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Abstract

Compact video super-resolution (VSR) networks can be

easily deployed on resource-limited devices, e.g., smart-

phones and wearable devices, but have considerable per-

formance gaps compared with complicated VSR networks

that require a large amount of computing resources. In

this paper, we aim to improve the performance of compact

VSR networks without changing their original architec-

tures, through a knowledge distillation approach that trans-

fers knowledge from a complicated VSR network to a com-

pact one. Specifically, we propose a space-time distillation

(STD) scheme to exploit both spatial and temporal knowl-

edge in the VSR task. For space distillation, we extract spa-

tial attention maps that hint the high-frequency video con-

tent from both networks, which are further used for transfer-

ring spatial modeling capabilities. For time distillation, we

narrow the performance gap between compact models and

complicated models by distilling the feature similarity of

the temporal memory cells, which are encoded from the se-

quence of feature maps generated in the training clips using

ConvLSTM. During the training process, STD can be easily

incorporated into any network without changing the origi-

nal network architecture. Experimental results on standard

benchmarks demonstrate that, in resource-constrained sit-

uations, the proposed method notably improves the perfor-

mance of existing VSR networks without increasing the in-

ference time.

1. Introduction

Video super-resolution (VSR) aims to generate a

high-resolution (HR) video from its corresponding low-

resolution (LR) observation. In the deep learning era, a

variety of elaborately designed VSR networks can achieve

promising super-resolution performance, yet at the cost of a

large amount of computing resources. It is thus difficult to

deploy complicated VSR networks on resource-limited de-

vices, e.g., smartphones and wearable devices. On the other

hand, compact VSR networks can be easily deployed on

these devices due to their lightweight architectures. How-

ever, their ability to model spatial-temporal correlations is

meanwhile limited due to simple architectures, which fur-

ther limits their super-resolution performance.
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Figure 1: Comparisons on the runtime and the reconstruction qual-

ity (PSNR) of different methods (both SISR and VSR methods

are included). The running time is the average execution time for

super-resolving a video clip of spatial resolution 180 × 120 with

the scale factor equal to 4 on an NVIDIA 1080Ti GPU. The PSNR

value refers to the average over Vid4-Walk [41].

Different from single image super-resolution (SISR) [5,

39, 42, 40, 4, 18, 48, 2], a key step in VSR is to align

different frames, either explicitly or implicitly. A major-

ity of VSR methods contain the motion compensation mod-

ule. For example, Kappeler et al. [17] slightly modify SR-

CNN [4] and extract features from frames that are aligned

by optical flow. However, estimating optical flow itself is

a challenging and time-consuming task [13, 31]. Inaccu-

rate estimated optical flow leads to artifacts in the flow-

based VSR methods. To avoid explicitly calculating op-

tical flow, some recent methods exploit the motion infor-

mation in an implicit manner. For example, the dynamic

upsampling filters [16] and the progressive fusion residual

blocks [43] are designed to explore flow-free motion com-

pensation. It is especially worth mentioning that, as the

winner of the NTIRE2019 challenges on video restoration

and enhancement [24, 25], EDVR [37] utilizes a combina-

tion of pyramid, cascading, and deformable structures for

multi-frame alignment. Together with temporal and spatial

attention modules for information fusion, EDVR achieves

state-of-the-art VSR results. Although implicit frame align-

ment improves computational efficiency to a certain extent,

these large and complex networks still require considerable

computing resources and are not competent to resource-
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constrained scenarios.

To reduce the computational cost and/or required mem-

ory, a few works use recurrent schemes to introduce cost-

effective network architectures for VSR [6, 14, 28]. By

simply propagating the output and hidden state of previous

steps with a recurrent unit, these methods achieve promis-

ing reconstruction performance and greatly reduce infer-

ence time. Although a good tradeoff between effectiveness

and efficiency can be obtained, designing such recurrent

networks requires tremendous efforts.

In this paper, we explore a new direction for effective and

efficient VSR. Instead of pursuing more advanced network

design, we introduce knowledge distillation (KD) [10] to

the VSR task for the first time, which leverages intrinsic

information of a teacher network to train a student network.

Without changing the original architecture or increasing the

inference time of the student network (a compact one), its

performance is expected to be elevated towards its teacher

(a complicated one). The proposed method is especially

suitable for resource-limited devices, e.g., smartphones and

wearable devices. Once a more powerful teacher network

is available, we only need to retrain the student network

instead of deploying a new one.

To narrow the performance gap between compact mod-

els and complicated models, we propose a novel space-time

distillation (STD) scheme to help the training of compact

networks. Specifically, for spatial-related information pro-

cessing, we design a space distillation (SD) scheme to uti-

lize the spatial attention maps derived from the teacher net-

work as the training target of the student network. This SD

scheme allows a simple student network to imitate the abil-

ity of a powerful teacher network in capturing and model-

ing the spatial correlation. For temporal-related informa-

tion processing, the powerful teacher network has a strong

ability to capture temporal correlation and maintain tem-

poral consistency. Therefore, we design a time distillation

(TD) scheme to narrow the gap between the temporal mem-

ory cells of the teacher and student networks, which are

encoded using a ConvLSTM from the sequence of feature

maps with a sliding-window mechanism. This TD scheme

not only improves the temporal consistency but also boosts

the reconstruction accuracy. All these operations are only

applied during training, and the network structures remain

unchanged during inference. Compared to only using a re-

construction loss (i.e., the Charbonnier loss [14, 15, 37]) for

training, the proposed STD scheme can obtain additional

performance gains from the teacher network.

