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Abstract

Font generation is a challenging problem especially for

some writing systems that consist of a large number of

characters and has attracted a lot of attention in recent

years. However, existing methods for font generation are

often in supervised learning. They require a large num-

ber of paired data, which is labor-intensive and expensive

to collect. Besides, common image-to-image translation

models often define style as the set of textures and col-

ors, which cannot be directly applied to font generation.

To address these problems, we propose novel deformable

generative networks for unsupervised font generation (DG-

Font). We introduce a feature deformation skip connection

(FDSC) which predicts pairs of displacement maps and em-

ploys the predicted maps to apply deformable convolution

to the low-level feature maps from the content encoder. The

outputs of FDSC are fed into a mixer to generate the fi-

nal results. Taking advantage of FDSC, the mixer outputs

a high-quality character with a complete structure. To fur-

ther improve the quality of generated images, we use three

deformable convolution layers in the content encoder to

learn style-invariant feature representations. Experiments

demonstrate that our model generates characters in higher

quality than state-of-art methods. The source code is avail-

able at https://github.com/ecnuycxie/DG-Font.

1. Introduction

Every day, people consume a massive amount of texts

for information transfer and storage. As the representation

of texts, the font is closely related to our daily life. Font gen-

eration is critical in many applications, e.g., font library cre-

ation, personalized handwriting, historical handwriting imi-

tation, and data augmentation for optical character recogni-

tion and handwriting identification. Traditional font library

creating methods heavily rely on expert designers by draw-
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Figure 1. Unsupervised font generation results. The reference

calligraphy is a Tang poem written by a calligrapher, and imita-

tion result is another famous Tang poem generated from our model

which are with rich details, such as stroke tips, joined-up writing,

and thickness of strokes.

ing each glyph individually, which is especially expensive

and labor-intensive for logographic languages such as Chi-

nese (more than 60,000 characters), Japanese (more than

50,000 characters), and Korean (11,172 characters).

Recently, the development of convolutional neural net-

works enables automatic font generation without human ex-

perts. There have been some attempts to explore font gener-

ation and achieve promising results. [49, 1, 18] utilize deep

neural networks to generate entire sets of letters for certain

alphabet languages. Two notable projects, “Rewrite" [40]

and “zi2zi" [61], generate logographic language characters

by learning a mapping from one style to another with thou-

sands of paired characters. After that, EMD [58] and SA-

VAE [44] design neural networks to separate the content

and style representation, which can extend to generate char-

acter of new styles or contents. However, these methods are
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in supervised learning and required a large amount of paired

training samples.

Some other methods exploit auxiliary annotations (e.g.,

strokes, radicals) to facilitate high-quality font generation.

For example, [30] utilizes labels for each stroke to generate

glyphs by writing trajectories synthesis. [26] employ the

radical decomposition (e.g., radicals or sub-glyphs) of char-

acters to achieve font generation for certain logographic lan-

guage. DM-Font [7] and its improved version LF-Font [39]

propose disentanglement strategies to disentangle complex

glyph structures, which help capture local details in rich text

design. However, these methods rely on prior knowledge

and can only apply to specific writing systems. Some labels

such as the stroke skeleton can be estimated by algorithms,

but the estimation error would decrease the generated qual-

ity. Also, these methods still require thousands of paired

data and annotated labels for training. Recently, there are

some attempts [19, 9] for unsupervised font generation. [9]

introduces a novel module that transfers the features across

sequential DenseNet blocks [23]. [19] proposes a fast skele-

ton extraction method to obtain the skeleton of characters,

and then utilize the extracted skeleton to facilitate font gen-

eration.

For the problem of image-to-image translation, a series

of works in unsupervised learning have been proposed by

combining adversarial training [32, 54] with consistent con-

straints [59, 47, 3]. FUNIT [33] maps an image of a source

class to an analogous image of a target class by leverag-

ing a few target class images. They extract the style fea-

ture of the target class images and employ adaptive instance

normalization (AdaIN) [25] to combine the content and the

style features. However, these image-to-image translation

methods cannot be directly applied to font generation tasks.

