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Abstract

Face recognition is greatly improved by deep convolu-

tional neural networks (CNNs). Recently, these face recog-

nition models have been used for identity authentication in

security sensitive applications. However, deep CNNs are

vulnerable to adversarial patches, which are physically re-

alizable and stealthy, raising new security concerns on the

real-world applications of these models. In this paper, we

evaluate the robustness of face recognition models using

adversarial patches based on transferability, where the at-

tacker has limited accessibility to the target models. First,

we extend the existing transfer-based attack techniques to

generate transferable adversarial patches. However, we ob-

serve that the transferability is sensitive to initialization and

degrades when the perturbation magnitude is large, indi-

cating the overfitting to the substitute models. Second, we

propose to regularize the adversarial patches on the low

dimensional data manifold. The manifold is represented by

generative models pre-trained on legitimate human face im-

ages. Using face-like features as adversarial perturbations

through optimization on the manifold, we show that the gaps

between the responses of substitute models and the target

models dramatically decrease, exhibiting a better transfer-

ability. Extensive digital world experiments are conducted

to demonstrate the superiority of the proposed method in

the black-box setting. We apply the proposed method in the

physical world as well.

1. Introduction

Deep convolutional neural networks (CNNs) have led

to substantial performance improvements on many com-

*Equal contributions.
†Corresponding authors.
‡Work done as an intern at RealAI.

Figure 1. Demonstration of adversarial patches against face recog-

nition models. (a) The attacker who wants to impersonate the tar-

get identity. (b) An image of the target identity. (c) The adversarial

patch and the corresponding adversarial example generated by the

TAP-TIDIM algorithm. (d) The adversarial patch and the corre-

sponding adversarial example generated by the proposed GenAP-

DI algorithm. The proposed GenAP algorithms use face-like fea-

tures as perturbations to improve the transferability.

puter vision tasks. As an important task, face recognition

is also greatly facilitated by deep CNNs [17, 23, 4]. Due

to their excellent recognition performance, deep face recog-

nition models have been used for identity authentication in

security-sensitive applications, e.g., finance/payment, pub-

lic access, face unlock on smart phones, etc.

However, deep CNNs are shown to be vulnerable to ad-

versarial examples at test time [21, 5]. Adversarial exam-

ples are elaborately perturbed images that can fool mod-

els to make wrong predictions. Early adversarial examples

on deep CNNs are indistinguishable from legitimate ones

for human observers by slightly perturbing every pixel in

an image. Later, [18] proposes adversarial patches, which

only perturb a small cluster of pixels. Several works have
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shown that the adversarial patches can be made into phys-

ical objects to fool deep CNNs in the wild. For example,

[9, 19, 24] use adversarial stickers or T-shirts to fool spe-

cial purpose object detectors. [18] proposes an adversar-

ial eyeglass frame to impersonate another identity against

face recognition models. These works show that adversar-

ial patches are physically realizable and stealthy. Using the

adversarial patches in the physical world, the attacker can

fool a recognition model without accessing the digital in-

put to it, making them an emerging threat to deep learn-

ing applications, especially to face recognition systems in

security-sensitive scenarios.

Previous works on adversarial patches are developed un-

der the white-box setting [9, 19, 3, 18], where the attacker

knows the parameters of the target model, or under the

query-based setting [18, 27], where the attacker can make

many queries against the target model. But for a black-box

model deployed in the wild, both the white-box information

and the excessive queries are not easily attainable. In this

paper, we focus on evaluating the robustness of face recog-

nition models under the query-free black-box setting, which

is a more severe and realistic threat model.

Under the query-free black-box setting, the adversarial

attacks based on transferability are widely used. Transfer-

based attacks [10] leverage that the adversarial examples

for the white-box substitute models are also effective at the

black-box target models. Specifically, most adversarial al-

gorithms perform optimization on an adversarial objective

specified by the substitute models as a surrogate, to approx-

imate the true (but unknown) adversarial objective on the

black-box target models. Existing techniques on improv-

ing the transferability of adversarial examples focus on us-

ing advanced non-convex optimization [6], data augmenta-

tions [26, 7], etc. These techniques are originally proposed

to generate Lp-norm (p > 0) constrained adversarial exam-

ples, and we show that they can be extended to improve the

transferability of adversarial patches as well.

However, even though these techniques are extended and

applied in the patch setting, we still observe it easy for the

optimization to be trapped into local optima with unsatis-

factory transferability. First, the transferability is sensitive

to initialization of the algorithms. Second, if the perturba-

tion magnitude increases, the transferability first rises and

then falls, exhibiting an overfitting phenomenon. The diffi-

culties in escaping solutions of unsatisfactory transferability

indicate that the optimization is prone to overfitting the sub-

stitute model and new regularization methods are required.