Fig. 1 demonstrate that, with the proposed STD scheme

and using EDVR as the teacher, notably improved VSR re-

sults can be achieved without extra runtime for a number

of existing compact networks. More comprehensive exper-

iments are conducted on two VSR benchmarks: Vid4 [21]

and Vimeo90K-Test [41], where three typical compact VSR

networks, i.e., VESPCN [1], VSRNet [17] and FastDVD-

net [34] are included for evaluation. It is verified that our

proposed STD scheme improves both the reconstruction

quality and the temporal consistency of VSR results while

maintaining the high inference efficiency of these networks.

Due to its high flexibility and generalizability, we believe

the proposed STD method could greatly facilitate VSR on

resource-limited devices.

2. Related Work

2.1. Video SuperResolution (VSR)

VSR emerges as an adaptation of SISR by exploit-

ing additional information from neighboring low-resolution

frames [6, 22, 37, 38, 41, 43, 47]. Liu et al. [22] pro-

pose a temporal adaptive neural network to adaptively se-

lect the optimal range of temporal dependency and a rec-

tified optical flow alignment method for better motion es-

timation. Tao et al. [32] propose a new sub-pixel mo-

tion compensation layer for inter-frame motion alignment

which can achieve motion compensation and upsampling

simultaneously. Xue et al. [41] train motion estimation

and VSR jointly in an end-to-end manner through the pro-

posed task-oriented flow. Instead of image level motion

alignment, TDAN [35] and EDVR [37] work at the feature

level. TDAN [35] uses a temporal deformable alignment

module to align different frames in the feature domain for

better reconstruction performance. EDVR [37] further ex-

tends TDAN by using deformable alignment in a coarse-to-

fine manner and a new temporal and spatial attention fu-

sion module, instead of naively concatenating the aligned

LR frames. Recently, Isobe et al. [14] propose a recurrent-

based network in which the structure and detail components

extracted from LR inputs are reconstructed with two-stream

structure-detail blocks for efficient VSR.

2.2. Knowledge Distillation (KD)

KD refers the technique that leverages intrinsic infor-

mation of a large teacher network to train a small stu-

dent one. KD is first proposed by Hinton et al. [10],

and since then many works have been devoted to this

topic [9, 12, 20, 23, 27, 44, 49]. Very recently, KD has been

extended to SISR and proven its effectiveness. Gao et al. [7]

attempt to propagate the first-order statistical information

(e.g., average pooling over channels) from a teacher model,

where a student model is trained to have similar feature dis-

tributions to that of the teacher. Lee et al. [19] take the

ground truth HR images as inputs to extract powerful privi-

leged information for image reconstruction. These methods

can be seen as the pioneering works along the SISR line.

However, KD for the VSR task remains unexplored, which

is the focus of this paper.
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Figure 2: Our distillation framework. (a) The toy architecture of the complicated VSR method (e.g., EDVR [37]). The output super-

resolved frame SRt is generated by adding the residual map produced by the network and the bicubic upsampling result of the input

reference frame. We have omitted this process in the figure. (b) The space distillation allows a network to exploit spatial attention maps

derived from the teacher network (e.g., M T

t ) as the distillation targets for the spatial attention maps extracted from the student network

(e.g., M S

t ). (c) The time distillation encodes the extracted multi-frame feature maps into temporal memory cells CSR
T and C

SR
S by using

ConvLSTM and minimizes the gap between the teacher and student networks.

3. Space-Time Distillation

Fig. 2(a) shows the toy architecture of a complicated

VSR network. Given 2k + 1 consecutive LR frames

I[t−k:t+k], we denote the middle frame It as the refer-

ence frame and the other frames as neighboring frames.

The aim of VSR is to estimate an upsampled reference

frame SRt, which is desired to be close to the ground

truth HRt. Each input neighboring frame is aligned to the

reference frame at the feature level and/or aggregated in

the spatial-temporal domain with an elaborately designed

motion alignment module. We use FLR
t to represent the

aligned and/or fused feature, and it is further sent to the re-

construction backbone with the pixel-shuffle operation [29]

to estimate FSR
t , which has the same spatial resolution as

HRt. The restored SRt is finally obtained by convolving

FSR
t to reduce the number of channels.

Different from Fig. 2(a), we apply our newly designed

STD scheme, as in Figs. 2(b) and 2(c), to transfer the knowl-

edge from the complicated teacher network T to a compact

student network S. Transferring such multi-frame align-

ment and spatial-temporal fusion capabilities from T to S

could make the student mimic the teacher better in terms of

video reconstruction. Note that, we choose to distill FSR
t

instead of FLR
t , since distilling FSR

t can achieve better re-

construction accuracy (as shown in Sec. 4.3).