Although consistent constraints preserve the structure of a

content image, they still encounter some problems for font

generation (e.g., blurry, missing some strokes). Also, they

usually define the style as the set of textures and colors.

The AdaIN-based methods transfer style by aligning feature

statics, which tends to transform texture and color, which is

not suitable to transform local style patterns (e.g., geomet-

ric deformation) for the font. Moreover, [9, 19] achieve un-

supervised font generation by learning a mapping between

two fonts directly, they also ignore the geometric deforma-

tion for the font. To learn the mapping across geometry

variations, [20] introduces a discriminator with dilated con-

volutions as well as a multi-scale perceptual loss that is able

to represent error in the underlying shape of objects. [52]

disentangles image space into a Cartesian product of the ap-

pearance and the geometry latent spaces.

Compelled by the above observations, we propose a

novel deformable generative model for unsupervised font

generation (DG-Font). The proposed method is designed to

deform and transform the character of one font to another

by leveraging the provided images of the target font. The

proposed DG-Font separates style and content respectively

and then mix two domain representations to generate target

characters. We introduce a feature deformation skip con-

nection (FDSC) which predicts pairs of displacement maps

and employs the predicted maps to apply deformable con-

volution to the low-level feature maps from the content en-

coder. The outputs of FDSC are fed into a mixer to generate

the final results. To distinguish different styles, we train our

model with a multi-task discriminator, which ensures that

each style can be discriminated independently. In addition,

another two reconstruction losses are adopted to constrain

the domain-invariant characteristics between generated im-

ages and content images.

The feature deformation skip connection (FDSC) mod-

ule is used to transform the low-level feature of content im-

ages, which preserves the pattern of character (e.g., strokes

and radicals). Different from the image-to-image transla-

tion problem that defines style as a set of texture and color,

the style of font is basically defined as geometric transfor-

mation, stroke thickness, tips, and joined-up writing pat-

tern. For two fonts with the same content, they usually have

correspondence for each stroke. Taking advantage of the

spatial relationship of fonts, the feature deformation skip

connection (FDSC) is used to conduct spatial deformation,

which effectively ensures the generated image to have com-

plete structures.

Extensive experiments demonstrate that our model

achieves comparable results to the state-of-the-art font gen-

eration methods. Besides, results show that our model is

able to extend to generate unseen style character.

2. Related works

2.1. Image­to­Image Translation

The purpose of image-to-image translation is to learn a

mapping from an image in the source domain to the tar-

get domain. Image-to-image translation has been applied in

many fields such as artistic style transfer [31, 56], semantic

segmentation [43, 38], image animation [50, 53, 15], object

transfiguration [12], and video frames generation [8, 13, 17]

et al. Pix2pix [27] is the first model proposed for image-

to-image translation based on conditional GAN [37]. To

achieve unsupervised image-to-image translation, a lot of

works [34, 59, 6, 42] have been proposed, where Cycle-

GAN [59] introduces a cycle consistency between source

and target domain to discover the relationship of samples

between two domain. However, above-mentioned methods

can only translate from one domain to another specific do-

main. To tackle this problem, recent works [11, 33, 2, 5] are

proposed to simultaneously generate multiple style outputs

given the same input. Gated-GAN [11] proposes a gated

transformer to transfer multiple styles in a single model.
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Figure 2. Overview of the proposed method. a) Overview of our generative network. The Style/content encoder maps style/content

image to style/content representation Zs/Zc. FDSC-1 and FDSC-2 have the same architecture and apply transformation convolution to

the low-level feature from the content encoder and inject the results into the mixer. The mixer generates the output image. b) A detailed

illustration of the FDSC module. c) The discriminator output a binary vector, where each element indicates a binary classification to

distinguish between generated and real images.

FUNIT [33] encodes content image and class image respec-

tively, and combines them with AdaIN [25]. TUNIT [2]

further introduce a guiding network as an unsupervised do-

main classifier to automatically produce a domain label of

a given image. DUNIT [5] extract separate representations

for the global image and for the instances to preserve the

detailed content of object instances.

