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Abstract

We introduce NExT-QA, a rigorously designed video

question answering (VideoQA) benchmark to advance video

understanding from describing to explaining the tempo-

ral actions. Based on the dataset, we set up multi-choice

and open-ended QA tasks targeting causal action reason-

ing, temporal action reasoning, and common scene com-

prehension. Through extensive analysis of baselines and es-

tablished VideoQA techniques, we find that top-performing

methods excel at shallow scene descriptions but are weak

in causal and temporal action reasoning. Furthermore,

the models that are effective on multi-choice QA, when

adapted to open-ended QA, still struggle in generalizing

the answers. This raises doubt on the ability of these mod-

els to reason and highlights possibilities for improvement.

With detailed results for different question types and heuris-

tic observations for future works, we hope NExT-QA will

guide the next generation of VQA research to go beyond

superficial description towards a deeper understanding of

videos. (The dataset and related resources are available at

https://github.com/doc-doc/NExT-QA.git)

1. Introduction

Actions in videos are often not independent but rather

related with causal and temporal relationships [3]. For ex-

ample, in the video in Figure 1, a toddler cries because he

falls, and a lady runs to the toddler in order to pick him up.

Recognizing the objects “toddler”, “lady” and describing

the independent action contents like “a toddler is crying”

and “a lady picks the toddler up” in a video are now possible

with advanced neural network models [14, 28, 63]. Yet be-

ing able to reason about their causal and temporal relations

and answer natural language questions (e.g., “Why is the

toddler crying?”, “How did the lady react after the toddler

fell?”), which lies at the core of human intelligence [39],

remains a great challenge for computational models and is

also much less explored by existing video understanding

tasks [22, 37, 49, 52, 56].

In this work, we study causal and temporal action rea-

Toddler fall backwards

Lady runs to toddler

Toddler is crying

Lady picks toddler up

-Why was the toddler in red crying at the end 

of the video? Fell backwards.

-How did the lady help the toddler who fell at 

the end? Pick toddler up.

-What was the lady doing before the toddler

in red fell off the stone? Look after boy.

-How did the lady react after the toddler in red 

fell off the stone? Ran to pick toddler up.

-What was the boy doing when the toddler fell 

backwards from the stone? Went onto stone.

-Did the toddler in red cry in the video? Yes.

-Where was this video taken? Park.

-How many kids are shown in the video? Two.

-What is this video about? Family holiday.
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Figure 1: NExT-QA is a question answering benchmark tar-

geting the explanation of video contents. It challenges QA

models to reason about causal and temporal actions and un-

derstand the rich object interactions in daily activities.

soning in video question answering (VideoQA) and con-

tribute NExT-QA, a benchmark to foster the Next genera-

tion of VQA models to Explain Temporal actions. NExT-

QA contains 5,440 videos and about 52K manually anno-

tated question-answer pairs grouped into causal, temporal

and descriptive questions. An overview of the typical ques-

tions and their distributions are found in Figure 1. To em-

body the reasoning challenges and provide effective diag-

nostics for video QA models, we set up two tasks at dif-

ferent difficulty levels. At the first level, multi-choice QA

provides five candidate answers for each question and re-

quires the models to pick out the correct one. At the second

level, open-ended QA requires the models to generate the

answers in short phrases with cues only from the videos and

the questions (i.e., no candidate options).

Using NExT-QA, we evaluate several state-of-the-art

(SOTA) video QA techniques [9, 11, 18, 19, 23, 26]. While

the top-performing methods achieve compelling results on

commonly descriptive questions, their performances on

causal and temporal questions are far from satisfactory. Fur-

thermore, when adapting the models that are effective on
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multi-choice QA to open-ended QA, we find that they strug-

gle to automatically answer the questions. This prompts a

fundamental concern that these models do not truly under-

stand the causal and temporal structure over the actions. As

such, NExT-QA offers new challenges and ample opportu-

nities to spark future research for a deeper understanding of

video content.

To summarize our contributions: 1) we explore causal

and temporal action reasoning in VideoQA to advance video

understanding beyond shallow description towards deeper

explanation; 2) we contribute NExT-QA, a rigorously cu-

rated VideoQA benchmark with manual annotations to fos-

ter research on causal and temporal action reasoning; and

3) we extensively analyze the baselines as well as the estab-

lished video reasoning techniques on NExT-QA, providing

detailed results for different question types and heuristic ob-

servations for future works.

2. Related Work

Benchmarks. Early VideoQA benchmarks [31, 51, 53,

54, 59, 64] rely on video descriptions [27, 52] (e.g., a

man is skiing down a slope.) to automatically generate

question-answer pairs (e.g., Who is skiing down a slope?

