DWL

can be applied to datasets of different initial states, which

means the better generalization of our model.

Results on ImageCLEF-DA are reported in Table 4.

Our method is better than the CAT, which explores the

class-conditional structure for the feature space. This in-

dicates that class-conditional structure can be maintained

in our method. It is worth noting that our method can be

easily plugged and played in the existing UDA methods to

enhance their universality.

6.4. Experimental Analysis

Visualization of feature space. Fig. 3 depicts the t-

SNE visualizations of features learned in our method on the

MNIST to USPS. With the increase of training epochs from

(a) to (e), we can observe that feature distribution at epoch

150 has shown good clustering effect. The learned features
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Table 3. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Method A→W D→W W→D A→D D→A W→A Average

ResNet50 [13] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DAN [18] 80.5 97.1 99.6 78.6 63.6 62.8 80.4

DANN [9] 82.6 96.9 99.3 81.5 68.4 67.5 82.7

ADDA [32] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

CAT [5] 91.1 98.6 99.6 90.6 70.4 66.5 86.1

ETD[15] 92.1 100.0 100.0 88.0 71.0 67.8 86.2

Ours 89.2 99.2 100.0 91.2 73.1 69.8 87.1

Table 4. Accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (ResNet-50).

Method I→P P→I I→C C→I C→P P→C Average

ResNet50 [13] 74.8 83.9 91.5 78.0 65.5 91.2 80.7

DAN [18] 74.5 82.2 92.8 86.3 69.2 89.8 82.5

DANN [9] 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN [21] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

HAFN [38] 76.9 89.0 94.4 89.6 74.9 92.9 86.3

CAT [5] 76.7 89.0 94.5 89.8 74.0 93.7 86.3

ETD[15] 81.0 91.7 97.9 93.3 79.5 95.0 89.7

Ours 82.3 94.8 98.1 92.8 77.9 97.2 90.5

(a) Epoch: 0 (b) Epoch: 5 (c) Epoch: 25 (d) Epoch: 50 (e) Epoch: 150
Figure 3. The t-SNE visualizations of features generated by the proposed DWL with the increse of the epoch on MNIST → USPS. Red

and blue points indicate the source and target samples, resp.

align the source and target domain samples with 10 clusters

with clear boundaries.

Convergence analysis. The classification error and

the value of balance factor τ in our DWL on task

USPS→MNIST (left) and MNIST→USPS (right) are

shown in Fig. 4. For each subfigure, the left axis of the red

curve represents the classification error and the right axis of

the blue curve represents the value of balancing factor τ. It

can be found that both of them converge to a flat value grad-

ually with iteration. This means that with the decrease of τ,

the class discriminability is emphasised such that the clas-

sification error decreases too. In the iteration process, when

the change of τ is relatively obvious, the improvement of

recognition accuracy is also relatively obvious. We set the

initial value of τ as 0.5, and it can be found that τ drops

sharply to less than 0.5 in the first epoch, indicating that the

model has relatively good alignment but relatively poor dis-

criminability. Indeed, we know that the cross-domain digit

dataset has small distribution difference but relatively poor

discriminability, and therefore the results comply with an

empirical observation.

Figure 4. Convergence analysis of DWL on the classification error

(%) and the dynamic balancing factor τ.

Confusion matrix visualization. Fig. 5 (a) to (d)

show the visualizations of confusion matrix for the classi-

fier trained by Source-only and our DWL on tasks c → p

and p → i from ImageCLEF-DA. The Source-only means

the classifier is trained only on labeled source data. Hence,
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(a) Source-only (c→p) (b) DWL (c→p) (c) Source-only (p→i) (d) DWL (p→i)
Figure 5. The Confusion Matrix (CM) visualization for proposed DWL.

Figure 6. Effectiveness analysis of DWL on alignment learning

and discrimination learning.

the experimental results of Source-only can reveal the im-

pact of domain discrepancy. As can be seen in Fig. 5, the

confusion is reduced for most classes through domain adap-

tation by our method. Comparing with Fig. 5 (a) and (b),

the dog is misclassified as the bike for the Source-only and

corrected in DWL. In p → i, the confusing horse is correct-

ly recognized in DWL. The confusion matries further reveal

the discriminability of our method on the target domain.

Analysis of alignment and discriminability degrees.

The MMD distance and the max J(W) of the feature rep-

resentation learned in our DWL on task USPS→MNIST

are shown in Fig. 6. It can be found that by dynamically

weighting the alignment learning and discrimination learn-

ing, we make a better balance between them, which makes

the two kinds of learning in an effective learning state and

both of them can promote each other towards a good direc-

tion (i.e., the domain distance is smaller and the discrim-

inability degree is larger).

Ablation study. In this part, we analyze the influence of

sample weighting and balancing factor τ on improving per-

formance. The results are shown in Table 5 and Table 6. To

analyze the role of sample weighting, the cross-domain task

W→A with large differences across domains in sample size

is chosen for the experiment (The domain W contains 795

samples, and domain A contains 2817 samples). The exper-

imental results are shown in Table 5. It can be found that

the accuracy of the model can be significantly improved by

introducing the sample weighting and dynamic balancing

factor τ. Furthermore, we test the results of static weighting

Table 5. The accuracy (%) of ablation experiment.

Sample weighting Balancing factor τ Accuracy (%)

x x 67.9√
x 68.3

x
√

69.1√ √
69.8

Table 6. Accuracy (%) of different weight between Lda and Lcd

Task 1:1 1:9 9:1 7:3 3:7 τ : 1− τ

M→U 93.8 96.2 94.6 94.5 94.9 97.3

U→M 96.8 95.6 96.8 95.6 95.6 97.4

mechanism for domain alignment learning Lda and class

discrimination learning Lcd on Digits dataset. As shown in

Table 6, it can be found that the proposed dynamic weight-

ing factor τ achieves more excellent performance than the

static weighting with different ratios. Our original intention

for promoting the dynamic balance between domain align-

ment and class discrimination is confirmed.

7. Conclusions

In this paper, we analyze the interaction between align-
ment learning and discrimination learning and then propose
that the weight of alignment learning and discrimination
learning should be better dynamically balanced. For a more
generalized model to accommodate different datasets, we
propose the Dynamic Weighted Learning (DWL) method to
dynamically adjust the weights of domain alignment learn-
ing and class discrimination learning to adapt to different
cross-domain classification scenarios. Besides, the prob-
lem of model bias during training which is caused by the
imbalanced sample size of the two domains is also consid-
ered in this paper, and we propose a simple but effective
sample weighting mechanism to solve it. Extensive experi-
ments demonstrate that the dynamic learning idea between
the H∆H-divergence and the combined error λ is useful
and scalable in DA.
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