2.2. Font Generation

Font generation aims to automatically generate charac-

ters in a specific font and create a font library. Recent stud-

ies have employed image translation methods for font gen-

eration. “Zi2zi" [61] and “Rewrite" [40] implement font

generation on the basis of GAN [21] with thousands of

character pairs for strong supervision. After that, a series

of models are proposed to improve the generated quality

based on zi2zi [61]. PEGAN [45] sets up a multi-scale im-

age pyramid to pass information through refinement con-

nections. HAN [10] improves zi2zi by designing a hierar-

chical loss and skip connection. AEGG [36] adds an addi-

tional network to refine the training process. DC-Font [29]

introduces a style classifier to get a better style represen-

tation. However, all the above methods are in supervised

learning and require a large number of paired data.

In addition to the paired data, lots of methods em-

ploy auxiliary annotations (e.g., stroke and radical decom-

position) to further improve the generation quality. SA-

VAE [44] disentangles the style and content as two irrel-

evant domains with encoding Chinese characters into high-

frequency character structure configurations and radicals.

CalliGAN [51] further decomposes characters into compo-

nents and offers low-level structure information including

the order of strokes to guide the generation process. RD-

GAN [26] proposes a radical extraction module to extract

rough radicals which can improve the performance of dis-

criminator and achieves the few-shot Chinese font genera-

tion. Also, some other attempts have been made in Chinese

character generation by adopting skeleton/stroke extraction

algorithm [19, 30]. However, they need extra annotations

or algorithms to guide font generation; while the estimation

error would decrease the generation performance. In con-

trast, our proposed model, DG-Font, can generate images in

an unsupervised way without other annotations.

2.3. Deformable Convolution

CNNs have inherent limitations in modeling geometric

transformations due to the fixed kernel configuration. To

enhance the transformation modeling capability of CNNs,

[16] proposes the deformable convolutional layer. It aug-

ments the spatial sampling locations in the modules with

additional offsets. The deformable convolution has been

applied to address several high-level vision tasks, such as
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object detection [4, 16, 60] video object detection [14] sam-

pling, semantic segmentation [60], and human pose esti-

mation [46]. Recently, some methods attempt to apply de-

formable convolution in the image generation tasks. TDAN

[48] addresses video super-resolution task by using de-

formable convolution to align two continuous frames and

output a high-resolution frame. [55] synthesizes novel view

images by deformable convolution given the view condition

vectors. In our proposed DG-Font, offsets are estimated by

a learned latent style code.

3. Methods

3.1. overview

Given a content image Ic and a style image Is, our model

aims to generate the character of the content image with the

font of the style image. As illustrated in Fig. 2, the pro-

posed generative network consists of a style encoder, a con-

tent encoder, a mixer, and two feature deformation skip con-

nection (FDSC) modules. The architecture of the style en-

coder and discriminator is simplified in Fig. 2. The detailed

architecture is shown in Appendix A. The style encoder

is designed to learn the style representation from input im-

ages. Specifically, the style encoder takes a style image as

the input and maps it to a style latent vector Zs. The con-

tent encoder is introduced to extract the structure feature of

the content images. The content encoder maps the content

image into a spatial feature map Zc. The content encoder

module is made of three deformable convolution layers fol-

lowed by two residual blocks. The introduced deformable

convolution layer enables the content encoder to produce

style-invariant features for images with the same content.

The mixer aims to output characters by mixing the content

feature representations Zc and style feature representations

Zs. AdaIN [25] is adopted to inject the style feature to the

mixer. Besides, the feature deformation skip connection

modules transfers the deformed low-level feature from the

content encoder to the mixer. Details are described in Sec

3.2.

When character images are generated from the genera-

tive network, a multi-task discriminator is adopted to con-

duct discrimination for each style simultaneously. For each

style, the output of the discriminator is a binary classifica-

tion whether the input image is a real image or a generated

image. As there are several different styles of fonts in the

training set, the discriminator outputs a binary vector whose

length is the number of styles.