3.1. Space Distillation (SD)

High-frequency details are critical to the reconstruction

of reference frames. Inspired by the activation-based at-

tention distillation [46], we design an SD scheme to model

the spatial representation ability of T by extracting the spa-

tial attention map from T, and utilize it to train the com-

pact S. We use FSR
T,t ∈ R

C×W×H and FSR
S,t ∈ R

C×W×H

to denote the feature maps of the teacher and student net-

works. C, H and W denote the channel, height and width

of feature maps, respectively. The generation of the spatial

attention map is equivalent to finding a mapping function

M : RC×W×H → R
W×H . The spatial attention map con-

tains diverse and rich contextual information that hints the

high-frequency video content. The mapping function can

be defined as one of the following three operations [46]

Msum(FSR
t ) =

∑C

i=1
|FSR

t,i |, (1)

M2
sum(FSR

t ) =
∑C

i=1
|FSR

t,i |2, (2)

M2
max(F

SR
t ) = maxC

i=1|F
SR
t,i |2, (3)

where FSR
t,i is the i-th slice in the channel dimension. Note

that we describe the mapping function here in a unified way.
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Figure 3: The input reference frame and visualization of extracted

spatial attention maps using three mapping functions. The spa-

tial attention map extracted by M2
sum(·) hints the high-frequency

video content more accurately.

Both student and teacher can be represented by adding S and

T subscripts, respectively.

We visualize the spatial attention maps of these

three mapping functions in Fig. 3. Compared with

Msum(FSR
t ), M2

sum(FSR
t ) assigns more weights to areas

with high-frequency details. Compared with M2
max(F

SR
t ),

M2
sum(FSR

t ) describes the details of the scene more clearly

and accurately since it calculates weights in a global mech-

anism rather than simply selecting the maximum value.

Based on the above visualization and analysis, in the fol-

lowing experiment, we use M2
sum(FSR

t ) as the mapping

function which yields the best performance.

By using the mapping function M2
sum(·), the spatial at-

tention maps of the teacher and student networks can be

calculated as

M
T/S
t = M2

sum(FSR
T/S,t). (4)

During training the student network, the spatial attention

map MS

t is forced to be close to MT

t . Transferring knowl-

edge contained in spatial attention maps from the teacher to

the student could make the student mimic the teacher better

in terms of learning high-frequency details, and thus im-

prove the performance of the student network. The SD loss

to optimize the student S is

LSD =
1

N

N
∑

t=1

Ld(M
S

t ,M
T

t ), (5)

where Ld is typically defined as the L2-norm distance and

N is the number of frames in a training clip. We use

the sliding-window scheme to create training pairs. For

the boundary frames, we create pairs by duplicating these

frames for multiple times.

3.2. Time Distillation (TD)

Exploiting the correlation among multiple frames is the

key step in VSR. The complicated teacher network has a

stronger ability to handle temporal information with large

motions due to its well-designed frame alignment and/or

fusion structures. Our TD scheme, as shown in Fig. 2(c),

is designed to migrate the temporal modeling ability of the

teacher network to the student network.

Given 2k + 1 consecutive LR frames I[t−k:t+k], the cor-

responding feature maps FSR
[t−k:t+k] are extracted from the

Figure 4: Our training and inference mechanisms. (a) The train-

ing mechanism. The space distillation loss, the time distillation

loss and the reconstruction loss are used during training. (b) The

inference mechanism. The proposed SD and TD schemes are

only applied during training, and the network structures remain

unchanged during inference.

output of the reconstruction backbone before the convolu-

tional layer(s). We input these 2k + 1 feature maps into

ConvLSTM units [30] in order. By continuously passing

the hidden states of the previous features to the last units,

the output CSR, called temporal memory cell, can record

the long-term temporal information of the input video clip.

We use CSR
T

and CSR
S

to denote the temporal memory cells

of the teacher and student networks encoded by ConvLSTM

units as

(CSR
T/S , hT/S,t+k) = ConvLSTM(FSR

T/S,t+k−1, hT/S,t+k−1),
(6)

where hT/S,t+k represents the hidden states of the teacher

network T or the student network S at time t+ k. The com-

plete definition of ConvLSTM(·) are specified in the sup-

plementary document due to space limitation.

The proposed TD scheme aims to minimize the gap be-

tween temporal memory cells CSR
T

and CSR
S

. The TD loss

used to optimize the student S is

LTD = Ld(C
SR
T

, CSR
S

), (7)

where Ld is typically defined as the L2-norm distance.

The network parameters in the ConvLSTM units are op-

timized together with the student network. To extract the

multi-frame temporal information, both the teacher and stu-

dent networks share the weights of the ConvLSTM units.