We propose to regularize the adversarial patch by opti-

mizing it on a low-dimensional manifold. Specifically, the

manifold is represented by a generative model and the op-

timization is conducted in its latent space. The generative

model is pre-trained on legitimate human face data and can

generate diverse and unseen human face images by manipu-

lating the latent vectors to assemble different face features.

By optimizing the adversarial objective on this latent space,

the adversarial perturbations resemble human face features

(see Fig. 1, (d)), on which the predictions of the white-box

substitute and the black-box target model are more related.

Consequently, the overfitting problem is relieved and the

transferability is improved.

Extensive experiments are conducted to show the superi-

ority of the proposed method for black-box attacks on face

recognition. We show its effectiveness in the physical world

as well. Finally, we extend the proposed method to other

tasks, e.g., image classification.

2. Related work

2.1. Adversarial patches

Most existing works on adversarial patches are designed

for the white-box setting [18, 9, 19, 3, 24] or the query-

based black-box setting [18, 27]. This paper focuses on

the query-free black-box setting, a realistic assumption on

the adversary’s knowledge on the target models deployed in

the wild [6]. Although some works demonstrate results on

query-free attacks [3, 24], their methods are not optimized

for this setting and not optimal.

2.2. Transferable adversarial examples

There are many works proposed for improving the trans-

ferability of adversarial examples, and most of them are de-

veloped under the Lp-norm constrained setting [6, 26, 7]. In

contrast, we focus on adversarial patches, a different condi-

tion on the adversary’s capacity to perturb the visual inputs.

Adversarial patches are physically realizable and stealthy,

posing threats to target models deployed in the wild. In this

paper, we show that while many methods proposed for the

Lp-norm constrained setting are useful for the patch setting,

they are still prone to overfitting the substitute models and

new regularization techniques are required.

2.3. Generative modeling for adversarial examples

Researchers have discovered that using generative mod-

els to generate adversarial examples has advantages. For

example, efficient attack algorithms are proposed for white-

box attacks [25] and query-based attacks [22, 28]. Emerg-

ing threat models are studied using generative models as

well, e.g., unrestricted adversarial examples [20] and se-

mantic adversarial examples [16]. Unrestricted adversarial

examples are closely related to adversarial patches, but [20]

does not show an improvement of transferability. Although

SemanticAdv [16] claims an improvement of transferability

in their setting1, we show that it is sub-optimal in the patch

setting. Our work shows how to adequately use generative

models to improve the transferability of adversarial patches.

1They consider semantic perturbations.
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3. Methodology

This section introduces our method of generating adver-

sarial patches on face recognition models with generative

models. Sec. 3.1 introduces the attack setting. Sec. 3.2 ex-

tends the existing transfer-based attack methods from the

Lp-norm constrained setting to the patch setting, and show

their problems. Sec. 3.3 elaborates the proposed method.

3.1. Attack setting

Face recognition usually includes face verification and

face identification. The former identifies whether two face

images belong to the same identity, while the latter classi-

fies an image to a specific identity. For face verification, the

similarity between two faces are compared with a threshold

to give the prediction. For face identification, the similarity

between a face image and those of a gallery set of face im-

ages is compared, and the input image is recognized as the

identity whose representation is most similar to its.

Let f(x) : X → R
d denote a face recognition model

that extracts a normalized feature representation vector for

an input image x ∈ X ⊂ R
n. Given a pair of face images

{xs,xt}, the face recognition model estimates the similar-

ity between the two faces by calculating the distance be-

tween the feature vectors extracted from the two images

Df (xs,xt) = ||f(xs)− f(xt)||
2
2. (1)

And face verification and identification methods are done

based on this similarity score Df or its simple variants.

An adversary has generally two goals against the face

recognition models — dodging and impersonation. Dodg-

ing attack aims to generate an adversarial face image that

is recognized wrongly, which can be utilized to protect pri-

vacy against excessive surveillance. For face verification,

the adversary can modify one image from a pair of images

belonging to the same identity, to make the model recog-

nize them as different identities. For face identification, the

adversary generates an adversarial face image such that it is

recognized as any other false identity.

Impersonation attack corresponds to generating an ad-

versarial face image that is recognized as an adversary-

specified target identity, which could be used to evade the

face authentication systems. For face verification, the at-

tacker aims to find an adversarial image that is recognized

as the same identity of another image, while the original

images are from different identities. For face identification,

the generated adversarial image is expected to be classified

as a specific identity.

3.2. Transferable adversarial patch

In the query-free black-box setting, the detailed infor-

mation of the target model is unknown and an excessive

amount of queries are not allowed. The adversarial attacks

based on transferability [6, 26] show that, the adversarial

examples for some white-box substitute model g can remain

adversarial for the black-box target model f . We focus on

generating transferable adversarial patches (TAPs).