A man.). They rarely require going beyond a recognition

of the objects and actions to answer the questions. TGIF-

QA [18, 17], in particular, challenges spatio-temporal rea-

soning in animated GIFs. However, GIFs are short videos

(about 3s), and the actions are mostly trivial in describing

the repetition or transition of a single object. Moreover, the

questions are automatically populated from simple sentence

templates. Consequently, SOTA methods [17, 19, 23] per-

form well, leading to an inflated optimism of machine in-

telligence in video understanding. Recently, ActivityNet-

QA [56] was manually annotated to understand longer web

videos. Yet, it has the same problems as in TGIF-QA, i.e.,

lacking object interactions and causal relationships.

Social-IQ [57] is a newly proposed benchmark for social

intelligence understanding. Although it is rich in causali-

ties and interactions, it is small-scale and focuses on com-

prehending complex human social behaviours from multi-

ple modalities (video, transcript, and audio). Our dataset

is larger and targets a richer set of causal and temporal

actions in daily life, extending beyond human-social be-

haviours (e.g., The dog barks at the cat because the cat paws

at the dog.). Also, it requires videos as the only information

source. MovieQA [42] and TVQA [25] may also invoke

causal and temporally related questions. Nonetheless, they

are either biased to textual plot understanding or actor dia-

logue comprehension [47], severely diminishing their chal-

lenge for visual reasoning. More recently, CLEVRER [55]

specially studied temporal and causal relationships of phys-

ical motions in simulated environments. Our dataset is es-

sentially different in that we explore causal and temporal

actions for a deeper understanding of real-world videos.

Other works like Motivation [46], VCR [58] and V2C

[10] may also take causality into consideration, either for vi-

sual description or QA. Nonetheless, they emphasize com-

monsense to imagine the predictions. Our work differs in

that we focus on understanding the causal and temporal

structure of the actions. Specifically, we ensure that the

answers to the questions are found in the video contents,

e.g., for causal questions, we make sure that both the cause

and effect actions are visible. Such a setting is impossi-

ble in static images [46, 58] that requires models to spec-

ulate or make commonsense reasoning, which goes in an

orthogonal direction to our aim. Finally, we note that QA

on causal and temporal events have long been studied in

text comprehension [12, 34]. However, these works focus

on detecting lexico-syntactic patterns that express causation

on news events rather than reasoning over specific videos’

causal/temporal actions.

Techniques. Language-guided visual reasoning like

VQA has progressed significantly driven by the tremendous

advancements in object/action recognition [4, 13, 14, 40,

44] and natural language understanding [5, 7, 15, 35, 45].

Most of the improvements have been made in image QA

[1, 2, 30] though video QA has received increasing atten-

tion recently. Established works [18, 42, 59, 51] apply

2D convolutional neural networks (CNNs) (e.g., ResNet

[14]) to learn frame-level appearance feature, and 3D CNNs

(e.g., C3D [44], I3D [4, 13]) or optical flow to capture

clip-level (or segment-level) motion information. The fi-

nal video-level representation can be obtained by simple

pooling or more sophisticated aggregation models, such as

temporal relation networks (e.g., TCN [24], TRN [62] and

CRN [23]), sequential models (e.g., RNNs with LSTM [15],

GRU [5] and their variants) and attention [26, 20]. Dur-

ing aggregation, the textual clues from the question side

(usually modeled by RNNs) are integrated for language-

guided video reasoning and are achieved by additional rea-

soning modules, such as spatial and temporal attention

[17, 18, 20, 60], co-attention [19, 26, 30], multi-cycle mem-

ory [9, 11], graph neural networks [16, 19] and conditional

relation networks [23]. In this work, we will comprehen-

sively analyze the relevant techniques on NExT-QA, pro-

viding effective baselines and heuristic observations.

3. NExT-QA Dataset

3.1. Criteria and Task Definition

Causal Questions are designed to explain actions, either

uncovering the intentions of the previously occurring ac-

tions or stating causes for subsequent actions. In this work,

‘A explains B’ of two actions A and B in a given video

means that A is a visible cause responsible for B’s occur-

rence. Thus, questions in the causal group ask either why
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the objects act in a certain manner or how (what did they do)

to bring about an observed effect. Accordingly, both causes

and effects should be visible in the videos. Examples can

be found in Figure 1 (top).

Temporal Questions assess the model’s capability of

reasoning about temporal relationships between actions.

Temporal actions, while related to causality, are determined

only by order of occurrence. Hence, questions of this type

ask about the previous (what ... do before ...), present (what

... doing when/while/as ...) or next actions (what/how ...

do/react after ...). Unlike previous works [18, 56] which

focus on reasoning temporal actions of a single object in a

question, we emphasize more on object interactions. Exam-

ples can be found in Figure 1 (middle).