Note that there may exist a model collapse point when the

weights and biases in the ConvLSTM units are all equal

to zero. During training, when the value of the TD loss is

lower than 1e−8, we fix the parameters of ConvLSTM to

prevent the model collapse.

3.3. Loss Functions

We use the Charbonnier loss [37, 14, 15] as the recon-

struction loss function to further constrain the reconstructed

results

Lrec =

√

‖SRt −HRt‖
2
+ ε2, (8)
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where ε is set to 1e−6. The complete loss function for train-

ing a compact student network S is

L = Lrec + λ1LSD + λ2LTD, (9)

where λ1 and λ2 are weighting factors. The proposed SD

(Eq. 5) and TD (Eq. 7) schemes are only applied during

training, together with the reconstruction loss as shown in

Fig. 4(a). During inference, the network structure remains

unchanged as shown in Fig. 4(b).

4. Experiments

4.1. Experimental Settings

Network Structures. We adopt the state-of-the-art VSR

network EDVR [37] as the complicated teacher network T

and employ several simpler and shallower networks as stu-

dents to verify the effectiveness of our STD scheme. We

first consider FastDVDnet [34] as a basic student network

and conduct ablation studies on it. Since FastDVDnet [34]

is originally proposed for video denoising [3, 33, 34], we

change its structure to make it suitable for the VSR task

(more details can be found in the supplementary docu-

ment). Typical compact VSR networks like VSRNet [17],

VESPCN [1], D3DNet [45] and SOFVSR [36] are also

adopted in our experiments.

Training Settings. We follow the same experimen-

tal setting as in [14] and train our models on the

Vimeo90K [41] dataset. We crop patches of size 256× 256
from HR video clips as the target. The corresponding LR

patches are obtained by applying Gaussian blur (σ = 1.6)

to the target patches followed by 4× times downsampling.

Rotation and flipping are applied for data augmentation.

Inference Settings. We evaluate our STD scheme

on several popular benchmarks, including Vimeo90K-

Test [41] (excluding the training data) and Vid4 testset [21].

Vimeo90K-Test contains about 8K high-quality clips with

diverse motion types (i.e., fast, medium and slow motion).

Vid4 consists of four scenes with various motion and oc-

clusion, which is useful to evaluate the robustness of differ-

ent methods. To quantitatively evaluate the reconstructed

video, we choose PSNR and SSIM [11] as the main met-

rics. Temporal profile [16, 14, 38, 50] is also included to

evaluate the temporal consistency qualitatively.

Implementation Details. We utilize the Adam opti-

mizer with parameters β1 = 0.9 and β2 = 0.999. Each

mini-batch consists of 2 samples. The learning rate is ini-

tially set to 1e−4 and is later down-scaled by a factor of 0.5

every 200K iterations till 800K iterations. We set λ1 = 1,

λ2 = 100 and k = 3. We use Lrec (Eq. 8) to warm up the

student networks for 20K iterations, and then use L (Eq. 9)

to complete the remaining training. Experiments are con-

ducted using PyTorch [26] on NVIDIA 1080Ti GPUs.

(a) Overlapped GT frames (b) Optical flow of GT

(c) Overlapped frames without KD (d) Optical flow of frames without KD

(e) Overlapped frames with [19] (f) Optical flow of frames with [19]

(g) Overlapped frames with STD (h) Optical flow of frames with STD

Figure 5: Visual comparisons on Vimeo90K-Test. We use the

FlowNet2.0 [13] to estimate optical flow of two adjacent frames

generated by VDSR [18]. The optical flow of the distilled model

with our STD scheme has smoother shapes and is closer to GT.

Please zoom in for better visualization.

4.2. Quantitative and Qualitative Comparisons

We evaluate the distilled student models against their

baselines which are trained with the Charbonnier loss in

terms of PSNR/SSIM. Other VSR methods, including Bicu-

bic, TOFlow [41], VSR-DUF [16], RBPN [8], EDVR [37]

are also included for comparison. We also report the FLOPs

(TMAC) required to reconstruct the frame with the spa-

tial resolution of 180 × 120. The average runtime of each

method measured on Vid4-Walk in a per-frame manner is

presented using one 1080Ti GPU. Note that we also com-

pare the results of the distillation scheme in [19] and our

proposed STD scheme.

Table 1 shows quantitative comparisons on Vid4 and

Vimeo90K-Test. From the table, we can observe that:

(1) The student models trained with STD outperform

the corresponding baselines with a considerable mar-

gin. Specifically, on Vid4, FastDVDnet trained with STD

achieves 26.14dB (PSNR), while the same model trained

without STD only gets 25.40dB (PSNR).

(2) The student networks trained with STD achieve

higher reconstruction performance compared with the dis-

tillation scheme in [19]. We visualize the superposition re-

sults and optical flow of two reconstructed adjacent frames

in Fig. 5. It can be observed that using our STD scheme
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Table 1: Quantitative comparisons of different methods on Vid4 and Vimeo90K-Test for 4× upscaling in terms of PSNR (dB). Results are

evaluated on the Y (luminance) channel. ‘Frames’ means the number of input frames of the network. ‘FLOPs’ (T, 1012) is calculated on a

frame with the spatial resolution of 180 × 120. ‘Time’ is the average running time (ms) which is measured on Vid4-Walk in a per-frame

manner. ⋆ means the student network is trained with our STD scheme and ♣ means the student network is trained with the scheme

proposed in [19].