Suppose g is a white-box face recognition model that is

accessible to the attacker, and it can also define a similarity

score Dg(xs,xt) for face recognition, similar to Eq. (1).

An adversary solves the following optimization problem to

generate the adversarial patch on the substitute model [18]:

max
x

Lg(x,xt),

s.t. x⊙ (1−M) = xs ⊙ (1−M), (2)

where Lg is a differentiable adversarial objective, ⊙ is the

element-wise product, and M ∈ {0, 1}n is a binary mask.

The constrain emphasizes that only the pixels whose cor-

responding elements in M are 1 can be perturbed. Fig. 1

demonstrates how the masks M control the regions of the

adversarial patches. We use Lg = Dg for dodging attack

and Lg = −Dg for impersonation attack, respectively. In

this paper, we fix the adversarial loss to fairly compare dif-

ferent techniques operated on the input x.

Existing works on improving the transferability of adver-

sarial examples focus on the Lp-norm constrained setting.

We can extend them to the patch setting. The vanilla algo-

rithm is to use the momentum iterative method (MIM) [6]

to solve the optimization problem (2). We denote this al-

gorithm as TAP-MIM. Advanced techniques to improve the

transferability can be applied, e.g. the data augmentations in

TI-DIM [26, 8]. The overall algorithm is depicted in Alg. 1

and is denoted as TAP-TIDIM. In the experiment (Sec. 4.2),

we show that TAP-TIDIM outperforms TAP-MIM, indicat-

ing that methods proposed for the Lp-norm constrained set-

ting might also be useful for the patch setting. Note that the

TAP-TIDIM algorithm is similar with using the EoT tech-

nique [2] to generate universal and physical-world adversar-

ial patches in the white-box setting [3, 9, 19]

However, even for the more advanced TAP-TIDIM algo-

rithm, it is still difficult for the optimization to escape local

optima with unsatisfactory transferability. Specifically, we

observe the following two phenomena in our ablation stud-

ies (the details are in Sec. 4.3):

• The transferability is sensitive to the initialization

of the optimization. Note that TAP-TIDIM uses the face

image of the attacker to initialize the patch, i.e., x̄0 = xs

(see line 2 of Alg. 1). For the impersonation attack, a simple

modification is to use the face image of the target identity to

initialize the patch, i.e., x̄0 = xt. The modified algorithm

is denoted as TAP-TIDIMv2. Experiments show that, TAP-

TIDIMv2 finds solutions with significantly higher transfer-

ability than TAP-TIDIM by simply changing the initializa-

tion step (see Tab. 2).

• The transferability degrades when the search space

is large. Specifically, we apply an additional L∞-norm con-
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Algorithm 1 Transferable Adversarial Patch: TAP-TIDIM

Input: The adversarial objective function Lg; a real face image

xs of the attacker; a real face images xt of the target identity;

a binary mask matrix M.

Input: A set of transformations T ; the size of perturbation ǫ;

learning rate α; iterations N ; decay factor µ.

Output: An adversarial image x∗ by solving Eq. (2).

1: g0 = 0;

2: x̄0 = xs;

3: for n = 0 to N − 1 do

4: Sample a transformation T from T ;

5: Blend the adversarial patch to xs

x
∗

n = xs ⊙ (1−M) + x̄n ⊙M;

6: Input T (x∗

n) and obtain the loss Lg(T (x
∗

n),xt)
7: Obtain the gradient ∇x=x̄n

Lg(T (x
∗

n));
8: Convolve the gradient as in [7]

W ∗ ∇xLg(T (x
∗

n)),

where W is the Gaussian kernel and ∗ is convolution;

9: Update gt+1 as in [6]

gn+1 = µ · gn +
W ∗ ∇xLg(T (x

∗

n))

‖W ∗ ∇xLg(T (x∗

n))‖1
;

10: Update x̄n+1 by applying the sign gradient as

x̄n+1 = Clip[x∗

0
−ǫ,x∗

0
+ǫ]

(

x̄n − α · sign(gn+1)
)

;

11: end for

12: return x∗ = xs ⊙ (1−M) + x̄N ⊙M.

strain on the optimization problem (2) to control the size of

the search space, i.e., |x ⊙ M|∞ ≤ ǫ. The L∞-norm con-

strain bounds the maximum allowable perturbation magni-

tude [10]. Our ablation studies show that, when ǫ increases,

the transferability first rises and then falls (see Fig. 3).