3.2. Feature Deformation Skip Connection

As illustrated in Fig. 3, there lies in a geometric defor-

mation of two fonts for a character and exists a correspon-

dence for each stroke. Compelled this observation, we pro-

pose a feature deformation skip connection (FDSC) module

to apply geometric deformation convolution to the content

image in the feature space and directly transfer the deforma-

tion low-level feature to the mixer. Specifically, the module

predicts offsets based on the guidance code to instruct the

deformable convolution layer performing a geometric trans-

formation on the low-level feature. As demonstrated in Fig.

2, the input of FDSC module is a concatenation of two fea-

ture maps: a feature map Kc extracted from the content im-

age and a style guidance map Ks. Ks is extracted from

the mixer after injecting the style code Zs. The module es-

timates sampling parameters after applying convolution to

the concatenation of Ks and Kc:

Θ = fθ(Ks,Kc). (1)

Here, fθ refers to a convolution layer, and Θ = {∆pk, ∆mk

| k = 1, · · · , |R|} refers to the offsets and mask of the convo-

lution kernel, where R = {(-1, -1), (-1, 0), · · · , (0, 1), (1, 1)}

indicates a regular grid of a 3×3 kernel. Under the guidance

of sampling parameter Θ, a geometrically deformed feature

map K
′

c is obtained from Θ and Kc based on deformable

convolution fDC(·):

K
′

c = fDC(Kc,Θ). (2)

Specifically, for each position p on the output K
′

c, the de-

formable convolution fDC(·) is applied as follow:

K
′

c(p) =

R∑

k=1

w(pk) · x(p+ pk +∆pk) ·∆mk, (3)

where the w(pk) indicates the weight of the deformable

convolution kernel at k-th location. The convolution is op-

erated on the irregular positions (pk + ∆ pk) where ∆ pk
may be fractional. Followed [16], the operation is imple-

mented by using bilinear interpolation. At last, the output

of feature deformation skip connection module is fed to the

mixer and K
′

c is then concatenated with Ks like a common

used skip connection [41].

Deformable convolution introduces 2D offsets to the reg-

ular grid sampling locations in the standard convolution. It

enables free form deformation of the sampling grid. There

are lots of areas of the same color in character images, such

as background color and character color. By using the de-

formable convolution, an area can be related to any other

area with the same color. It is difficult to optimize the non-

unique solution. To efficiently use our FDSC module, we

impose a constrain on the offsets ∆p. We introduce the con-

strain in detail in the next subsection. Section 4.4 demon-

strates the visualization of the offsets ∆p.

Our FDSC module aims to deform the spatial structure of

the content image in the feature space. It is crucial to select

which level of features to be transformed. As we know, low-

level features contain more spatial information than high-

level features. In our model, we employ the feature maps
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Figure 3. The geometric deformation of two fonts for a char-

acter. We employ the character “Tian" to compare a handwritten

style with the fonts of Kaiti and Song. There is a correspondence

for each stroke between two fonts.

after the first and second convolution layer as input to the

FDSC module. Appendix B demonstrates the analysis of

the performance of the model with different numbers of the

FDSC module.

3.3. Loss Function

Our model aims to achieve automatic font generation via

an unsupervised method. To this end, we adopt four losses:

1) adversarial loss is used to produce realistic images. 2)

content consistent loss is introduced to encourage the con-

tent of the generated image to be consistent with the content

image; 3) image reconstruction loss is used to maintain the

domain-invariant features; 4) deformation offset normaliza-

tion is designed to prevent excessive offsets of the FDSC

module. We introduce the formula of each loss and the full

objective in this section.

Adversarial loss: the proposed network aims to gen-

erate plausible images by solving a minimax optimization

problem. The generative network G tries to fool discrim-

inator D by generating fake images. The adversarial loss

penalty the wrong judgement when real/generated images

are input to discriminator.

Ladv = max
Ds

min
G

EIs∈Ps,Ic∈Pc
[logDs(Is)

+ log(1−Ds(G(Is, Ic)))],
(4)

where Ds(·) denotes the logit from the corresponding style

of discriminator’s output.