Method Frames
Network performance Vid4 Vimeo90K-Test

FLOPs Time Calendar City Foliage Walk Average Fast Medium Slow Average

Bicubic 1 - - 20.39 25.16 23.47 26.10 23.78 32.99 30.24 28.28 30.28

TOFlow 7 0.81 632.0 22.29 26.79 25.31 29.02 25.84 37.64 35.02 32.16 34.84

VSR-DUF 7 0.62 496.0 24.04 28.05 26.41 30.60 27.33 37.49 35.84 32.96 35.50

EDVR 7 0.93 86.0 23.75 28.27 26.03 30.51 27.14 39.67 37.18 34.14 36.89

VDSR 1 0.22 11.5 21.09 25.66 24.14 27.53 24.61 35.92 33.04 30.80 33.04

VDSR♣ 1 0.22 11.5 21.22 25.90 24.31 27.66 24.77 36.34 33.32 31.14 33.34

VDSR⋆ 1 0.22 11.5 21.55 25.84 24.33 28.02 24.94 36.79 33.90 31.58 33.89

VESPCN 3 0.26 21.3 21.16 25.91 24.51 27.78 24.84 36.22 33.38 31.12 33.36

VESPCN⋆ 3 0.26 21.3 21.32 26.25 24.81 27.99 25.09 36.64 33.89 31.57 33.84

VSRNet 7 0.23 11.3 21.00 25.60 24.14 27.36 24.52 36.09 33.27 31.00 33.24

VSRNet⋆ 7 0.23 11.3 21.33 25.74 24.33 27.80 24.80 36.52 33.76 31.45 33.72

FastDVDnet 7 0.06 17.5 22.11 26.34 24.80 28.45 25.43 37.25 34.54 32.11 34.48

FastDVDnet⋆ 7 0.06 17.5 22.71 27.18 25.46 29.22 26.14 38.13 36.07 33.68 36.12

(a) GT (b) Bicubic (c) VSRNet (d) VSRNet⋆ (e) FastDVDnet (f) FastDVDnet⋆

(a) GT (b) Bicubic (c) VSRNet (d) VSRNet⋆ (e) FastDVDnet (f) FastDVDnet⋆

(a) GT (b) Bicubic (c) VSRNet (d) VSRNet⋆ (e) FastDVDnet (f) FastDVDnet⋆

Figure 6: Visual comparisons of the distilled student models against their baselines on 4× upscaling. ⋆ means student networks trained

with our STD scheme. The reconstructed frames, and the temporal profiles at the blue scan lines are provided. The frames are from

Vid4-Calendar, Vid4-City and Vimeo90K-Test-00001/0629, respectively. Please zoom in for better visualization.
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(a) GT (b) Bicubic (c) FastDVDnet -w/o STD (d) FastDVDnet -w/ SD (e) FastDVDnet -w/ TD (f) FastDVDnet -w/ STD

Figure 7: Error map comparison on the frame from Vid4-Walk. Please zoom in for better visualization.

obtains results with better temporal consistency.

(3) The models trained with STD offer a good com-

promise in terms of PSNR and the number of opera-

tions/runtime. For example, TOFlow [41] has 0.81T op-

erations and average runtime of 632ms to achieve the av-

erage PSNR of 25.84dB on Vid4. On the contrary, our

STD scheme further boosts FastDVDnet without modify-

ing the network architecture, achieving the average PSNR

of 26.14dB and has 0.06T operations only, while taking

17.5ms for inference.

In Fig. 1, we provide more comparisons on the effective-

ness of our proposed STD scheme. As can be seen, we can

achieve better reconstruction results with existing compact

networks, but without extra runtime.

Qualitative results on Vid4 are presented in Fig. 6. It

is clear that the student models trained with STD provide

better qualitative results than their baselines with more ac-

curate details and less blurs. As can be seen from the ac-

companied temporal profiles, methods trained with STD are

able to reconstruct temporally consistent results while their

baselines incur obvious temporal inconsistency.

4.3. Model Analysis

To analyze the flexibility and generalizability of the pro-

posed STD scheme, we conduct the following experiments

on the Y channel with the metric of PSNR.

Effectiveness of space-time distillation. We first inves-

tigate the contribution of SD and TD by taking FastDVDnet

as an example. We show the quantitative results in Table 2,

and provide the error map comparison in Fig. 7. We ob-

serve that the model trained with only SD (-w/ SD) or TD

(-w/ TD) achieves higher PSNR than the baseline model (-

w/o STD), while the model trained with both SD and TD

(-w/ STD) achieves the best results. Specifically, SD and

TD provide about 0.49dB and 0.21dB PSNR gain on Vid4

compared with the baseline. Using SD and TD simulta-

neously provides 0.74dB gain in terms of PSNR compared

with the baseline. This shows that STD can boost the per-

formance of the student network by effectively transferring

spatial-temporal information from the teacher. As shown in

Fig. 7, the result of the model trained with STD has less

errors compared with the baseline.