Descriptive Questions focus on scene description of the

videos (e.g., the places, objects / attributes, and main actions

/ events). These questions complement causal and tempo-

ral questions to make up a holistic video comprehension

and also allow for comparison between different types of

questions. Specifically, the questions cover binary choices

(yes/no, or the answers are indicated in the questions, e.g.,

“... tired or energetic?”), location (where), counting (how

many) and other free-form questions. The only requirement

for free-form questions is that the answers can be visibly

inferred from videos and are not subjective. Examples can

be found in Figure 1 (bottom).

Multi-choice vs. Open-ended QA. We define two tasks

based on the above question types. In multi-choice QA,

models are presented with five options (one correct answer

plus four distractor answers) from which they are required

to select the correct one. Providing candidate answers

brings convenience in prediction evaluation. However, it

diminishes the reasoning challenge, as models are prone to

learn the difference between the correct and incorrect an-

swers purely; this is especially the case when the wrong

answers are not generated to be challenging enough. Also,

it dispenses with the need for answer generation, which in

our view should be an interesting and open field of research

in QA. Therefore, we also study open-ended QA where no

candidate answers are provided, and the models must inter-

pret the question and video contents and generate the textual

answers automatically. Previous works [2, 18, 56] formu-

late open-ended QA as a classification problem to classify

the video-question pairs into a fixed answer set. We set it as

a generation problem since the answers are mostly simple

phrases in NExT-QA. Generation-based open-ended QA is

of higher practical value and also receives widespread at-

tention recently [53, 60, 61].

3.2. Dataset Construction

Video Source. We aimed for natural videos featuring

object interaction in daily life, without restriction to certain

actors and activities. With these goals in mind, we found the

video relation dataset VidOR [38] 1 suits our requirements

well. We selected from VidOR 6,000 videos that are longer

and richer in objects and interactions. Although we do not

restrict the content, the videos are mainly about family time,

kids playing, social gatherings, outdoor activities, pets and

musical performances. We randomly split the videos into

train/val/test sets with a ratio of 7:1:2.

Annotation of the NExT-QA dataset was done in 3

stages2 over one year by 100 undergraduate students. The

annotators were supervised at each stage with the follow-

ing principles to ensure high-quality annotations. 1) All

the annotators are rigorously trained before doing the actual

annotation. 2) Question and answer annotation are done

by separate annotators. Answer annotators are expected to

check the questions’ quality first, answer the good questions

and fix (or delete) the bad ones. In this way, we can sim-

ulate the evaluation process and ensure that the questions

are answerable and not subjective. 3) Suggested maximal

lengths for questions and answers are 22 and 6 words, re-

spectively. We especially encouraged succinct answers to

avoid sentence paraphrasing and to facilitate answer evalua-

tion. 4) The question types are set in a drop-down menu and

must be selected by the questioners to ensure the distribu-

tion of the questions satisfying each video’s requirements.

5) Questioners can report videos that are hard to pose effec-

tive questions. The confirmed boring videos are removed

from the database.

Post-Processing. We removed some yes-answered ques-

tions in the validation and test sets to ensure a balanced

number of answers for yes and no. Additionally, we deleted

a limited number of counting questions whose answer val-

ues are larger than twenty. What remained are 5,440 valid

videos and 52,044 question-answer pairs; detailed statistics

are presented in Sec. 3.3.

Multi-choice Generation. To be meaningful, the dis-

tractors in multi-choice QA should be unique to each other,

semantically coherent in answering the questions, and dif-

ferent in meaning with respect to the correct answer. To this

end, we first grouped the questions according to the anno-

tated question types (binary questions are excluded). Then,

for each question, we retrieved the top 50 questions simi-

lar to the queried question in the same group according to

their cosine similarities based on off-the-shelf features of

Sentence-BERT [36]. The answers to these 50 questions

are returned as distractor candidates and then filtered for re-

dundancy and similarity to the correct answer. Two answers

are redundant or similar if 1) their lemmatized variants are

the same, in which stop words are not considered, or 2) the

cosine similarity of their feature vectors is large than 0.9. To

1Videos are drawn from YFCC-100M [43] and are crawled from Flickr.
2Annotating all the questions in one stage was problematic for quality

control and compensation. We annotated first the causal questions and then

temporal; descriptive questions were the easiest and done last. Payment

was commensurate with the number and difficulty of the questions.

9779



Why did the boy pick up one present 

and move to the sofa?

0. share with the girl 

1. approach lady sitting there 

2. unwrap it

3. playing with toy train 

4. gesture something

How did the man react when the ball was 

thrown to him by boys?

0. bounce it

1. walk away 

2. surround the boys

3. pick up and throw back 

4. run after the man in white shorts

Figure 2: Examples of multi-choice QA.