The aforementioned two phenomena are indicators that

the optimization problem (2) has many local optima of un-

satisfactory transferability and the adversarial patches are

overfitting the substitute model. It is hard to escape from

these solutions even though many existing regularization

techniques [6, 26, 7] have been applied in TAP-TIDIM.

Therefore, we resort to new regularization methods for the

patch setting in the following section.

3.3. Generative adversarial patch

We propose to optimize the adversarial patch on a low-

dimensional manifold as a regularization to escape from

the local optima of unsatisfactory transferability in the opti-

mization problem (2). The manifold poses a specific struc-

ture on the optimization dynamics. We consider a good

manifold should have the following properties:

1. Sufficient capacity. The manifold should have a suffi-

cient capacity so that the white-box attack on the substitute

model is successful.

2. Well regularized. The manifold should be well regular-

ized so that the responses of the substitute models and the

target models are effectively related to avoid overfitting the

substitute models.

To balance the demands for capacity and regularity, we

use the manifold learnt by a generative model, where the

generative model is pre-trained on natural human face data.

Specifically, let h(s) : S → R
n denote a pre-trained gener-

ative model and S is its latent space. The generative model

can generate diverse and unseen human faces by manipu-

lating the latent vector to assemble different face features,

e.g., the color of eyeballs, the thickness of eyebrows, etc.

We propose to use the generative model to generate the ad-

versarial patch, and optimize the patch through the latent

vector. The optimization problem (2) becomes:

max
s∈S

Lg(x,xt),

s.t. x⊙ (1−M) = xs ⊙ (1−M),

x⊙M = h(s)⊙M (3)

where the second constrain restricts the adversarial patch on

the low-dimensional manifold represented by the generative

model. When constrained on this manifold, the adversarial

perturbations resemble face-like features. We expect that

the responses to the face-like features are effectively related

for different face recognition models, which improves the

transferability of the adversarial patches. This hypothesis

will be confirmed in experiments.

The performance of the algorithms depends on the gen-

erative model h and the latent space S that define the man-

ifold. In Sec. 4.4, we perform ablation studies on the archi-

tectures, parameters of the generative models h, as well as

the latent spaces S . First, the capacity of the latent space in-

fluences the white-box attack on the substitute model. The

latent space of the generative model should have sufficient

capacity so that the optimization can find effective adver-

sarial examples on the white-box substitute model. Sec-

ond, we observe that a generative model, which can gen-

erate features semantically related to the adversarial task at

hand (i.e. face features in our case), can effectively relate the

responses from the substitute models and the target models

and provide better regularity.

A straightforward algorithm to solve the optimization

problem (3) is to use the Adam optimizer [15]. We denote

this algorithm as GenAP. Similar with TAP-TIDIM, exist-

ing techniques [26] can be incorporated. This algorithm is

depicted in Alg. 2 and is denoted as GenAP-DI2.

4. Experiments

In the experiments, we demonstrate the superiority of the

proposed GenAP methods in black-box attacks. Sec. 4.1

2GenAP-DI is Generative Adversarial Patch with Diversified Inputs
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Algorithm 2 Transferable Adversarial Patch: GenAP-DI

Input: The adversarial objective function Lg; a real face image

xs of the attacker; a real face images xt of the target identity;

a binary mask matrix M.

Input: A generative model h.

Input: A set of transformations T ; iterations N ; a gradient-based

optimizer, e.g., Adam [15].

Output: An adversarial image x∗ by solving Eq. (3).

1: Randomly initialize the latent vector s∗0 ∼ N(0, I);
2: for n = 0 to N − 1 do

3: Sample a transformation T from T ;

4: Blend the adversarial patch to xs

x
∗

n = xs ⊙ (1−M) + h(s∗n)⊙M;

5: Input T (x∗

n) and obtain the loss Lg(T (x
∗

n),xt)
6: Obtain the gradient ∇s=s

∗

n

Lg(T (x
∗

n));
7: Update s∗n+1 using the optimizer

8: end for

9: return x∗ = xs ⊙ (1−M) + h(s∗N )⊙M.

introduces the experimental setting. Sec. 4.2 presents the

results in the digital-world attack setting. Sec. 4.3 and 4.4

perform ablation studies on the TAP and the GenAP algo-

rithms respectively. Sec. 4.5 presents the physical-world

results.

4.1. Experimental setting

Datasets. Two face image datasets are used for evaluation:

LFW [11] and CelebA-HQ [12]. LFW is a dataset for un-

constrained face recognition. CelebA-HQ is a human face

dataset of high quality. The datasets are used to test the

generalization of our methods on both low quality and high

quality face images, as the generative models we used are

essentially trained on high quality images.