Table 2: Analysis on the effectiveness of the proposed STD

scheme. Experiments are conducted on Vid4.

Vid Calendar City Foliage Walk Average

FastDVDnet -w/o STD 22.11 26.34 24.80 28.45 25.43

FastDVDnet -w/ SD 22.63 27.09 25.19 28.90 25.95

FastDVDnet -w/ TD 22.59 26.51 25.26 29.14 25.87

FastDVDnet -w/ STD 22.71 27.18 25.46 29.22 26.14

Table 3: Analysis on different distillation schemes. Experiments

are conducted on Vid4 using FastDVDnet.

Vid4 Calendar City Foliage Walk Average

KD - Ours 22.71 27.18 25.46 29.22 26.14

KD - MSE 22.56 26.89 25.14 28.83 25.86

KD-M2
mean 22.61 26.82 25.23 29.02 25.92

Our space-time distillation scheme vs. other distilla-

tion schemes. We compare our STD with other two types of

distillation schemes using FastDVDnet. The first one is the

simplest distillation scheme which uses MSE loss to con-

strain the feature similarity between the teacher and student

networks (KD-MSE). The other one is from [7], denoted

as KD-M2
mean, in which the feature gap is narrowed by

M2
mean(F

LR
t ) = ( 1

C

∑C
i=1 F

LR
t,i )2. The quantitative re-

sults displayed in Table 3 show that our STD performs bet-

ter than these two distillation schemes. STD provides an av-

erage of 0.28dB PSNR gain on Vid4 over KD-MSE. Com-

pared with the student model trained with KD-M2
mean, the

student trained with our STD scheme achieves a 0.22dB in-

crease in PSNR. This demonstrates that our STD can better

transfer the teacher’s ability of modeling spatial-temporal

information to the student.

Effectiveness of distilling features with higher resolu-

tion. In experiment, we empirically find that using the high-

resolution feature FSR
t for distillation is more effective than

using the low-resolution feature FLR
t . Here we show the

quantitative results on distilling FLR
t (KD-FLR

t ) and FSR
t

(KD-FSR
t ) of FastDVDnet in Table 4. Compared to using

FLR
t for distillation, distilling FSR

t achieves an average in-

crease of 0.05dB in terms of PSNR on Vid4. We also visual-

ize the representative feature maps of EDVR-FLR, EDVR-

FSR, KD-FLR and KD-FLR in the same channel. Feature

visualization in Fig. 8 validates this observation. FSR
t con-
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(a) EDVR-FLR
t

(b) KD-FLR
t

(c) EDVR-FSR
t

(d) KD-FSR
t

Figure 8: Feature maps (FLR
t and F

SR
t ) extracted from EDVR and FastDVDnet after distillation on Vid4-Foliage.

Table 4: Analysis on distilling features with different resolutions.

Experiments are conducted on Vid4 using FastDVDnet.

Vid4 Calendar City Foliage Walk Average

KD - FSR
t

22.71 27.18 25.46 29.22 26.14

KD - FLR
t

22.66 27.12 25.43 29.14 26.09

Table 5: Using RBPN (-RBPN) and EDVR (-EDVR) to distill

FastDVDnet based on our proposed STD scheme. Experiments

are conducted on Vid4.

Vid4 Calendar City Foliage Walk Average

EDVR 23.75 28.27 26.03 30.51 27.14

RBPN 23.70 27.59 25.94 30.36 26.90

FastDVDnet 22.11 26.34 24.80 28.45 25.43

FastDVDnet-RBPN 22.45 26.84 25.33 28.96 25.89

FastDVDnet-EDVR 22.71 27.18 25.46 29.22 26.14

tains more details, which can be better transferred from the

teacher network to the student network.

Using different teachers for distillation. Can the stu-

dent network be able to learn from different teachers based

on our proposed STD scheme? To answer this question,

here we use another teacher network, i.e., RBPN [8], a typi-

cal optical-flow-based VSR method, to verify the versatility

of STD, and the results are shown in Table 5. We make

minor adjustments to the last convolutional layer of RBPN

to make it suitable for our STD scheme. Using RBPN

as the teacher can also obtain performance improvement:

compared to FastDVDnet without distillation, distilling the

same network using RBPN has a 0.46dB increase in PSNR.

Although there is a certain gap with the distilled results us-

ing EDVR as the teacher, we can draw the following con-

clusions. First, our STD scheme is applicable to different

teachers and students. Second, the better the teacher’s per-

formance, the larger the distillation improvement. If a better

network than EDVR is adpoted as the teacher for distilla-

tion, larger performance improvement can be achieved by

using our STD scheme. Due to its high flexibility and gen-

eralizability, we believe the proposed STD scheme could

greatly facilitate VSR on resource-limited devices.