Videos
Tasks

Questions

Train Val Test Total Train Val Test Total

3,870 570 1,000 5,440
Multi-Choice QA 34,132 4,996 8,564 47,692

Open-Ended QA 37,523 5,343 9,178 52,044

Table 1: Statistics of the NExT-QA datasets.

ensure hard negatives, we also discard the candidate whose

similarity with the correct answer is lower than 0.2. After-

wards, we sampled four qualified candidates as distracting

answers for each question and randomly (but evenly) insert

the correct answers to form 5 options. Finally, we manually

checked all the question-answer tuples and amended some

options to ensure the effectiveness of the generated multi-

ple choices. We show some examples in Figure 2; more are

found in the Appendix.

3.3. Data Statistics

NExT-QA contains 5,440 videos, including 3,870 for

training, 570 for validation and 1,000 for testing. Detailed

statistics are given in Table 1. The distribution of the ques-

tions and answers are shown in Figure 3. From Figure 3

(a) we can see that the number of causal questions accounts

for approximately half (48%) of the whole dataset; ques-

tions starting with ’why’ are the majority, constituting 36%.

Temporal questions of understanding the present or infer-

ring the past or future compose 29% of the whole dataset.

Apart from causal and temporal questions, there is 23% of

descriptive questions which focus on describing the loca-

tions, objects/attributes and main events in the videos.

The distribution of question word length is shown in Fig-

ure 3 (b). Questions are on average 11.6 words, which is

much longer than existing VideoQA datasets (e.g., 8.7 in

Activity-QA [56]). We find a clear difference in the three

question types’ distributions, i.e., descriptive questions are

the shortest while questions for causal and temporal actions

are relatively longer. This is reasonable as most of the de-

scriptive questions have a simple syntactic structure, while

the questions in the causal and temporal groups are mostly

compounded. Accordingly, answers (Figure 3 (c)) to the

descriptive questions are shorter since they are related to

video recognition. In contrast, answers to causal and tem-

poral questions are relatively longer. Nevertheless, the vast

0

1000

2000

3000

4000

5000

<
=

4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

>
=

2
2

Causal

Temporal

Descriptive

0 5000 10000 15000 20000

1

2

3

4

5

6

>6 Causal

Temporal

Descriptive

(a) Distribution of question types (c) Distribution of answers

(b) Distribution of questions

N
u

m
b

er
 o

f 
q

u
es

ti
o

n
s

A
n

sw
er

 l
en

g
th

s

Number of answers

Question lengths

Figure 3: Data statistics. (a) Distribution of the question

types. (b) The average question length is 11.6, and the spe-

cific lengths for causal, temporal and descriptive questions

are 12.1, 13.4 and 8.0 respectively. (c) The average answer

length is 2.6. Specific lengths for causal, temporal and de-

scriptive answers are 3, 2.8 and 1.4 respectively.

majority of the questions can be answered in 6 words.

3.4. Dataset Comparison

NExT-QA has several attractive properties compared

with other datasets (see Table 2; a more detailed analysis

is given in Appendix part 1). First, NExT-QA is unique

in that it goes beyond descriptive QA to benchmark causal

and temporal action reasoning in realistic videos and is also

rich in object interactions. Second, it is among the largest

VideoQA datasets that are manually annotated to support

both multi-choice and open-ended QA, allowing compre-

hensive comparisons of different VQA techniques. Finally,

the videos in NExT-QA are rich and diverse in terms of ob-

jects, actions and events, and all reflect real daily life, which

differs from the popular TVQA [25] dataset that biased to-

wards comprehending dialogues between main characters

in the TV shows.

4. Experiments

Evaluation. For multi-choice QA, we report the accu-

racy or percentage of correctly answered questions. For

open-ended QA, we first remove the stop words and lem-

matize other words in the answers. Then, we determine the

Wu-Palmer similarity (WUPS) score 3 [32] to evaluate the

quality of the generated answers. For binary and counting

questions in the descriptive group, we use accuracy instead.

Since accuracy is easily integrated into WUPS (as a hard

version), we do not report them separately for brevity.

Configuration. We uniformly sample for each video 16

clips (segments), and each has 16 consecutive frames. The

per-frame appearance feature is extracted from ResNet-101

[14] pretrained on ImageNet [6], from either Convolutional

3WUPS computes the Wu-Palmer similarity [48] of the words based

on their depths in WordNet [33]. It can be regarded as a soft version of

accuracy that factors in synonyms and other semantics [53, 61]
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Dataset Video Source Goal Annotation #Videos #QA Pairs Video Length (s) QA Task

MSVD-QA [51] MSVD descriptive QA Auto 1,970 50,505 10 OC

MSRVTT-QA [51] MSRVTT descriptive QA Auto 10,000 243,690 15 OC

TGIF-QA [17, 18] TGIF spatio-temporal reasoning Auto 71,741 165,165 3 MC&OC

TVQA [25] TV Show subtitle&concept comprehension Man 21,793 152,545 76 MC

ActivityNet-QA [56] ActivityNet descriptive QA Man 5,800 58,000 180 OC

Social-IQ [57] YouTube social intelligence understanding Man 1,250 7,500 60 MC

NExT-QA (ours) YFCC-100M causal & temporal action interactions Man 5,440 52,044 44 MC&OG

Table 2: Dataset comparisons. OC and OG denote Open-ended question-answering as problem of Classification and Gener-

ation respectively. MC stands for multi-choice QA.