For each dataset, we select face image pairs to evaluate

the adversarial algorithms on that dataset. For face verifi-

cation, we select 400 pairs in dodging attack, where each

pair belongs to the same identity, and another 400 pairs in

impersonation attack, where the images from the same pair

are from different identities. For face identification, we se-

lect 400 images of 400 different identities as the gallery set,

and the corresponding 400 images of the same identities to

form the probe set. Both dodging and impersonation are

performed on the probe set. This setting follows [8].

Face recognition models. We study three face recogni-

tion models, including FaceNet [17], CosFace [23] and Ar-

cFace [4], which all achieve over 99% accuracies on the

LFW validation set. In testing, the feature representation

for each input face image is extracted. Then, the cosine

similarity between a pair of face images is calculated and

compared with a threshold. We first calculate the thresh-

old of each face recognition model by the LFW validation

set. It contains 6, 000 pairs of images from same identi-

(a) Eyeglass frame (b) Respirator

Figure 2. The binary masks M indicating the regions of the de-

signed patches. (a) An eyeglass frame. (b) A respirator.

ties (3, 000) and different identities (3, 000). We choose

the threshold of each model that gives the highest accu-

racy on this validation set. In addition, we also evaluate

the performance of our method on commercial face recog-

nition systems—Face++ and Aliyun. Given a pair of face

images, a system returns a score indicating their similarity.

Generative models. We study three pre-trained generative

models, including ProGAN [12], StyleGAN [13] and Style-

GAN2 [14], which can generate face images of high quality.

ProGAN has only one latent space. For StyleGANs, we use

the Z, W, W+ and the noise latent spaces [1, 13].

Regions of patches. We use two different regions to gener-

ate the patches, an eyeglass frame and a respirator, to show

the generalization of the proposed methods to different face

regions. The binary masks indicating the regions of these

patches are displayed in Fig. 2.

Evaluate Metrics. We use the thresholding strategy and

nearest neighbor classifier for face verification and identi-

fication, respectively. To evaluate the attack performance,

we report the success rate (higher is better) as the fraction

of adversarial images that are not classified to the attacker

himself by the model in dodging attack, and are misclassi-

fied to the desired target identity in impersonation attack.

4.2. Experimental results

In this section, we present the experimental results of ad-

versarial patches for black-box attack in the digital world.

We generate adversarial patches using the TAP and the

GenAP algorithms, respectively. In impersonation attack,

we also use a vanilla baseline of pasting the corresponding

face region from the target identity to the attacker (PASTE).

We then feed the generated adversarial examples to our lo-

cal models and commercial APIs to test the success rates

of attacks. For the TAP algorithms, we use ǫ = 40, which

achieves the best transferability as shown by the ablation

study in Sec. 4.3. For the GenAP algorithms, we use Style-

GAN2 and its W+ plus the noise space as a representa-

tive, where the results of other generative models and latent

spaces are left to ablation studies in Sec. 4.4. We show the

results on the face verification task using the eyeglass frame

in Tab. 1 (dodging) and 2 (impersonation). Results on face

identification, the respirator mask and SemanticAdv [16]

are in the supplementary materials, which are qualitatively

similar with the results in Tab. 1 and 2.
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The results show that the adversarial patches achieve

high success rates on the black-box models. First, TAP-

TIDIM outperforms TAP-MIM. This shows that applying

the existing techniques [6, 26, 7] originally proposed to im-

prove the transferability of Lp-norm constrained adversarial

examples against image classification models can be help-

ful for improving the transferability of adversarial patches

against face recognition models as well. Second, the vanilla

GenAP significantly outperforms TAP algorithms in most

cases (except when using FaceNet as the substitute model

for impersonation attack) without bells and whistles. These

results show the effectiveness of the proposed regularization

method to improve the transferability of the patches. Third,

the vanilla GenAP and the more sophisticated GenAP-DI

performs similarly, showing that applying additional tech-

niques [26] do not necessarily significantly improve the per-

formance of the GenAP algorithms. Forth, the GenAP al-

gorithms significantly outperform PASTE. This shows that

the GenAP algorithms do not naively generating the face

features of the target identity, but search the optimal adver-

sarial face features fitting the attacker’s own face features.

Fifth, our results also show the insecurity of the commercial

systems (Face++ and Aliyun) against adversarial patches.

4.3. Ablation study on TAP­TIDIM

This section presents the ablation studies on the TAP al-

gorithms to support the discussions in Sec. 3.2. These ab-

lation studies show that TAP-TIDIM has trouble escaping

local optima of unsatisfactory transferability, though many

regularization methods have been used [26, 7]. This moti-

vates us to develop new regularization in this paper.