Content consistent loss: adversarial loss is adopted to

help the model to generate a realistic style while ignoring

the correctness of the content. To prevent mode collapse

and ensure that the features extracted from the same content

can be content consistent after the content encoder fc, we

impose an content consistent loss here:

Lcnt = EIs∈Ps,Ic∈Pc
‖Zc − fc(G(Is, Ic))‖1 . (5)

Lcnt ensures that given a source content image Ic and cor-

responding generated images, their feature maps are consis-

tent after content encoder fc.

Image Reconstruction loss: To ensure that the genera-

tor can reconstruct the source image Ic when given with its

origin style, we impose an reconstruction loss:

Limg = EIc∈Pc
‖Ic −G(Ic, Ic)‖1 . (6)

The objective helps preserve domain-invariant characteris-

tics (e.g., content) of its input image Ic.

Deformation offset normalization: The deformable

offsets enable free form deformation of the sampling

grid.As there are lots of areas of the same color between

input images and generated images (such as background

color and character color), it leads to a non-unique solution

which is difficult to optimize. Meanwhile, the font genera-

tion focus on the stroke relationship between content char-

acter image and target character image, such as the thick-

ness and tips of stroke. However, given images with the

same content but different style, the position of the same

stroke in these two images are close. To efficiently use this

deformable convolutional network, we impose a constrain

on the offsets ∆p:

Loffset =
1

|R|
‖∆p‖

1
, (7)

where ∆p denotes offsets of the deformable convolution

kernel, |R| denotes the number of the convolution kernel.

Overall Objective loss: Combining all the above-

mentioned loss, we have the overall loss function for train-

ing our proposed framework:

L = Ladv +λimgLimg +λcntLcnt+λoffsetLoffset, (8)

where λadv , λimg , λcnt, λoffset are hyperparameters to

control the weight of each loss function. In our model, the

generative network aims to minimize the overall object loss,

while the discriminator aims to maximize it.

4. Experiments

In this section, we evaluate our proposed model for the

Chinese font generation task. We first introduce our dataset.

After that, the results of our experiments are shown to verify

the advantages of our model. More implementation details

are shown in Appendix A.

4.1. Dataset

To evaluate our model for Chinese font generation, we

collect a dataset that contains 410 fonts (styles) including

handwritten fonts and printed fonts, each of which has 990

commonly used Chinese characters (content). The dataset is

randomly partitioned into a training set and testing set. The
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Methods one-to-many training L1 loss RMSE SSIM LPIPS FID

Seen fonts

EMD [58] X paired 0.0538 0.1955 0.7676 0.1036 89.65

Zi2zi [61] X paired 0.0521 0.1802 0.7789 0.1065 142.23

Cycle-GAN [59] × unpaired 0.0863 0.2555 0.6392 0.1825 175.24

GANimorph [20] × unpaired 0.0563 0.1759 0.7808 0.1403 72.89

FUNIT [33] X unpaired 0.0807 0.2510 0.6669 0.1216 53.77

Ours X unpaired 0.0562 0.1994 0.7580 0.0814 46.15

Unseen fonts

EMD [58] X paired 0.0430 0.1755 0.7849 0.1255 82.53

FUNIT [33] X unpaired 0.0588 0.2089 0.7417 0.1125 59.98

Ours X unpaired 0.0414 0.1709 0.7982 0.0867 50.29

Table 1. Quantitative evaluation on the whole dataset. We evaluate the methods on seen and unseen font sets. The bold number indicates

the best.

(a) Easy cases (i.e., non-cursive writing).

(b) Challenging cases (i.e., cursive writing).

Figure 4. Comparisons to the stat-of-art methods for font generation.

training set contains 400 fonts, and each font contains 800

characters. The testing set consists of two parts. One part

is the remaining 190 characters of the 400 fonts. Another

part is the remaining 10 fonts which are used to test the

generalization ability to unseen fonts.