(Conv) layers or fully connected (FC) layers depending on

the specific models. The clip-level motion information is

captured by inflated 3D ResNeXt-101 [13, 50] pre-trained

on Kinetics [21]. On the language side, we study both

GloVe [35] for word representations as in the original paper

and the recent BERT [7] for sentence embedding. Unless

otherwise indicated, for multi-choice QA, the candidate an-

swers are concatenated to the corresponding questions, and

the models are optimized by maximizing the margins be-

tween the correct and incorrect QA pairs using Hinge loss.

For open-ended QA, the video-question communicated fea-

tures will be fed to the answer decoders to generate the an-

swers word by word. The models are optimized by mini-

mizing the softmax cross-entropy loss. All the experiments

follow the data split in Table 1. We train the models on

the respective training sets, during which the optimal model

settings are explored on the validation sets.

4.1. Multi­choice QA

We first discuss the baselines designed to diagnose any

potential biases in NExT-QA and then analyze the estab-

lished video reasoning techniques.

4.1.1 Baselines

Random. This baseline randomly chooses one option as

the correct answer and keeps it the same for all the ques-

tions. Table 3 shows the results of always selecting the first

option as a representative. The random accuracy across dif-

ferent question types is about 20%, as the correct answers

are evenly distributed among the five options.

Longest, Shortest and Popular. As the names suggest,

the longest / shortest baselines always select the longest /

shortest answer as the correct one. We can see that both

methods improve little over the random baseline. When we

regulate the strategy a bit by selecting the most popular an-

swers (i.e., the most frequent answer for each question type)

if it is among the five options otherwise choosing the short-

est one, as shown in the Pop.+Short baseline, there are clear

improvements for questions in the descriptive group. Yet,

the results are only slightly better for causal questions and

even worse for temporal questions. This is understandable

Methods Text Rep. AccC AccT AccD Acc

Random - 20.52 20.10 19.69 20.08

Longest - 21.71 21.46 17.89 21.04

Shortest - 22.09 19.67 22.78 21.42

Pop.+Short - 22.25 20.41 32.43 23.24

SimAA Se-BERT 18.11 19.23 18.15 18.47

SimQA Se-BERT 27.12 26.67 26.64 26.90

BlindQA GloVe 26.89 30.83 42.60 30.60

BlindQA BERT 23.78 24.26 35.26 25.72

BlindQA BERT-FT 42.62 45.53 43.89 43.76

Human - 87.61 88.56 90.40 88.38

Table 3: Baseline and human results on validation set.

AccC , AccT and AccD denote accuracy for causal, tem-

poral and descriptive questions respectively.

as descriptive questions are easier to have frequent answers.

All these baselines verified that an educated guess is hard to

achieve good results on NExT-QA.

SimAA and SimQA. We specifically analyze the

retrieval-based methods since the negative answers are

mainly generated by searching the nearest neighbours of

questions on the dataset. Concretely, the SimAA baseline

is designed to check whether or not the correct answers are

semantically far away from the distractor answers. To this

end, we extract Sentence-BERT [36] representation (Se-

BERT) for the answers and find the furthest from the other

four options as the correct answer for each question.

As shown in Table 3, this baseline performs the worst

among all methods, revealing that the answers are chal-

lenging to disambiguate without seeing the questions and

videos. Similarly, we design the SimQA baseline to re-

trieve the answers closest to the corresponding questions

in the feature space. This baseline performs relatively bet-

ter than the previously introduced baselines on causal and

temporal questions, but its performance is still worse than

the Popular+Shortest baseline on the descriptive questions.

The results are reasonable as there is less semantic over-

lap between the descriptive group’s questions and answers.