4.3.1 Sensitivity to initialization

The initialization step is the only difference between TAP-

TIDIM and TAP-TIDIMv2 when solving problem (2). But

TAP-TIDIMv2 shows significantly higher success rates in

black-box impersonation attack, as shown in Tab. 2. While

the solution of TAP-TIDIMv2 is within the search space of

TAP-TIDIM3, TAP-TIDIM cannot find it and is trapped into

local optima with significantly worse transferability.

4.3.2 Sensitivity to ǫ

The hyperparameter ǫ in TAP-TIDIM can control the up-

per bound for the perturbation magnitudes of the adversarial

patches, which is an indicator of the size of the search space.

The larger the ǫ, the larger the search space. Fig. 3 shows

that, as the upper bound ǫ increases, the success rates on the

black-box models first rise and then fall. When ǫ is small,

3Strictly speaking, the solution of TAP-TIDIMv2 is within the search

space of TAP-TIDIM (ǫ = 255) and the results in Tab. 2 are for TAP-

TIDIM (ǫ = 40). Nevertheless, the TAP-TIDIM (ǫ = 40) outperforms

TAP-TIDIM (ǫ = 255) as shown in Fig. 3 and our conclusion holds.

Figure 3. The success rates of TAP-TIDIM on the black-box mod-

els first rise and then fall when the maximal perturbation magni-

tude ǫ increases. This indicates that the adversarial patches are

overfitting the substitute model. The results are black-box imper-

sonation attack on FaceNet and CosFace under the face verifica-

tion task. The adversarial examples are generated against ArcFace

by restricting the adversarial patches to an eyeglass frame region.

200 image pairs from the LFW dataset are used.

the transferability benefits from the larger search space by

finding more effective adversarial examples against the sub-

stitute model. But when ǫ is large, the adversarial patches

overfit the substitute model and are trapped into poor local

optima. The transferability of TAP-TIDIM reaches the op-

timality around ǫ = 40, which is used in Sec. 4.2.

4.4. Ablation study on GenAP

In this section, we present the ablation studies on the

GenAP algorithms, which show how the regularity and the

capacity of the manifold influence the transferability of the

generative adversarial patches. This section use the GenAP

algorithm and the eyeglass frame mask for experiments.

4.4.1 Parameters of the generative models

We use the StyleGAN2 with different parameters, including

the parameters that are randomly initialized (Rand), trained

on the LSUN car dataset (CAR) and trained on the FFHQ

face image dataset (FFHQ). We use W
+ plus the noise

space [1, 13] as the latent space. Tab. 3(a) shows that us-

ing the randomly initialized model cannot find effective ad-

versarial examples even in the white-box case. While the

StyleGAN2 trained on CAR is effective at white-box attack,

their transferability to black-box models is poor. The trans-

ferability of GenAP is better than the TAP algorithms (c.f.,

Tab. 2) only when the generative model is trained on human

face dataset. This phenomenon indicates that using face-

like features as perturbations is important for bridging the

gap between the substitute and the target face recognition

models to improve transferability in the GenAP methods.
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Attack
CelebA-HQ LFW

ArcFace CosFace FaceNet Face++ Aliyun ArcFace CosFace FaceNet Face++ Aliyun

ArcFace

TAP-MIM

TAP-TIDIM

GenAP

GenAP-DI

0.9875∗

1.0000∗

0.9975∗

1.0000∗

0.1800
0.2975
0.6100

0.5050

0.6475
0.7050
0.9375

0.8600

0.0000
0.1625
0.7975

0.6600

0.1800
0.7350
0.9900

0.9800

0.9850∗

1.0000∗

0.9975∗

1.0000∗

0.1475
0.2500
0.4850

0.4050

0.4275
0.5200
0.8725

0.7725

0.0075
0.1550
0.7450

0.6250

0.1850
0.5850
0.9850

0.9850

CosFace

TAP-MIM

TAP-TIDIM

GenAP

GenAP-DI

0.0475
0.0025
0.5375

0.3650

0.9925∗

1.0000∗

0.9975∗

1.0000∗

0.6950
0.4925
0.9550

0.9150

0.0025
0.0350
0.5675

0.3675

0.4250
0.6550
1.0000

0.9950

0.0125
0.0100
0.3650

0.2175

0.9975∗

1.0000∗

1.0000∗

1.0000∗

0.4950
0.3550
0.9275

0.9025

0.0075
0.0425
0.5600

0.3900

0.5350
0.5650
0.9900

0.9800

FaceNet

TAP-MIM

TAP-TIDIM

GenAP

GenAP-DI

0.0250
0.0025
0.3575

0.2100

0.2100
0.1525
0.3475

0.1950

0.9900∗

0.9975∗

0.9975∗

0.9975∗

0.0025
0.0775
0.5675

0.4400

0.2350
0.7050
1.0000

0.9800

0.0075
0.0025
0.1950

0.0950

0.1475
0.1025
0.2450

0.1500

0.9675∗

1.0000∗

0.9950∗

0.9925∗

0.0050
0.0850
0.5550

0.3625

0.3400
0.6300
0.9950

0.9700

Table 1. The success rates of black-box dodging attack on FaceNet, CosFace, ArcFace, Face++ and Aliyun in the digital world under the

face verification task. The adversarial examples are generated against FaceNet, CosFace, and ArcFace by restricting the adversarial patches

to an eyeglass frame region. ∗ indicates white-box attacks.