4.2. Comparison with State­of­art Methods

In this subsection, we compare our model with the fol-

lowing methods for Chinese font generation: 1) Cycle-

GAN [59]: Cycle-GAN consists of two generative net-
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Figure 5. Effect of different components in our method. We

add different parts into our baseline successively. (a) Replace the

first three convolution layers of content encoder with deformable

convolution layers; (b) add the FDSC-1 module (without normal-

ization); (c) impose normalization on FDSC-1 module; (d) add the

FDSC-2 module (full model).

works which can translate images from one domain to an-

other using a cycle consistency loss. Cycle-GAN is also

an unsupervised learning method; 2) EMD [58]: EMD

employs an encoder-decoder architecture, and separates

style/content representations. EMD is optimized by L1

distance loss between ground-truth and generated images;

3) Zi2zi [61]: Zi2zi is a modified version of pix2pix [27]

model, it achieves font generation and uses Gaussian Noise

as category embedding to achieve multi-style transfer. Zi2zi

still requires paired data; 5) GANimorph [20]: GANimorph

adopts the cyclic image translation framework like Cycle-

GAN and introduce a discriminator with dilated convolu-

tions to get a more context-aware generator; 6) FUNIT

[33]: FUNIT is an unsupervised image-to-image translation

model which separates content and style of natural animal

images and combine them with adaptive instance normal-

ization (AdaIN) layer.

For a fair comparison, we employ the font of Song as

the source font which is commonly used in font generation

task [58, 26]. Our model, EMD, TUNIT are trained with

400 fonts. For Cycle-GAN and GANimorph, they can only

train one paired translation at once, hence we train 399 mod-

els of Cycle-GAN individually for each target style. In our

experiments, we find that the model of Zi2zi trained with

400 fonts performs worse than trained with two fonts. As a

result, we train 399 models for Zi2zi for each target style.

Quantitative comparison. The quantitative results are

shown in Table 1. In the experiments, DG-Font is compara-

ble to compared methods in pixel-level evaluation metrics,

e.g., L1 loss, RMSE, SSIM. It is noted that these metrics

focus on pixel-wise between generated image and ground-

truth and ignore the feature similarity which is closer to hu-

man perceptions. In perceptual-level metrics FID [22] and

LPIPS [57], we can observe that DG-Font outperforms the

Method L1 loss RMSE SSIM LPIPS FID

SC 0.0641 0.2212 0.7252 0.1114 46.88

FDSC 0.0582 0.2080 0.7469 0.1006 46.39

Table 2. Comparison with skip-connection (SC) proposed by U-

Net [41] . We replace two FDSC modules with skip-connections

and then compare the new model with the full model of DG-Font.

compared methods and reaches the state-of-the-art perfor-

mance for both seen fonts and unseen fonts.

Qualitative comparison. In order to verify the capabil-

ity of deforming and transforming source character patterns

(e.g., stroke, skeleton), two kinds of visual comparisons are

displayed in Fig. 4. First, we compare DG-Font to other

methods with relative simple fonts that are close to printed

fonts with no cursive writing. As demonstrated in Fig.

4(a), Cycle-GAN can only generate parts of characters or

sometimes unreasonable structures. Characters generated

by Zi2zi EMD, and GANimorph can maintain a complete

structure, but they are usually vague. FUNIT can generate

characters with a clear background but the generated char-

acters lose their structure to some degree. DG-Font is able

to generate character close to the target well. In contrast to

fonts in Fig. 4(a), fonts in Fig. 4(b) are more challenging

for the rich details and joined-up writing. We can observe

that Cycle-GAN, EMD, Zi2zi and GANimorph can hardly

generate characters under challenging cases. While FUNIT

maintains the ability to generate characters with incomplete

structure, but the skeleton of generated character is not well

transformed. Our proposed DG-Font can not only generate

characters with complete structure but also learn joined-up

writing.

4.3. Ablation Study

In this part, we add different parts into the model suc-

cessively and analyze the influence of each part, including

deformable convolution, feature deformation skip connec-

tion and deformable offset normalization. We conduct the

ablation study on the data set of 187 handwritten fonts. Our

baseline is the models that replace deformable convolution

with normal convolution and remove FDSC modules. Qual-

itative and quantitative comparisons are shown in Fig. 5.