Again, these results suggest that the questions cannot be an-

swered well simply based on semantic similarity between

the questions and answers.
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Methods Text Rep.
AccC AccT AccD

Acc

Why How All Prev&Next Present All Count Location Other All

EVQA [2] GloVe 28.38 29.58 28.69 29.82 33.33 31.27 43.50 43.39 38.36 41.44 31.51

PSAC [26] GloVe 35.81 29.58 34.18 28.56 35.75 31.51 39.55 67.90 35.41 48.65 35.57

PSAC+ [26] GloVe 35.03 29.87 33.68 30.77 35.44 32.69 38.42 71.53 38.03 50.84 36.03

CoMem [11] GloVe 36.12 32.21 35.10 34.04 41.93 37.28 39.55 67.12 40.66 50.45 38.19

STVQA [18] GloVe 37.58 32.50 36.25 33.09 40.87 36.29 45.76 71.53 44.92 55.21 39.21

HGA [19] GloVe 36.38 33.82 35.71 35.83 42.08 38.40 46.33 70.51 46.56 55.60 39.67

HME [9] GloVe 39.14 34.70 37.97 34.35 40.57 36.91 41.81 71.86 38.36 51.87 39.79

HCRN [23] GloVe 39.86 36.90 39.09 37.30 43.89 40.01 42.37 62.03 40.66 49.16 40.95

EVQA [2] BERT-FT 42.31 42.90 42.46 46.68 45.85 46.34 44.07 46.44 46.23 45.82 44.24

STVQA [18] BERT-FT 45.37 43.05 44.76 47.52 51.73 49.26 43.50 65.42 53.77 55.86 47.94

CoMem [11] BERT-FT 46.15 42.61 45.22 48.16 50.38 49.07 41.81 67.12 51.80 55.34 48.04

HCRN* [23] BERT-FT 46.99 42.90 45.91 48.16 50.83 49.26 40.68 65.42 49.84 53.67 48.20

HME [9] BERT-FT 46.52 45.24 46.18 47.52 49.17 48.20 45.20 73.56 51.15 58.30 48.72

HGA [19] BERT-FT 46.99 44.22 46.26 49.53 52.49 50.74 44.07 72.54 55.41 59.33 49.74

Table 4: Results of multi-choice QA on validation set. +: add motion feature. *: concatenate the question and answer to

adapt to BERT representation. (The best and second best results are bolded and underlined respectively.)

BlindQA. We study a blind version of deep models

by considering the question-answers only and ignoring the

video parts. To this end, we model the QAs with LSTM,

during which the words are initialized with either GloVe

[35] or BERT [7] representations. As a popular fashion, we

extract token representations from the penultimate layer of

the BERT-base model. As shown in Table 3, the BlindQA

models steadily improve the results over all question types.

Intriguingly, the model that utilizes GloVe performs better

than that using BERT. We believe this is because the off-the-

shelf BERT representations are seriously biased to the cor-

pus on which it was trained and thus generalizes poorly to

the scenario where the text is mostly visual-content related.

Therefore, we further fine-tune BERT for multi-choice QA

by maximizing the correct QA pairs’ probability in each

multi-choice QA. From Table 3, we can see that BERT-FT

remarkably boosts the results over the off-the-shelf BERT

representation and also GloVe. Nonetheless, the results are

still much worse than human performance and thus indicate

the necessity of understanding videos.

4.1.2 Established VideoQA Models

We analyze and benchmark several established VideoQA

methods in Table 4 and Table 5, covering diverse network

architectures and visual reasoning techniques.

EVQA [2] extends the BlindQA baseline by adding up

the visual stream, which is modelled by another LSTM.

The visual and textual features are then element-wise added

to predict the answers. Without any reasoning modules in

the model, it trivially outperforms the BlindQA baseline.

STVQA [18, 17] advances EVQA by applying two dual-

layer LSTMs for video and question modelling, with addi-

tional spatio-temporal attention modules for visual reason-

ing. We can see that it steadily boosts the EVQA baseline’s

performance across all 3 types of questions. The same is

observed for CoMem [11] and HME [9]. Both share similar

video and question encoders as in STVQA but use memory

modules for visual appearance, motion and language rea-

soning in a multi-cycle fashion 4.

Unlike the above methods that apply RNNs to con-

textualize video representations, PSAC [26] utilizes self-

attention (the building block of transformer architectures

[45]) on top of CNN feature and achieves great success

on TGIF-QA [18] with merely appearance feature. As the

transformer essentially stacks fully-connected layers with

short-cut connections, it trains fast but is data-hungry; on

NExT-QA, it suffers from over-fitting problem and per-

forms the worst among other methods. We speculate that

the dataset is likely not large enough to learn transform-

style visual models directly. Nevertheless, it would be a

good testbed for pre-trained architectures [41, 65].

HCRN [23] is a hierarchical model with conditional re-

lation networks (CRN) as building blocks. It operates on

video frame/segment sets of various lengths conditioned on

either motion or textual clues in a stage-wise fashion to rea-

son on the video at multiple granularities. As shown in Ta-

ble 4, it shows strong performance for causal and tempo-

ral action reasoning when GloVe representations are con-

sidered. However, when it is adapted to BERT representa-

tion, the results are not consistently good. Such difference

could be that the size of the model is one order of magnitude

larger than the others and is thus prone to be over-fitting as

the size of BERT representation is approximately 2.5 times

larger than that of GloVe (768 vs. 300).