Attack
CelebA-HQ LFW

ArcFace CosFace FaceNet Face++ Aliyun ArcFace CosFace FaceNet Face++ Aliyun

PASTE 0.4725 0.3700 0.3000 0.2425 0.0900 0.4150 0.3100 0.1825 0.1775 0.0250

ArcFace

TAP-MIM

TAP-TIDIM

TAP-TIDIMv2

GenAP

GenAP-DI

0.9900∗

1.0000∗

1.0000∗

1.0000∗

1.0000∗

0.3100
0.3675
0.4975
0.5825

0.5300

0.2325
0.2725
0.3425
0.4625

0.4100

0.1250
0.1900
0.2525
0.3425
0.3500

0.0400
0.0650
0.0750
0.1700

0.1450

1.0000∗

1.0000∗

1.0000∗

1.0000∗

1.0000∗

0.2600
0.3125
0.4225
0.5000

0.4325

0.1875
0.2025
0.2350
0.4000

0.3275

0.0425
0.0800
0.1250
0.2125

0.1825

0.0100
0.0150
0.0050
0.1000

0.0550

CosFace

TAP-MIM

TAP-TIDIM

TAP-TIDIMv2

GenAP

GenAP-DI

0.4275
0.4550
0.5250
0.6575

0.6325

0.9900∗

1.0000∗

1.0000∗

1.0000∗

1.0000∗

0.3125
0.3725
0.4175
0.5250
0.5325

0.1425
0.2000
0.2650
0.3500

0.3275

0.0450
0.0750
0.0950
0.2000

0.1900

0.3250
0.2725
0.3625
0.5350

0.4975

0.9850∗

1.0000∗

1.0000∗

1.0000∗

1.0000∗

0.2525
0.2700
0.3225
0.4600
0.4650

0.0550
0.0750
0.1325
0.2100

0.2000

0.0200
0.0150
0.0100
0.0700
0.1000

FaceNet

TAP-MIM

TAP-TIDIM

TAP-TIDIMv2

GenAP

GenAP-DI

0.2400
0.1800
0.3000
0.2750
0.2175

0.2025
0.2200
0.3300
0.2450
0.2025

0.8300∗

0.9775∗

0.9775∗

0.9025∗

0.9650∗

0.1150
0.1175
0.1725
0.1250
0.1150

0.0450
0.0450
0.0500
0.0600
0.0500

0.1425
0.0925
0.1650
0.2450
0.1675

0.1850
0.1925
0.2450
0.2425
0.1850

0.8375∗

0.9800∗

0.9825∗

0.9200∗

0.9850∗

0.0300
0.0300
0.0650
0.0900
0.0550

0.0100
0.0050
0.0150
0.0350

0.0350

Table 2. The success rates of black-box impersonation attack on FaceNet, CosFace, ArcFace, Face++ and Aliyun in the digital world under

the face verification task. The adversarial examples are generated against FaceNet, CosFace, and ArcFace by restricting the adversarial

patches to an eyeglass frame region. ∗ indicates white-box attacks.

4.4.2 Architectures of the generative models

We use three different generative models, including Pro-

GAN [12], StyleGAN [13] and StyleGAN2 [14]. These

generative models differ in their network architectures and

can generate human face images with higher and higher

quality. For the StyleGANs, we use the W
+ latent plus

the noise space [1, 13]. The results are shown in Tab. 3(b).

The performance of GenAP depends on the architectures

of the generative models. Even though ProGAN is trained

on human face images, it is difficult to find effective ad-

versarial examples in its latent space, even in the white-box

case. Both StyleGANs achieve high success rates against

the black-box models. These phenomena indicate that the

style-based decoder in StyleGANs might be important for

the GenAP algorithms to find effective adversarial exam-

ples.

4.4.3 Latent spaces of the generative models

We use different latent spaces for the StyleGAN2, includ-

ing the Z, the W, the W
+ and the noise spaces [1, 13].

The W
+ is more flexible than the Z, the W and the noise

spaces with much more degrees of freedom. Tab. 3(c) shows

that, the performance on the W and the W
+ spaces is sub-

stantially higher than that on the Z and the noise spaces.