Distilling the student network with different numbers

of parameters. To verify the robustness of STD to mod-

els of different sizes, i.e., models with different numbers of

parameters, we use STD to distill FastDVDnet as an exam-

ple. Specifically, we change the number of feature chan-

Table 6: The reconstruction quality (PSNR) of FastDVDnet

trained with and without the proposed STD scheme under different

model sizes on Vid4-Walk.

Model size 1/4 1/2 1 Bicubic

FastDVDnet -w/o STD 25.70 26.67 28.45
26.10

FastDVDnet -w/ STD 27.06 27.35 29.22

nels in front of the reconstruction backbone in FastDVD-

net to 1/2 and 1/4 of the original one (i.e., the numbers of

channels in FastDVDnet are set to 32 and 16, respectively).

Table 6 shows the results of FastDVDnet without STD (-

w/o STD) and with STD (-w/ STD) under different model

sizes. We find that the STD scheme can improve the net-

work performance under different model sizes, especially

when the model size is small. For example, when the model

size of FastDVDnet is 1/2 of the original one, the model

trained with STD achieves 0.68dB gain over that without

STD; when the model size shrinks to only 1/4 of the orig-

inal one, STD provides 1.36dB gain. This is reasonable:

when the model size is small, its ability to model spatial-

temporal correlations is limited. Therefore, the knowledge

transferred from the teacher network promotes the perfor-

mance of the student network more.

5. Conclusion

In this work, we propose a novel knowledge distillation

scheme, i.e., space-time distillation, for VSR in resource-

constrained situations. Our method is able to train com-

pact student networks with the help of complicated teacher

networks. We demonstrate the effectiveness, flexibility and

versatility of our proposed distillation scheme on the VSR

task, which can achieve higher reconstruction quality us-

ing existing VSR methods, while maintaining their small

model sizes and fast inference time. In future work, we will

explore more suitable distillation losses for VSR to further

improve the performance of compact networks.

Acknowledgement

We acknowledge funding from National Key R&D

Program of China under Grant 2017YFA0700800, Na-

tional Natural Science Foundation of China under Grant

61901433, and the USTC Research Funds of the Double

First-Class Initiative under Grant YD2100002003.

2120



References

[1] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro

Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi. Real-

time video super-resolution with spatio-temporal networks

and motion compensation. In CVPR, 2017. 2, 5

[2] Chang Chen, Zhiwei Xiong, Xinmei Tian, Zheng-Jun Zha,

and Feng Wu. Camera lens super-resolution. In CVPR, 2019.

1

[3] Michele Claus and Jan van Gemert. Videnn: Deep blind

video denoising. In CVPR Workshops, 2019. 5

[4] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In ECCV, 2014. 1

[5] William T Freeman, Egon C Pasztor, and Owen T

Carmichael. Learning low-level vision. International jour-

nal of computer vision, 40(1):25–47, 2000. 1

[6] Dario Fuoli, Shuhang Gu, and Radu Timofte. Efficient video

super-resolution through recurrent latent space propagation.

In ICCV Workshops, 2019. 2

[7] Qinquan Gao, Yan Zhao, Gen Li, and Tong Tong. Im-

age super-resolution using knowledge distillation. In ACCV,

2018. 2, 7

[8] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Recurrent back-projection network for video super-

resolution. In CVPR, 2019. 5, 8

[9] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No-

jun Kwak, and Jin Young Choi. A comprehensive overhaul

of feature distillation. In ICCV, 2019. 2

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. In NeurIPS, 2015. 2

[11] Alain Hore and Djemel Ziou. Image quality metrics: Psnr

vs. ssim. In ICPR, 2010. 5

[12] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change

Loy. Learning lightweight lane detection cnns by self atten-

tion distillation. In ICCV, 2019. 2

[13] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. In CVPR,

2017. 1, 5

[14] Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin

Wang, and Qi Tian. Video super-resolution with recurrent

structure-detail network. In ECCV, 2020. 2, 4, 5

[15] Takashi Isobe, Songjiang Li, Xu Jia, Shanxin Yuan, Gregory

Slabaugh, Chunjing Xu, Ya-Li Li, Shengjin Wang, and Qi

Tian. Video super-resolution with temporal group attention.

In CVPR, 2020. 2, 4

[16] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon

Joo Kim. Deep video super-resolution network using dy-

namic upsampling filters without explicit motion compensa-

tion. In CVPR, 2018. 1, 5

[17] Armin Kappeler, Seunghwan Yoo, Qiqin Dai, and Aggelos K

Katsaggelos. Video super-resolution with convolutional neu-

ral networks. IEEE Transactions on Computational Imaging,

2(2):109–122, 2016. 1, 2, 5

[18] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In CVPR, 2016. 1, 5

[19] Wonkyung Lee, Junghyup Lee, Dohyung Kim, and Bumsub

Ham. Learning with privileged information for efficient im-

age super-resolution. In ECCV, 2020. 2, 5, 6

[20] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao,

Jiebo Luo, and Li-Jia Li. Learning from noisy labels with

distillation. In ICCV, 2017. 2

[21] Ce Liu and Deqing Sun. On bayesian adaptive video super

resolution. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 36(2):346–360, 2013. 2, 5

[22] Ding Liu, Zhaowen Wang, Yuchen Fan, Xianming Liu,

Zhangyang Wang, Shiyu Chang, and Thomas Huang. Ro-

bust video super-resolution with learned temporal dynamics.