HGA [19] introduces a heterogeneous graph reasoning

module and a co-attention unit to capture the local and

global correlations between video clips, linguistic concepts

4We use the implementation provided by [8] as there is no official code

available for CoMem. The video encoder is a two-layer GRU [5] instead

of TCN [24] used in the original paper.
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Methods AccC AccT AccD Acc

EVQA [2] 43.27 46.93 45.62 44.92

STVQA [17] 45.51 47.57 54.59 47.64

CoMem [11] 45.85 50.02 54.38 48.54

HCRN [23] 47.07 49.27 54.02 48.89

HME [9] 46.76 48.89 57.37 49.16

HGA [19] 48.13 49.08 57.79 50.01

Table 5: Results of multi-choice QA on test set. All are

based on fine-tuned BERT representation.
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Figure 4: (a) Results with different number of clips. (b) Re-

sults with different video representations. C, T and D stand

for causal, temporal and descriptive questions respectively.

and their cross-modal correspondence. The method is better

suited for causal and temporal action reasoning and shows

superior performance with BERT representations, achiev-

ing the SOTA results on NExT-QA. Yet, the gap between

human performance remains large (e.g., 46.26% vs. 87.61%

on causal questions, 50.74% vs. 88.56% on temporal ques-

tions, 59.33% vs. 90.40% on descriptive questions), and

thus offers ample opportunity for improvement.

4.1.3 Video Sampling Rates and Representations.

We based on HGA with BERT-FT as language representa-

tion to analyze the influence of video sampling rates and

feature representations. First, we vary the number of sam-

pled video clips (segments) from 0 to 32, where 0 stands for

the respective BlindQA baseline. As shown in Figure 4 (a),

we can see clear improvements for all types of questions

with attendance of videos. Specifically, the improvement

for descriptive questions is significant with more than 15%.

Besides, we also observe that 16 segments are enough to ob-

tain good overall accuracy, whereas it needs relatively more

segments to achieve better results on causal questions.

In Figure 4 (b), we investigate different features of video

frames and segments. From the results, we can conclude

that, for all types of questions, the best performance is

from using ResNet as an appearance feature along with I3D

ResNeXt as a motion feature (Res+I3D). When I3D is re-

placed with C3D (Res+C3D), results drop for all questions

even though we do not observe absolute weakness between

C3D and I3D in this experiment. We speculate that im-

provements can be mainly attributed to 1) I3D performing

better on causal questions which account for the majority of

NExT-QA; and 2) ResNeXt which was derived from ResNet

Methods WUPSC WUPST WUPSD WUPS

Popular 9.73 8.95 28.39 13.40

BlindQA 12.14 14.85 40.41 18.88

STVQA [17] 12.52 14.57 45.64 20.08

HME [9] 12.83 14.76 45.13 20.18

HCRN [23] 12.53 15.37 45.29 20.25

UATT [53] 13.62 16.23 43.41 20.65

HGA [19] 14.76 14.90 46.60 21.48

Table 6: Results of open-ended QA on validation set.

Methods WUPSC WUPST WUPSD WUPS

Popular 12.19 10.79 31.94 16.12

BlindQA 14.87 18.35 45.78 22.66

STVQA [17] 15.24 18.03 47.11 23.04

HCRN [23] 16.05 17.68 49.78 23.92

HME [9] 15.78 18.40 50.03 24.06

UATT [53] 16.73 18.68 48.42 24.25

HGA [19] 17.98 17.95 50.84 25.18

Table 7: Results of open-ended QA on test set. We provide

two reference answers for half of the test questions, and re-

port the highest WUPS score between them.

and thus matches better with ResNet in feature space than

C3D. A similar observation was made in [17].

4.2. Open­ended QA

We transfer several top-performing methods in multi-

choice QA to open-ended QA. To this end, we first build

a vocabulary set of 3,392 words by selecting those ap-

pearing more than five times in the dataset. Questions and

answers are truncated to maximal lengths of 23 and 6, re-

spectively. Since BERT representations are not convenient

to adapt to the generation scenario, we use GloVe as the text

representation for this experiment’s methods. The video-

question encoders are kept the same as in multi-choice QA.

For answer decoders, we investigated several architectures;

we found that GRU with soft attention over the questions

performs well (see Appendix part 2 for details) and we use

it for all models adapted from multi-choice QA. For better

comparison, we also reproduce UATT [53] which was pro-

posed for generation-based open-ended QA by designing an

order-preserved co-attention module.