The optimizations in the Z and the noise spaces cannot find

effective adversarial patches even in the white-box case.
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CelebA-HQ LFW

ArcFace CosFace FaceNet ArcFace CosFace FaceNet

(a) Parameters

ArcFace

RAND

CAR

FFHQ

0.2625∗

0.9850∗

1.0000∗

0.0100

0.0950

0.5828

0.0100

0.1075

0.4625

0.2575∗

0.9825∗

1.0000∗

0.0050

0.0625

0.5000

0.0200

0.0800

0.4000

(b) Architectures

ArcFace

ProGAN

StyleGAN

StyleGAN2

0.6750∗

1.0000∗

1.0000∗

0.2375

0.5500

0.5825

0.2125

0.4250

0.4625

0.6475∗

1.0000∗

1.0000∗

0.1650

0.4750

0.5000

0.1450

0.3475

0.4000

(c) Latent spaces

ArcFace

Z

W

W+

Noise

W+ + Noise

0.4175∗

0.9575∗

1.0000∗

0.2075∗

1.0000∗

0.1125
0.4775
0.5750
0.0500
0.5825

0.0800
0.3825
0.4625

0.0450
0.4625

0.4050∗

0.9425∗

1.0000∗

0.1250∗

1.0000∗

0.1200
0.4300
0.4925
0.0425
0.5000

0.0900
0.3900
0.3825
0.0250
0.4000

Table 3. The success rates of black-box impersonation attack when the architectures, the parameter and the latent space are changed in the

proposed GenAP algorithm. The adversarial examples are generated against ArcFace by restricting the adversarial patches to an eyeglass

frame region, and are tested on FaceNet, CosFace and ArcFace in the digital world under the face verification task. ∗ indicates white-box

attacks. The ablation studies are on (a) the parameters (RAND, CAR and FFHQ) of the StyleGAN2, (b) the architectures of the generative

model (ProGAN, StyleGAN, StyleGAN2) and (c) the latent space (Z,W,W+ and noise) used by StyleGAN2 trained on FFHQ.

4.5. Physical­world experiment

In this section, we verify that the adversarial patches gen-

erated by the proposed GenAP algorithms are physically re-

alizable, and their superiority is retained after printing and

photographing. Specifically, we select a volunteer as the at-

tacker and 3 target identities (one male and two females)

from the CelebA-HQ dataset. For each target identity, we

generate an eyeglass frame for the attacker to impersonate

that identity. After the attacker wears the adversarial eye-

glass frame, we take a video of him from the front and ran-

domly select 100 video frames. The video frames are used

for face verification. We evaluate the transferability of the

patches using the cosine similarities. The higher the sim-

ilarity, the better the transferability. Results in Fig.4 show

that the patches generated by the proposed GenAP-DI retain

high transferability even after printing and photographing.

4.6. Extra experiments

In the supplementary material, we also compare the

proposed GenAP methods with an existing method of us-

ing face-like features as adversarial perturbations, Semanti-

cAdv [16], and extend the GenAP methods to other tasks,

e.g., image classification. First, we explain why Seman-

ticAdv is sub-optimal in the patch setting. Second, we

show the generalizability of the proposed GenAP methods

to other recognition tasks.

5. Conclusion

In this paper, we evaluate the robustness of face recog-

nition models against adversarial patches in the query-free

target 1 target 2 target 3

CosFace

TAP-TIDIMv2

GenAP-DI

16.8(±1.6)
27.2(±2.2)

18.2(±1.3)
21.4(±2.3)

4.1(±2.0)
12.0(±2.4)

FaceNet

TAP-TIDIMv2

GenAP-DI

23.3(±2.4)
22.8(±2.6)

−3.9(±3.0
24.6(±2.0)

32.2(±2.1)
33.4(±1.8)

Table 4. The cosine similarties between the attacker wearing the

adversarial eyeglass frame and three different target identities in

the physical-world. The target identities are randomly drawn from

CelebA-HQ. The adversarial eyeglass frame is crafted by the TAP-

TIDIMv2 and the proposed GenAP-DI algorithms on ArcFace,

and is tested on CosFace and FaceNet.

black-box setting. Firstly, we extend existing techniques

from the Lp-constrained (p > 0) setting to the patch setting,

yielding TAP algorithms to generate transferable adversar-

ial patches. However, several experimental phenomena in-

dicate that it is hard for the TAP algorithms to escape from

local optima with unsatisfactory transferability. Therefore,

we propose to regularize the adversarial patches on the man-

ifold learnt by generative models pre-trained on human face

images. The perturbations in the proposed GenAP algo-

rithms resemble face-like features, which is important for

reducing the gap between the substitute and the target face

recognition models. Experiments confirm the superiority of

the proposed methods.
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