In ICCV, 2017. 2

[23] Yifan Liu, Chunhua Shen, Changqian Yu, and Jingdong

Wang. Efficient semantic video segmentation with per-frame

inference. In ECCV, 2020. 2

[24] Seungjun Nah, Radu Timofte, Sungyong Baik, Seokil Hong,

Gyeongsik Moon, Sanghyun Son, and Kyoung Mu Lee.

Ntire 2019 challenge on video deblurring: Methods and re-

sults. In CVPR Workshops, 2019. 1

[25] Seungjun Nah, Radu Timofte, Shuhang Gu, Sungyong Baik,

Seokil Hong, Gyeongsik Moon, Sanghyun Son, and Kyoung

Mu Lee. Ntire 2019 challenge on video super-resolution:

Methods and results. In CVPR Workshops, 2019. 1

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2019. 5

[27] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. In ICLR, 2015. 2

[28] Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew

Brown. Frame-recurrent video super-resolution. In CVPR,

2018. 2

[29] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, 2016. 3

[30] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,

Wai-Kin Wong, and Wang-chun Woo. Convolutional lstm

network: A machine learning approach for precipitation

nowcasting. In NeurIPS, 2015. 4

[31] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Pwc-net: Cnns for optical flow using pyramid, warping, and

cost volume. In CVPR, 2018. 1

[32] Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya

Jia. Detail-revealing deep video super-resolution. In ICCV,

2017. 2

[33] Matias Tassano, Julie Delon, and Thomas Veit. Dvdnet: A

fast network for deep video denoising. In ICIP, 2019. 5

[34] Matias Tassano, Julie Delon, and Thomas Veit. Fastdvdnet:

Towards real-time deep video denoising without flow esti-

mation. In CVPR, 2020. 2, 5

[35] Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu.

Tdan: Temporally-deformable alignment network for video

super-resolution. In CVPR, 2020. 2

2121



[36] Longguang Wang, Yulan Guo, Zaiping Lin, Xinpu Deng, and

Wei An. Learning for video super-resolution through hr op-

tical flow estimation. In ACCV, 2018. 5

[37] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and

Chen Change Loy. Edvr: Video restoration with enhanced

deformable convolutional networks. In CVPR Workshops,

2019. 1, 2, 3, 4, 5

[38] Zeyu Xiao, Zhiwei Xiong, Xueyang Fu, Dong Liu, and

Zheng-Jun Zha. Space-time video super-resolution using

temporal profiles. In ACM MM, 2020. 2, 5

[39] Zhiwei Xiong, Xiaoyan Sun, and Feng Wu. Image halluci-

nation with feature enhancement. In CVPR, 2009. 1

[40] Zhiwei Xiong, Dong Xu, Xiaoyan Sun, and Feng Wu.

Example-based super-resolution with soft information and

decision. IEEE Transactions on Multimedia, 15(6):1458–

1465, 2013. 1

[41] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and

William T Freeman. Video enhancement with task-

oriented flow. International Journal of Computer Vision,

127(8):1106–1125, 2019. 1, 2, 5, 7

[42] Jianchao Yang, John Wright, Thomas S Huang, and Yi

Ma. Image super-resolution via sparse representation.

IEEE Transactions on Image Processing, 19(11):2861–2873,

2010. 1

[43] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and

Jiayi Ma. Progressive fusion video super-resolution net-

work via exploiting non-local spatio-temporal correlations.

In ICCV, 2019. 1, 2

[44] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A

gift from knowledge distillation: Fast optimization, network

minimization and transfer learning. In CVPR, 2017. 2

[45] Xinyi Ying, Longguang Wang, Yingqian Wang, Weidong

Sheng, Wei An, and Yulan Guo. Deformable 3d convolution

for video super-resolution. IEEE Signal Processing Letters,

27, 2020. 5

[46] Sergey Zagoruyko and Nikos Komodakis. Paying more at-

tention to attention: Improving the performance of convolu-

tional neural networks via attention transfer. In ICLR, 2017.

3

[47] Haochen Zhang, Dong Liu, and Zhiwei Xiong. Two-stream

action recognition-oriented video super-resolution. In ICCV,

2019. 2

[48] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In ECCV, 2018. 1

[49] Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo.

Looking for the devil in the details: Learning trilinear atten-

tion sampling network for fine-grained image recognition. In

CVPR, 2019. 2

[50] Liad Pollak Zuckerman, Shai Bagon, Eyal Naor, George

Pisha, and Michal Irani. Across scales & across dimensions:

Temporal super-resolution using deep internal learning. In

ECCV, 2020. 5

2122