1) Effectiveness of deformable convolution in the con-

tent encoder. Fig. 5(a) shows the results by replacing the

first three convolution layers of the content encoder with

deformable convolution layers. We can see that the quanti-

tative results improve obviously in terms of L1 loss, RMSE,

and SSIM. This indicates that deformable convolution lay-

ers in the content encoder effectively help improve the per-

formance of our model.

2) The influence of the FDSC module. In this part, we

add an FDSC module (without offset normalization in Eq.

7) that connects the features after the first layer and penulti-
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Figure 6. Feature visualization. We visualize the features K
′

c

generated from the FDSC-1 module. For each case, from left to

right: content reference characters, the corresponding generated

characters, the visualization of feature maps. For feature map im-

ages, the whiter the area, the larger the activation value.

mate layer. Results are shown in Fig. 5(b). Comparing with

Fig. 5(a), we observe that the generated characters preserve

more structure information and are able to reconstruct the

complete structure of characters.

3) Effectiveness of deformable offset constrain. We

investigate the impact of deformable offset normalization

by comparing FDSC module without and with offset nor-

malization. As shown in Fig. 5(b) and (c), adding offset

normalization helps the model generate images whose style

become more similar to the target.

4) Effectiveness of two FDSC modules. Fig. 5 (d)

shows the results of our full model with two FDSC mod-

ules. It is noted that the generated images get more details,

less noise, and achieves better quantitative results.

In addition, we compare our proposed FDSC module

with common used skip-connection [41, 58, 30, 51] pro-

posed by U-Net [41]. Skip-connection is often adopted to

transfer feature maps with different resolution directly from

encoder to decoder, which is effective in semantic segmen-

tation [28, 35] and photo-to-art [24] tasks whose content of

inputs and outputs share the same structure. However, the

font generation requires a geometric deformation between

content inputs and the corresponding generated images in

structure. To compare FDSC module with skip-connection,

We replace two FDSC modules with skip-connection in our

proposed DG-Font network. The comparison results are

shown in Table 2. We can observe that models with FDSC

modules outperform models with skip-connection, which

prove the advantage of FDSC.

4.4. Visualization

In order to show the effectiveness of FDSC, we visual-

ize the feature maps generated by the FDSC-1 module. As

shown in Fig. 6, the feature maps K
′

c preserve the pattern of

characters well, which helps generate a character with com-

plete structure. On the other hand, we can observe that the

FDSC module effectively transform features extracted from

the content encoder.

Figure 7. The visualization of learned offsets. First column:

source image and generated image. Second column: the optical

flow displays the estimated offsets ∆p. Third column: character

flow visualized the offsets ∆p. Forth column: zoomed-in details.

Source and generated images are in blue and green respectively.

In addition, we visualize the learned offsets from the

FDSC-1 module using optical flow and character flow re-

spectively. To visualize the offsets clearly, the kernel of de-

formable convolution in the FDSC module is set to 1×1.As

demonstrated in Fig. 7, we observe that the learned offsets

mainly affect the character region. The offsets value of the

background tends to zero, which proves the usefulness of

the proposed offset loss Eq. 7. In character flow, we can see

that most of the offset vectors point from the stroke in target

characters to the corresponding source stroke. The results

show that in the convolution process, the sampling locations

of target characters tend to shift to corresponding locations

in source character by the learned offsets.

5. Conclusion

In this paper, we propose an effective unsupervised font

generation model which is capable to generate realistic

characters without paired images and can extend to unseen

font well. To ensure the integration of generated char-

acters, we propose a Feature Deformation Skip Connec-

tion (FDSC) module to transfer the deformable low-level

spatial information to the mixer. Besides, we employ de-

formable convolution layers in content encoder to learn

style-invariant feature representations. Extensive experi-

ments on Chinese font generation verify the effectiveness

of our proposed model.
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