As shown in Table 6 and Table 7, although the methods

can effectively boost the results over the BlindQA baseline,

the overall improvements are trivial (less than 3%) mainly

due to the poor performance on causal and temporal ques-

tions. To delve into the reason, we first visualize some

results in Figure 5 (find more in Appendix part 3), from

which we can see that the models struggle in automatically

answering the questions, especially those which challenge

causal and temporal action reasoning. We further detail the

results of HGA [19] (as a representative) on questions and

answers of different lengths. As shown in Figure 6 (left),

the performance on causal and temporal questions drops

as the question lengths increase. However, for descriptive
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C: Why did the girl in blue stop and 

turn around at the start? 

0. Pour ingredient in.   1. Scared.

2. Waiting for the lady.   3. Take out 

vegetable.   4. Dance.

STVQA look at the. (4.41)

HME to for the. (0.00)

HCRN look at the. (4.41)

UATT look at the. (4.41)

HGA reached the end. (5.77)

1

1

1

-

2

T: What does the adult do after the 

baby starts crawling away? 

0. Crawls away.   1. Follow the baby.

2. Look into camera.   3. Stand up.

4. Push the toy car.

STVQA crawl away. (4.71)

HME pick up baby. (3.57)

HCRN push the baby. (13.33)

UATT follow baby. (100)

HGA change walker. (7.14)

1

1

1

-

1

STVQA null. (0.00)

HME rope. (100)

HCRN stick. (66.67)

UATT swing toy. (11.83)

HGA headphone. (55.56)

4

4

4

-

4

D: What is the boy pulling? 

0. Toy table.   1. The dog s tail.

2. Toy car.   3. Sand.   

4. Rope.

Figure 5: Visualization of answer prediction results. For multi-choice QA, the correct answers and predictions are highlighted

in red. For open-ended QA, the WUPS score of each prediction is appended. ’null’ means the methods fail to generate any

effective words. (C: Causal. T: Temporal. D: Descriptive.)
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Figure 6: Result distribution on questions and answers.

questions, the results are relatively stable and less impacted.

Also, they are consistently better than causal and temporal

questions. Regarding the answers in Figure 6 (right), the

performances on all types of questions degrade on longer

answers. By jointly considering the distributions of ques-

tions and answers in the dataset (refer to Figure 3), we can

draw that the models are essentially weak in causal and tem-

poral reasoning and not strong enough for language under-

standing and generation.

5. Discussion and Conclusion

We conclude the following points and raise them as open

challenges for the rest of the community. First, SOTA meth-

ods perform well on descriptive questions. However, they

are still weak in causal and temporal action reasoning – the

gap remains approximately 10% and 30% for multi-choice

and open-ended QA respectively. Nonetheless, our empiri-

cal results suggest that graph models are superior for causal

and temporal relation reasoning (refer to HGA [19]) and are

a promising direction to explore. Regarding visual feature

representations, motion feature are important but naively

concatenating appearance and motion features usually re-

sults in sub-optimal results (refer to EVQA [2], PSAC+

[26] and STVQA [27]). As such, we encourage investi-

gating more effective ways of modelling and merging the

two types of features. In terms of language representation,

pre-trained BERT representations [29] are seriously biased

to TextQA and generalize worse than that of GloVe [35].

However, fine-tuned BERT shows absolute superiority in

answering causal and temporal questions (refer to Tables 3,

4), and thus we recommend BERT as the text representation

of choice for NExT-QA.

Second, the methods that are effective on multi-choice

QA struggle in automatically answering open-ended ques-

tions (see Tables 4, 5 vs. Tables 6, 7; qualitative analysis

in Figure 5). This prompts our fundamental concern that

these methods do not truly understand the causal and tem-

poral structures over actions. Instead, they are likely bet-

ter at learning the differences between the provided correct

and incorrect answers, which arguably, challenges more on

grounding rather than inferring the answers in the videos

[49]. As such, we hope NExT-QA will underpin the next

generation of VQA research not only in multi-choice QA,

but also in open-ended QA.

Finally, open-ended QA is challenged not only by the

reasoning component but also by language generation,

which are themselves open research problems. Our anal-

ysis shows that current VQA models are still weak in un-

derstanding complex questions and generating longer an-

swers. Given the advancements made in vision-language

representation learning [41, 65], future works are likely bet-

ter served by using pre-trained architectures. Nevertheless,

they need to be carefully balanced to incorporate and con-

dition on the visual evidence. We believe this is also an

exciting research area where NExT-QA can contribute to-

wards advancements. Additionally, it could be interesting

to incorporate explicit relation information, as NExT-QA’s

videos are sourced from the VidOR [38] dataset where re-

lation annotations already exist and provide a rich source of

information to be leveraged.
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